TABLE OF CONTENTS

CHAPTER			PAG
I. IN	NTRC	DUCTORY CONCEPTS	
	§ 1.	Binary operations	1
	§ 2.	Groups	3
	§ 3.	Subgroups	4
	§ 4.	Abelian groups	6
	§ 5.	Rings	7
	§ 6.	Rings with identity	8
		Powers and multiples	ç
	•	Fields	1(
	§ 9.	Subrings and subfields	10
	§ 10.	Transformations and mappings	12
	§ 11.	Group homomorphisms	13
		Ring homomorphisms	16
		Identification of rings	19
		Unique factorization domains	21
	•	Euclidean domains	22
		Polynomials in one indeterminate	24
		Polynomial rings	28
		Polynomials in several indeterminates	34
		Quotient fields and total quotient rings	4:
		Quotient rings with respect to multiplicative systems	46
	§ 21.	Vector spaces	49
II. E	LEMI	ENTS OF FIELD THEORY	
	§ 1.	Field extensions	5.5
	§ 2.	Algebraic quantities	55
	§ 3.	Algebraic extensions	60
	§ 4.	The characteristic of a field	62
	§ 5.	Separable and inseparable algebraic extensions	6.5
	§ 6.	Splitting fields and normal extensions	72
	§ 7.	The fundamental theorem of Galois theory	80
	§ 8.	Galois fields	82
	8 9	The theorem of the primitive element	84

§ 10. Field polynomials. Norms and traces § 11. The discriminant	92 92
§ 12. Transcendental extensions	95
§ 13. Separably generated fields of algebraic functions	102
§ 14. Algebraically closed fields	106
§ 15. Linear disjointness and separability	109
§ 16. Order of inseparability of a field of algebraic functions	113
§ 17. Derivations	120
III. IDEALS AND MODULES	
§ 1. Ideals and modules	132
§ 2. Operations on submodules	136
§ 3. Operator homomorphisms and difference modules	138
§ 4. The isomorphism theorems	140
§ 5. Ring homomorphisms and residue class rings	142
§ 6. The order of a subset of a module	144
§ 7. Operations on ideals	146
§ 8. Prime and maximal ideals	149
§ 9. Primary ideals	152
§ 10. Finiteness conditions	155
§ 11. Composition series	158
§ 12. Direct sums	163
§ 12 ^{bis} . Infinite direct sums	172
§ 13. Comaximal ideals and direct sums of ideals	174
§ 14. Tensor products of rings	179
§ 15. Free joins of integral domains (or of fields)	187
IV. NOETHERIAN RINGS	
§ 1. Definitions. The Hilbert basis theorem	199
§ 2. Rings with descending chain condition	203
§ 3. Primary rings	204
§ 3 ^{bis} . Alternative method for studying the rings with d.c.c.	206
§ 4. The Lasker-Noether decomposition theorem	208
§ 5. Uniqueness theorems	210
§ 6. Application to zero-divisors and nilpotent elements	213
§ 7. Application to the intersection of the powers of an ideal	215
§ 8. Extended and contracted ideals	218
§ 9. Quotient rings	221
\$ 10. Relations between ideals in R and ideals in Rx	223

TABLE OF CONTENTS	x i
CHAPTER	PAGE
§ 11. Examples and applications of quotient rings	227
§ 12. Symbolic powers	232
§ 13. Length of an ideal	233
§ 14. Prime ideals in noetherian rings	237
§ 15. Principal ideal rings	242
§ 16. Irreducible ideals	247
Appendix: Primary representation in noetherian modules	252
V. DEDEKIND DOMAINS. CLASSICAL IDEAL	
THEORY	
§ 1. Integral elements	254
§ 2. Integrally dependent rings	257
§ 3. Integrally closed rings	260
§ 4. Finiteness theorems	264
§ 5. The conductor of an integral closure	269
§ 6. Characterizations of Dedekind domains	270
§ 7. Further properties of Dedekind domains	278
§ 8. Extensions of Dedekind domains	281
§ 9. Decomposition of prime ideals in extensions of	
Dedekind domains	284
§ 10. Decomposition group, inertia group, and ramification	
groups	290
§ 11. Different and discriminant	298
§ 12. Application to quadratic fields and cyclotomic fields	312
§ 13. A theorem of Kummer	318
INDEX OF NOTATIONS	321

323

INDEX OF DEFINITIONS