
https://www.pearson.de/9780133086232

THE

C

PROGRAMMING

LANGUAGE

Second Edition

https://www.pearson.de/9780133086232

SECTION 4.3 EXTERNAL VARIABLES 73

argument list is intended to permit older C programs to compile with new com-
pilers. But it's a bad idea to use it with new programs. If the function takes
arguments, declare them; if it takes no arguments, use void.

Given atof, properly declared, we could write atoi (convert a string to
int) in terms of it:

/* atoi: convert string s to integer using atof */
int atoi(char s[])
{

double atof(char s[]);

return (int) atof(s);
}

Notice the structure of the declarations and the return statement. The value
of the expression in

return expression;

is converted to the type of the function before the return is taken. Therefore,
the value of atof, a double, is converted automatically to int when it
appears in this return, since the function atoi returns an int. This opera-
tion does potentially discard information, however, so some compilers warn of it.
The cast states explicitly that the operation is intended, and suppresses any
warning.

Exercise 4-2. Extend atof to handle scientific notation of the form

123.45e-6

where a floating-point number may be followed by e or E and an optionally
signed exponent. D

4.3 External Variables

A C program consists of a set of external objects, which are either variables
or functions. The adjective "external" is used in contrast to "internal," which
describes the arguments and variables defined inside functions. External vari-
ables are defined outside of any function, and are thus potentially available to
many functions. Functions themselves are always external, because C does not
allow functions to be defined inside other functions. By default, external vari-
ables and functions have the property that all references to them by the same
name, even from functions compiled separately, are references to the same
thing. (The standard calls this property external linkage) In this sense, exter-
nal variables are analogous to Fortran COMMON blocks or variables in the
outermost block in Pascal. We will see later how to define external variables
and functions that are visible only within a single source file.

https://www.pearson.de/9780133086232

74 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER 4

Because external variables are globally accessible, they provide an alternative

to function arguments and return values for communicating data between func-

tions. Any function may access an external variable by referring to it by name,

if the name has been declared somehow.

If a large number of variables must be shared among functions, external

variables are more convenient and efficient than long argument lists. As

pointed out in Chapter 1, however, this reasoning should be applied with some

caution, for it can have a bad effect on program structure, and lead to programs

with too many data connections between functions.

External variables are also useful because of their greater scope and lifetime.

Automatic variables are internal to a function; they come into existence when

the function is entered, and disappear when it is left. External variables, on the

other hand, are permanent, so they retain values from one function invocation to

the next. Thus if two functions must share some data, yet neither calls the

other, it is often most convenient if the shared data is kept in external variables

rather than passed in and out via arguments.

Let us examine this issue further with a larger example. The problem is to

write a calculator program that provides the operators +, -, *, and /. Because
it is easier to implement, the calculator will use reverse Polish notation instead

of infix. (Reverse Polish is used by some pocket calculators, and in languages

like Forth and Postscript.)
In reverse Polish notation, each operator follows its operands; an infix

expression like

(1 - 2) * (4 + 5)

is entered as

1 2 - 4 5 + *

Parentheses are not needed; the notation is unambiguous as long as we know
how many operands each operator expects.

The implementation is simple. Each operand is pushed onto a stack; when
an operator arrives, the proper number of operands (two for binary operators) is

popped, the operator is applied to them, and the result is pushed back onto the
stack. In the example above, for instance, 1 and 2 are pushed, then replaced by

their difference, — 1. Next, 4 and 5 are pushed and then replaced by their sum,
9. The product of —1 and 9, which is —9, replaces them on the stack. The

value on the top of the stack is popped and printed when the end of the input
line is encountered.

The structure of the program is thus a loop that performs the proper opera-
tion on each operator and operand as it appears:

https://www.pearson.de/9780133086232

SECTION 4.3 EXTERNAL VARIABLES 75

while (next operator or operand is not end-of-file indicator)
if (number)

push it
else if (operator)

pop operands
do operation
push result

else if (newline)
pop and print top of stack

else
error

The operations of pushing and popping a stack are trivial, but by the time
error detection and recovery are added, they are long enough that it is better to
put each in a separate function than to repeat the code throughout the whole
program. And there should be a separate function for fetching the next input
operator or operand.

The main design decision that has not yet been discussed is where the stack
is, that is, which routines access it directly. One possibility is to keep it in
main, and pass the stack and the current stack position to the routines that
push and pop it. But main doesn't need to know about the variables that con-
trol the stack; it only does push and pop operations. So we have decided to
store the stack and its associated information in external variables accessible to
the push and pop functions but not to main.

