
https://www.pearson.de/9780132542951

Praise for The Clean Coder

“‘Uncle Bob’ Martin definitely raises the bar with his latest book. He explains his

expectation for a professional programmer on management interactions, time

management, pressure, on collaboration, and on the choice of tools to use. Beyond

TDD and ATDD, Martin explains what every programmer who considers him- or

herself a professional not only needs to know, but also needs to follow in order to

make the young profession of software development grow.”

—Markus Gärtner

Senior Software Developer

it-agile GmbH

www.it-agile.de

www.shino.de

“Some technical books inspire and teach; some delight and amuse. Rarely does a

technical book do all four of these things. Robert Martin’s always have for me and

The Clean Coder is no exception. Read, learn, and live the lessons in this book and

you can accurately call yourself a software professional.”

—George Bullock

Senior Program Manager

Microsoft Corp.

“If a computer science degree had ‘required reading for after you graduate,’ this

would be it. In the real world, your bad code doesn’t vanish when the semester’s

over, you don’t get an A for marathon coding the night before an assignment’s due,

and, worst of all, you have to deal with people. So, coding gurus are not necessarily

professionals. The Clean Coder describes the journey to professionalism . . . and it

does a remarkably entertaining job of it.”

—Jeff Overbey

 University of Illinois at Urbana-Champaign

“The Clean Coder is much more than a set of rules or guidelines. It contains hard-

earned wisdom and knowledge that is normally obtained through many years of

trial and error or by working as an apprentice to a master craftsman. If you call

yourself a software professional, you need this book.”

—R. L. Bogetti

Lead System Designer

Baxter Healthcare

www.RLBogetti.com

http://www.it-agile.de
http://www.shino.de
http://www.RLBogetti.com
https://www.pearson.de/9780132542951

41

CODE IMPOSSIBLE

CO D E IM PO S S I B L E

In the story when John asks “Is good code impossible?”, he is really asking “Is

professionalism impossible?” After all, it wasn’t just the code that suffered in his

tale of dysfunction. It was his family, his employer, his customer, and the users.

Everybody lost3 in this adventure. And they lost due to unprofessionalism.

So who was acting unprofessionally? John makes it clear that he thinks it was

the executives at Gorilla Mart. After all, his playbook was a pretty clear

indictment of their bad behavior. But was their behavior bad? I don’t think so.

3. With the possible exception of John’s direct employer, though I’d bet they lost too.

•• Add features by faulting the team for not recognizing their necessity. In

this case, the hardcoded content was going to require app updates to

change. How could I not realize that? I did, but I’d been handed a false

promise earlier, that’s why. Or a client will hire “a new guy” who’s

recognized there is some obvious omission. One day a client will say they

just hired Steve Jobs and can we add alchemy to the app? Then they’ll …

•• Push the deadline. Over and over. Developers work their fastest and

hardest (and BTW are at their most error prone, but who cares about

that, right?) with a couple days to go on a deadline. Why tell them you

can push the date out further while they’re being so productive? Take

advantage of it! And so it goes, a few days are added, a week is added, just

when you had worked a 20-hour shift to get everything just right. It’s like

a donkey and carrot, except you’re not treated as well as the donkey.

It’s a brilliant playbook. Can you blame them for thinking it works? But they don’t see the

God-awful code. And so it happens, time and again, despite the results.

In a globalized economy, where corporations are held to the almighty dollar and raising the

stock price involves layoffs, overworked staffs, and offshoring, this strategy I’ve shown you of

cutting developer costs is making good code obsolete. As developers, we’re going to be asked/

told/conned into writing twice the code in half the time if we’re not careful.

https://www.pearson.de/9780132542951

CHAPTER 2 SAYING NO

42

The folks at Gorilla Mart wanted the option to have an iPhone app on Black

Friday. They were willing to pay to have that option. They found someone

willing to provide that option. So how can you fault them?

Yes, it’s true, there were some communications failures. Apparently the

executives didn’t know what a web service really was, and there were all the

normal issues of one part of a big corporation not knowing what another part

is doing. But all that should have been expected. John even admits as much

when he says: “Despite years of constant reminders that every feature a client

asks for will always be more complex to write than it is to explain . . .”

So if the culprit was not Gorilla Mart, then who?

Perhaps it was John’s direct employer. John didn’t say this explicitly, but there

was a hint when he said, parenthetically, “In business, client importance

matters.” So did John’s employer make unreasonable promises to Gorilla Mart?

Did they put pressure on John, directly or indirectly, to make those promises

come true? John doesn’t say this, so we can only wonder.

