

Contents

1	Motivation and Overview	1
1.1	Availability of programs, mentioned in the book.....	6
1.2	Availability of the figures, given in the book.....	6
2	Thinking in Voltages, Currents, Fields and Impedances	7
3	Electric Fields.....	19
3.1	Effects of electric fields and their calculation	22
4	Magnetic Fields.....	29
4.1	Effects of magnetic fields.....	29
4.2	Calculation of magnetic field strength of single and multicore cables	31
4.3	Magnetic fields of Geofol transformers	34
4.4	Magnetic stray fields of arbitrary arrangements of thin wires	35
4.4.1	Magnetic field of a four conductor arrangement.....	35
4.4.2	Magnetic fields of twisted cables.....	37
4.4.3	Example calculation with the program STRAYF	39
4.4.4	Peculiarities of magnetic fields of twisted cables	41
5	Electromagnetic Fields	45
5.1	Characterization of Electromagnetic Waves	45
5.2	Effects of electromagnetic fields.....	50
5.3	The elementary dipoles	54
5.3.1	Distance conversion	61
5.3.2	Field impedances	65
5.4	Effective height, effective antenna area, radiation resistance	68
5.5	Estimating the field strength of aperture antennas	75
5.5.1	Power density and electric field strength in the far field region	76

5.5.2	Power density and electric field strength in the near field region	77
5.5.3	Description of the program APERTUR	79
5.5.4	Program SAFEDIST	79
6	The Interference Model	83
6.1	Galvanic coupling	90
6.1.1	Measures against a galvanic coupling interference.....	92
6.2	Capacitive coupling.....	93
6.2.1	Measures to lower the capacitive coupling	95
6.3	Inductive coupling.....	97
6.3.1	Magnetic decoupling.....	100
6.3.2	Definition of an effective mutual inductance for a multicore cable.....	101
6.3.3	Measures to reduce the inductive coupling	104
6.4	Electromagnetic coupling.....	106
6.4.1	Measures to reduce the electromagnetic coupling	107
6.4.2	The $\lambda/2$ -coupling model	108
6.4.3	Some remarks regarding the estimation of the electromagnetic coupling	111
7	Intrasytem Measures	121
7.1	Some remarks regarding grounding, shielding, cabling, and filtering	123
7.1.1	Grounding	123
7.1.2	Shielding	124
7.1.3	Cabling.....	126
7.1.4	Filtering.....	129
7.2	Shielding against electric fields - shield of bars.....	138
7.3	Shielding against magnetic fields.....	141
7.3.1	Shielding against static magnetic and very low frequency magnetic fields	141
7.3.2	Shielding against medium frequency magnetic fields.....	149
7.3.3	Two parallel plates shielding against alternating magnetic fields	149
7.3.4	Hollow sphere shielding against magnetic fields.....	150
7.3.5	Hollow cylinder within a lateral magnetic field.....	151
7.3.6	Hollow cylinder within a longitudinal magnetic field	151
7.4	Shielding theory according to Schelkunoff – short and concise.....	153

7.4.1	Source code of the program SHIELD	157
7.5	Leakages, openings, cavity resonances	157
7.5.1	Leakages, signal penetrations	159
7.5.2	Low frequency resonances, cavity resonances.....	167
7.6	Cable coupling and cable transfer impedance	171
7.6.1	Cable coupling	171
7.6.2	Coupling into untwisted and twisted two conductor cables.....	173
7.6.3	Coupling into and between shielded cables	175
7.6.4	Cable shield connection at the device input.....	200
8	Atmospheric Noise, Electromagnetic Environment and Limit Values	205
8.1	Atmospheric noise sources, electromagnetic environment.....	206
8.2	Conversion of limit values	218
8.2.1	Distance conversion	218
8.2.2	Conversion $E \rightarrow H$ and $H \rightarrow E$	220
9	EMC Engineering and Analysis	225
9.1	Development phases of a complex system.....	227
9.1.1	Conceptual phase	227
9.1.2	Definition phase	228
9.1.3	Construction and building phase.....	230
9.2	EMC- Test planning.....	232
9.3	Execution of analysis	242
10	Numerical Techniques for Field Calculation	247
10.1	Selecting the appropriate technique	249
10.2	Plausibility check	256
10.3	Application examples of analysis.....	265
10.3.1	Investigation of resonances on a passenger car.....	266
10.3.2	Influence of a dielectric material on the radiation of a printed circuit board.....	267
10.3.3	Radiation of a mobile phone	268
10.3.4	Electromagnetic field on a frigate.....	269
10.4	Guidelines for using numerical methods.....	271
10.5	Application: Antenna coupling	275
10.5.1	General remarks to the N-port theory	275
10.5.2	Two port parameter.....	276
10.5.3	Calculation of antenna coupling	278
10.5.4	Source code of the program MATCH.....	283