Translating this outline into code is easy enough. If for now we think of the
program as existing in one source file, it will look like this:

^includes
#define,y

function declarations for main

main() { ... }

external variables for push and pop

void push (double f) { ... }
double pop (void) { ... }

int getop(char s []) { ... }

routines called by get op

Later we will discuss how this might be split into two or more source files.
The function main is a loop containing a big switch on the type of opera-

tor or operand; this is a more typical use of switch than the one shown in Sec-
tion 3.4.

https://www.pearson.de/9780133086232

76 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER 4

^include <stdio.h>
^include <stdlib.h> /* for atofO */

#define MAXOP 100 /* max size of operand or operator */
#define NUMBER '0' /* signal that a number was found */

int getop(char []);
void push(double);
double pop(void);

/* reverse Polish calculator */
main()
{

int type;
double op2;
char s[MAXOP];

while ((type = getop(s)) != EOF) {
switch (type) {
case NUMBER:

push(atof(s));
break;

case '+':
push(pop() + pop());
break;

case '*':
push(pop() * popO);
break;

case '-':
op2 = pop();
push(pop() - op2);
break;

case '/':
op2 = pop();
if (op2 != 0.0)

push(pop() / op2);
else

printf("error: zero divisor\n");
break;

case '\n':
printf("\t%.8g\n", pop());
break;

default:
printf("error: unknown command %s\n", s);
break;

return 0;
}

}

}

https://www.pearson.de/9780133086232

SECTION 4.3 EXTERNAL VARIABLES 77

Because + and * are commutative operators, the order in which the popped
operands are combined is irrelevant, but for - and / the left and right operands
must be distinguished. In

push(pop() - popO); /* WRONG */

the order in which the two calls of pop are evaluated is not defined. To
guarantee the right order, it is necessary to pop the first value into a temporary
variable as we did in main.

#define MAXVAL 100 /* maximum depth of val stack */

int sp = 0; /* next free stack position */
double val[MAXVAL]; /* value stack */

/* push: push f onto value stack */
void push(double f)
{

if (sp < MAXVAL)
val[sp++] = f;

else
printf("error: stack full, can't push %g\n", f);

/* pop: pop and return top value from stack */
double pop (void)
{

if (sp > 0)
return val[— sp];

else {
printf ("error : stack empty \n") ;
return 0.0;

A variable is external if it is defined outside of any function. Thus the stack
and stack index that must be shared by push and pop are defined outside of
these functions. But main itself does not refer to the stack or stack position—
the representation can be hidden.

Let us now turn to the implementation of getop, the function that fetches
the next operator or operand. The task is easy. Skip blanks and tabs. If the
next character is not a digit or a decimal point, return it. Otherwise, collect a
string of digits (which might include a decimal point), and return NUMBER, the
signal that a number has been collected.

0

}

}

https://www.pearson.de/9780133086232

78 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER 4

#inc lude < c type . h>

int getch(void) ;
void ungetch(int) ;

/* getop: get next operator or numeric operand */
int getop (char s [])
{

int i, c;

while ((s[0] = c = getch()) == ' ' ! i c == '\t')

s[1]'= '\0';
if (lisdigit(c) && c != '.')

return c; /* not a number */
i = 0;
if (isdigit(c)) /* collect integer part */

while (isdigit(s[++i] = c = getch()))

5
if (c == '.') /* collect fraction part */

while (isdigit(s[++i] = c = getch()))

s[i] = 'NO';
if (c != EOF)

ungetch(c);
return NUMBER;

}

What are getch and ungetch? It is often the case that a program cannot
determine that it has read enough input until it has read too much. One
instance is collecting the characters that make up a number: until the first non-
digit is seen, the number is not complete. But then the program has read one
character too far, a character that it is not prepared for.

The problem would be solved if it were possible to "un-read" the unwanted
character. Then, every time the program reads one character too many, it could
push it back on the input, so the rest of the code could behave as if it had never
been read. Fortunately, it's easy to simulate un-getting a character, by writing
a pair of cooperating functions, getch delivers the next input character to be
considered; ungetch remembers the characters put back on the input, so that
subsequent calls to getch will return them before reading new input.

How they work together is simple, ungetch puts the pushed-back charac-
ters into a shared buffer—a character array, getch reads from the buffer if
there is anything there, and calls getchar if the buffer is empty. There must
also be an index variable that records the position of the current character in
the buffer.

Since the buffer and the index are shared by getch and ungetch and
must retain their values between calls, they must be external to both routines.
Thus we can write getch, ungetch, and their shared variables as:

;

https://www.pearson.de/9780133086232

