
https://www.pearson.de/9780133065206


Patterns of

Enterprise Application 

Architecture

https://www.pearson.de/9780133065206


Data Source 

Architectural 

Patterns

Chapter 10

Data Source 
Architectural Patterns

https://www.pearson.de/9780133065206


144 DATA SOURCE ARCHITECTURAL PATTERNS

Table Data

Gateway

Table Data Gateway

An object that acts as a Gateway (466) to a database table. 

One instance handles all the rows in the table.

Mixing SQL in application logic can cause several problems. Many developers

aren’t comfortable with SQL, and many who are comfortable may not write it

well. Database administrators need to be able to find SQL easily so they can fig-

ure out how to tune and evolve the database. 

 A Table Data Gateway holds all the SQL for accessing a single table or

view: selects, inserts, updates, and deletes. Other code calls its methods for all

interaction with the database. 

How It Works

A Table Data Gateway has a simple interface, usually consisting of several find

methods to get data from the database and update, insert, and delete methods.

Each method maps the input parameters into a SQL call and executes the SQL

against a database connection.The Table Data Gateway is usually stateless, as

its role is to push data back and forth. 

The trickiest thing about a Table Data Gateway is how it returns informa-

tion from a query. Even a simple find-by-ID query will return multiple data

items. In environments where you can return multiple items you can use that

for a single row, but many languages give you only a single return value and

many queries return multiple rows. 

One alternative is to return some simple data structure, such as a map. A

map works, but it forces data to be copied out of the record set that comes from

the database into the map. I think that using maps to pass data around is bad

form because it defeats compile time checking and isn’t a very explicit interface,

find (id) : RecordSet

findWithLastName(String) : RecordSet

update (id, lastname, firstname, numberOfDependents)

insert (lastname, firstname, numberOfDependents)

delete (id)

Person Gateway

https://www.pearson.de/9780133065206


TABLE DATA GATEWAY 145

Data Source 

Architectural 

Patterns

leading to bugs as people misspell what’s in the map. A better alternative is to

use a Data Transfer Object (401). It’s another object to create but one that may

well be used elsewhere. 

To save all this you can return the Record Set (508) that comes from the SQL

query. This is conceptually messy, as ideally the in-memory object doesn’t have to

know anything about the SQL interface. It may also make it difficult to substitute

the database for a file if you can’t easily create record sets in your own code. Nev-

ertheless, in many environments that use Record Set (508) widely, such as .NET,

it’s a very effective approach. A Table Data Gateway thus goes very well with

Table Module (125). If all of your updates are done through the Table Data Gate-

way, the returned data can be based on views rather than on the actual tables,

which reduces the coupling between your code and the database. 

If you’re using a Domain Model (116), you can have the Table Data Gate-

way return the appropriate domain object. The problem with this is that you

then have bidirectional dependencies between the domain objects and the gate-

way. The two are closely connected, so that isn’t necessarily a terrible thing, but

it’s something I’m always reluctant to do. 

Most times when you use Table Data Gateway, you’ll have one for each

table in the database. For very simple cases, however, you can have a single

Table Data Gateway that handles all methods for all tables. You can also have

one for views or even for interesting queries that aren’t kept in the database as

views. Obviously, view-based Table Data Gateways often can’t update and so

won’t have update behavior. However, if you can make updates to the underly-

ing tables, then encapsulating the updates behind update operations on the

Table Data Gateway is a very good technique. 

When to Use It

As with Row Data Gateway (152) the decision regarding Table Data Gateway

is first whether to use a Gateway (466) approach at all and then which one. 

I find that Table Data Gateway is probably the simplest database interface

pattern to use, as it maps so nicely onto a database table or record type. It also

makes a natural point to encapsulate the precise access logic of the data source.

I use it least with Domain Model (116) because I find that Data Mapper (165)

gives a better isolation between the Domain Model (116) and the database. 

Table Data Gateway works particularly well with Table Module (125),

where it produces a record set data structure for the Table Module (125) to

work on. Indeed, I can’t really imagine any other database-mapping approach

for Table Module (125).

https://www.pearson.de/9780133065206


146 DATA SOURCE ARCHITECTURAL PATTERNS

Table Data

Gateway

Just like Row Data Gateway (152), Table Data Gateway is very suitable for

Transaction Scripts (110). The choice between the two really boils down to

how they deal with multiple rows of data. Many people like using a Data

Transfer Object (401), but that seems to me like more work than is worthwhile,

unless the same Data Transfer Object (401) is used elsewhere. I prefer Table

Data Gateway when the result set representation is convenient for the Transac-

tion Script (110) to work with. 

Interestingly, it often makes sense to have the Data Mappers (165) talk to the

database via Table Data Gateways. Although this isn’t useful when everything

is handcoded, it can be very effective if you want to use metadata for the Table

Data Gateways but prefer handcoding for the actual mapping to the domain

objects.

One of the benefits of using a Table Data Gateway to encapsulate database

access is that the same interface can work both for using SQL to manipulate the

database and for using stored procedures. Indeed, stored procedures themselves

are often organized as Table Data Gateways. That way the insert and update

stored procedures encapsulate the actual table structure. The find procedures in

this case can return views, which helps to hide the underlying table structure. 