Even so, where is John’s responsibility in all of this? I put the fault squarely on

John. John is the one who accepted the initial two-week deadline, knowing full

well that projects are usually more complex than they sound. John is the one

who accepted the need to write the PHP server. John is the one who accepted

the email registration, and the coupon expiration. John is the one who worked

20-hour days and 90-hour weeks. John is the one who subtracted himself from

his family and his life to make this deadline.

And why did John do this? He tells us in no uncertain terms: “I hit Send, lay

back in my chair, and with a smug grin began to fantasize how the company

would run me up onto their shoulders and lead a procession down 42nd Street

while I was crowned “Greatest Developer Ev-ar.” In short, John was trying to be

a hero. He saw his chance for accolades, and he went for it. He leaned over and

grabbed for the brass ring.

Professionals are often heroes, but not because they try to be. Professionals become

heroes when they get a job done well, on time, and on budget. By trying to become

the man of the hour, the savior of the day, John was not acting like a professional.

https://www.pearson.de/9780132542951

CODE IMPOSSIBLE

43

John should have said no to the original two-week deadline. Or if not, then he

should have said no when he found there was no web service. He should have

said no to the request for email registration and coupon expiration. He should

have said no to anything that would require horrific overtime and sacrifice.

But most of all, John should have said no to his own internal decision that the

only way to get this job done on time was to make a big mess. Notice what John

said about good code and unit tests:

“To make up for the extra work, the coding will have to go a little faster. Forget

that abstract factory. Use a big fat for loop instead of the composite, there’s no

time!”

And again:

“I spent those eight days writing code in a fury. I used all the tools available to

me to get it done: copy-and-paste (AKA reusable code), magic numbers

(avoiding the duplication of defining constants and then, gasp!, retyping them),

and absolutely NO unit tests! (Who needs red bars at a time like this, it’d just

demotivate me!)”

Saying yes to those decisions was the real crux of the failure. John accepted that

the only way to succeed was to behave unprofessionally, so he reaped the

appropriate reward.

That may sound harsh. It’s not intended that way. In previous chapters I

described how I’ve made the same mistake in my career, more than once. The

temptation to be a hero and “solve the problem” is huge. What we all have to

realize is that saying yes to dropping our professional disciplines is not the way

to solve problems. Dropping those disciplines is the way you create problems.

With that, I can finally answer John’s initial question:

“Is good code impossible? Is professionalism impossible?”

Answer: I say no.

https://www.pearson.de/9780132542951

This page intentionally left blank

https://www.pearson.de/9780132542951

45

3SAYI N G YE S

Did you know that I invented voice mail? It’s true. Actually there were three of

us who held the patent for voice mail. Ken Finder, Jerry Fitzpatrick, and I. It was

in the very early 80s, and we worked for a company named Teradyne. Our CEO

had commissioned us to come up with a new kind of product, and we invented

“The Electronic Receptionist,” or ER for short.

https://www.pearson.de/9780132542951

CHAPTER 3 SAYING YES

46

You all know what ER is. ER is one of those horrible machines that answers the

phone at companies and asks you all kinds of brain-dead questions that you

need to answer by pressing buttons. (“For English, press 1.”)

Our ER would answer the phone for a company and ask you to dial the name of

the person you wanted. It would ask you to pronounce your name, and then it

would call the person in question. It would announce the call and ask whether

it should be accepted. If so, it would connect the call and drop off.

You could tell ER where you were. You could give it several phone numbers to

try. So if you were in someone else’s office, ER could find you. If you were at

home, ER could find you. If you were in a different city, ER could find you.

And, in the end, if ER could not find you, it would take a message. That’s where

the voice mail came in.

Oddly enough, Teradyne could not figure out how to sell ER. The project ran

out of budget and was morphed into something we knew how to sell—CDS,

The Craft Dispatch System, for dispatching telephone repairmen to their next

job. And Teradyne also dropped the patent without telling us. (!) The current

patent holder filed three months after we did. (!!)1

Long after the morphing of ER into CDS, but long before I found out that the

patent had been dropped. I waited in a tree for the CEO of the company. We

had a big oak tree outside the front of the building. I climbed it and waited for

his Jaguar to pull in. I met him at the door and asked for a few minutes. He

obliged.

I told him we really needed to start up the ER project again. I told him I was

sure it could make money. He surprised me by saying, “OK Bob, work up a

plan. Show me how I can make money. If you do, and I believe it, I’ll start up

ER again.”

I hadn’t expected that. I had expected him to say, “You’re right Bob. I’m going to

start that project up again, and I’m going to figure out how to make money at

1. Not that the patent was worth any money to me. I had sold it to Teradyne for $1, as per my employment

contract (and I didn’t get the dollar).

https://www.pearson.de/9780132542951