11	Model for Immunity Testing	285
11.1	Standardised immunity test methods.....	286
11.2	Statistical approach to model the immunity	288
11.2.1	Malfunction probability	289
11.3	Fault frequency function	292
11.3.1	Interpretation of the results of immunity tests	295
11.4	Time variant immunity.....	296
11.4.1	Modelling.....	297
11.4.2	Immunity of microcontroller based equipment.....	303
A1	Electric Fields of Rod Arrangements.....	307
A1.1	Potential coefficients and partial capacitances.....	308
A1.2	Horizontal conductors above ground	309
A1.2.1	Source code of the program HCOND	315
A1.3	Vertical conductors above ground.....	315
A1.3.1	Source code of the program VROD	320
A2	Magnetic Stray Fields.....	321
A2.1	Stray field low installation of cables	321
A2.1.1	The single core cable (case (a) of chapter 4.2).....	321
A2.1.2	Cable with one forward and one return conductor (case (b) of chapter 4.2)	322
A2.1.3	Use of two forward- and two return conductors (case (c1) of chapter 4.2)	323
A2.1.4	Installation of the forward and return conductors above a common ground plane (case (c2) of chapter 4.2)	324
A2.1.5	Use of four forward and four return conductors (case (d) of chapter 4.2)	325
A2.2	Computer program for predicting magnetic stray fields	327
A2.2.1	Field of a finitely long wire	327
A2.2.2	Field of a single layered coil	329
A2.2.3	Considering phase relations	333
A2.2.4	Source code of the program STRAYF	335
A3	Self and Mutual Inductances	337
A3.1	Mutual inductance between a finitely long conductor on the y-axis and a trapezoidal area in the xy-plane	337
A3.2	Decomposition of an area in the xy-plane bounded by straight lines	340
A3.3	Treatment of arbitrary conductor loops in space.....	341

A3.4	Mutual inductance between 2 circular loops with lateral displacement.....	343
A3.5	Source code of the program MUTUAL	345
A4	Elementary Dipoles	347
A4.1	Hertzian dipole	347
	A4.1.1 Prediction of the field strength components for the general case.....	347
	A4.1.2 Solution for time harmonic excitation	349
A4.2	Current loop (loop antenna)	353
A4.3	Comparison of the wave impedances	360
A5	The Polarization Ellipsis	361
A5.1	Two dimensional case ($E_z=0$).....	362
A5.2	Three dimensional case – solution in the time domain	364
	A5.2.1 Some consideration regarding the plane of the polarization ellipse	367
A5.3	Three dimensional case – solution in the frequency range	375
A6	Skin Effect and Shielding Theory of Schelkunoff.....	377
A6.1	Skin effect of a conducting half space.....	377
	A6.1.1 Strong skin effect within a cylindrical conductor	379
	A6.1.2 Weak skin effect within a cylindrical conductor.....	380
A6.2	Shielding theory according to Schelkunoff	380
	A6.2.1 Introduction.....	380
	A6.2.2 Necessary equations	381
	A6.2.3 Shielding mechanism	382
	A6.2.4 Shielding efficiency	384
	A6.2.5 Simple application of Schelkunoff's theory	384
	A6.2.6 Procedure for a graphical determination of the shielding efficiency	386
	A6.2.7 Error estimations	390
	A6.2.8 Summary	392
A7	Example of an EMC-Design Guide for Systems	393
A7.1	Grounding	393
A7.2	System filtering	395
A7.3	Shielding	395
A7.4	Cabling	396

X Contents

A8 25 EMC-Rules for the PCB-Layout and the Device Construction	401
A9 Easy-to-use Procedure for Predicting the Cable Transfer Impedance	409
A9.1 Predicting the voltage ratio with help of an oscilloscope....	413
A9.2 Predicting the voltage ratio by a network analyzer	415
A10 Capacitances and Inductances of Common Interest	421
A11 Reports of Electromagnetic Incompatibilities.....	429
A12 Solutions to the Exercises.....	435
A13 Physical Constants and Conversion Relations.....	455
A13.1 Physical Units and Constants	455
A13.2 Conversion table for pressure.....	456
A13.3 Conversion table for energy	457
A13.4 Conversion relations for electric and magnetic quantities	457
A13.5 Conversion of logarithmic quantities	458
A13.6 Abbreviations	459
A14 Bibliography	461
Index	467