Further Reading

 [Alur et al.] discusses the Data Access Object pattern, which is a Table Data

Gateway. They show returning a collection of Data Transfer Objects (401) on

the query methods. It’s not clear whether they see this pattern as always being

table based; the intent and discussion seems to imply either Table Data Gate-

way or Row Data Gateway (152).

I’ve used a different name, partly because I see this pattern as a particular

usage of the more general Gateway (466) concept and I want the pattern name

to reflect that. Also, the term Data Access Object and its abbreviation DAO has

its own particular meaning within the Microsoft world. 

Example: Person Gateway (C#)

Table Data Gateway is the usual form of database access in the windows

world, so it makes sense to illustrate one with C#. I have to stress, however, that

this classic form of Table Data Gateway doesn’t quite fit in the .NET environ-

ment since it doesn’t take advantage of the ADO.NET data set; instead, it uses

the data reader, which is a cursor-like interface to database records. The data

https://www.pearson.de/9780133065206


TABLE DATA GATEWAY 147

Data Source 

Architectural 

Patterns

reader is the right choice for manipulating larger amounts of information when

you don’t want to bring everything into memory in one go. 

For the example I’m using a Person Gateway class that connects to a person

table in a database. The Person Gateway contains the finder code, returning

ADO.NET’s data reader to access the returned data. 

class PersonGateway...

public IDataReader FindAll() {

String sql = "select * from person";

return new OleDbCommand(sql, DB.Connection).ExecuteReader();

}

public IDataReader FindWithLastName(String lastName) {

String sql = "SELECT * FROM person WHERE lastname = ?";

IDbCommand comm = new OleDbCommand(sql, DB.Connection);

comm.Parameters.Add(new OleDbParameter("lastname", lastName));

return comm.ExecuteReader();

}

public IDataReader FindWhere(String whereClause) {

String sql = String.Format("select * from person where {0}", whereClause);

return new OleDbCommand(sql, DB.Connection).ExecuteReader();

}

Almost always you’ll want to pull back a bunch of rows with a reader. On a

rare occasion you might want to get hold of an individual row of data with a

method along these lines: 

class PersonGateway...

public Object[] FindRow (long key) {

String sql = "SELECT * FROM person WHERE id = ?";

IDbCommand comm = new OleDbCommand(sql, DB.Connection);

comm.Parameters.Add(new OleDbParameter("key",key));

IDataReader reader = comm.ExecuteReader();

reader.Read();

Object [] result = new Object[reader.FieldCount];

reader.GetValues(result);

reader.Close();

return result;

}

The update and insert methods receive the necessary data in arguments and

invoke the appropriate SQL routines. 

class PersonGateway...

public void Update (long key, String lastname, String firstname, long numberOfDependents){

String sql = @"

UPDATE person 

SET lastname = ?, firstname = ?, numberOfDependents = ? 

WHERE id = ?";

https://www.pearson.de/9780133065206


148 DATA SOURCE ARCHITECTURAL PATTERNS

Table Data

Gateway

IDbCommand comm = new OleDbCommand(sql, DB.Connection);

comm.Parameters.Add(new OleDbParameter ("last", lastname));

comm.Parameters.Add(new OleDbParameter ("first", firstname));

comm.Parameters.Add(new OleDbParameter ("numDep", numberOfDependents));

comm.Parameters.Add(new OleDbParameter ("key", key));

comm.ExecuteNonQuery();

}

class PersonGateway...

public long Insert(String lastName, String firstName, long numberOfDependents) {

String sql = "INSERT INTO person VALUES (?,?,?,?)";

long key = GetNextID();

IDbCommand comm = new OleDbCommand(sql, DB.Connection);

comm.Parameters.Add(new OleDbParameter ("key", key));

comm.Parameters.Add(new OleDbParameter ("last", lastName));

comm.Parameters.Add(new OleDbParameter ("first", firstName));

comm.Parameters.Add(new OleDbParameter ("numDep", numberOfDependents));

comm.ExecuteNonQuery();

return key;

}

The deletion method just needs a key. 

class PersonGateway...

public void Delete (long key) {

String sql = "DELETE FROM person WHERE id = ?";

IDbCommand comm = new OleDbCommand(sql, DB.Connection);

comm.Parameters.Add(new OleDbParameter ("key", key));

comm.ExecuteNonQuery();

}

Example: Using ADO.NET Data Sets (C#)

The generic Table Data Gateway works with pretty much any kind of platform

since it’s nothing but a wrapper for SQL statements. With .NET you use data

sets more often, but Table Data Gateway is still useful although it comes in a

different form. 

A data set needs data adapters to load the data into it and update the data. In

find it useful to define a holder for the data set and the adapters. A gateway

then uses the holder to store them. Much of this behavior is generic and can be

done in a superclass. 

The holder indexes the data sets and adapters by the name of the table. 

class DataSetHolder...

public DataSet Data = new DataSet();

private Hashtable DataAdapters = new Hashtable();

https://www.pearson.de/9780133065206

