Contents

List of Contributors xvii
Foreword xxiii
Preface xxv
Author Biographies xxvii

Part 1 Views and Visions 1

1 Boosting Resilience of Global Crop Production Through Sustainable Stress Management 3

Rajeev K. Varshney and Abhishek Bohra References 5

2 Sustaining Food Security Under Changing Stress Environment 7

Sudhir K. Sopory References 8

3 Crop Improvement Under Climate Change 9

Shivendra Bajaj and Ratna Kumria

- 3.1 Crop Diversity to Mitigate Climate Change 10
- 3.2 Technology to Mitigate Climate Change 10
- 3.3 Farm Practices to Mitigate Climate Change 11
- 3.4 Conclusion 11 References 11
- **4** Reactive Nitrogen in Climate Change, Crop Stress, and Sustainable Agriculture: A Personal Journey 13 Nandula Raghuram
- 4.1 Introduction 13
- 4.2 Reactive Nitrogen in Climate Change, Agriculture, and Beyond 13
- 4.3 Nitrogen, Climate, and Planetary Boundaries of Sustainability 14
- 4.4 Emerging Global Response and India's Leadership in It 14
- 4.5 Regional and Global Partnerships for Effective Interventions 15
- 4.6 Building Crop NUE Paradigm Amidst Growing Focus on Stress 16
- 4.7 From NUE Phenotype to Genotype in Rice 17
- 4.8 Furthering the Research and Policy Agenda 18 References 18

Part 2 Climate	e Change:	Global	Impact	23
----------------	-----------	--------	--------	----

5	Climate-Resilient Crops for CO ₂ Rich-Warmer Environment: Opportunities and Challenges 25 Sayanta Kundu, Sudeshna Das, Satish K. Singh, Ratnesh K. Jha, and Rajeev Nayan Bahuguna
5.1 5.2	Introduction 25 Climate Change Trend and Abiotic Stress: Yield Losses Due to Major Climate Change Associated Stresses Heat Drought and Their Combination 26
5.3	Update on Crop Improvement Strategies Under Changing Climate 27
5.3.1	Advances in Breeding and Genomics 27
5.3.2	Advances in Phenomics and High Throughput Platforms 28
5.3.3	Non-destructive Phenotyping to Exploit Untapped Potential of Natural Genetic Diversity 28
5.4	Exploiting Climate-Smart Cultivation Practices 29
5.5	CO ₂ -Responsive C ₃ Crops for Future Environment 30
5.6	Conclusion 31
	References 31
6	Potential Push of Climate Change on Crop Production, Crop Adaptation, and Possible Strategies to Mitigate This 35
	Narendra Kumar and SM Paul Khurana
6.1	Introduction 35
6.2	Influence of Climate Change on the Yield of Plants 36
6.3	Crop Adaptation in Mitigating Extreme Climatic Stresses 38
6.4	Factors That Limit Crop Development 39
6.5	Influence of Climate Change on Plants' Morphobiochemical and Physiological Processes 39
6.6	Responses of Plant Hormones in Abiotic Stresses 40
6.7	Approaches to Combat Climate Changes 41
6.7.1	Cultural Methodologies 41
6.7.2 6.7.3	Conventional Techniques 41 Strategies Concerned with Genetics and Genomics 41
6.7.3.1	Omics-Led Breeding and Marker-Assisted Selection (MAS) 41
6.7.3.2	Genome-Wide Association Studies (GWAS) for Evaluating Stress Tolerance 42
6.7.3.3	Genome Selection (GS) Investigations for Crop Improvement 42
6.7.3.4	Genetic Engineering of Plants in Developing Stress Tolerance 43
6.7.4	Strategies of Genome Editing 43
6.7.5	Involvement of CRISPR/Cas9 43
6.8	Conclusions 44
	Conflict of Interest Statement 44
	Acknowledgment 44
	References 45
7	Agrifood and Climate Change: Impact, Mitigation, and Adaptation Strategies 53 Sudarshna Kumari and Gurdeep Bains
7.1	Introduction 53
7.2	Causes of Climate Change 54
7.2.1	Greenhouse Gases 54
7.2.2	Fossil Fuel Combustion 54
7.2.3	Deforestation 55
7.2.4	Agricultural Expansion 55
7.3	Impact of Climate Change on Agriculture 55
7.3.1	Crop Productivity 56
7.3.2	Disease Development 58
733	Plant Responses to Climate Change 58

7.3.4	Livestock 59
7.3.5	Agriculture Economy 59
7.4	Mitigation and Adaptation to Climate Change 60
7.4.1	Climate-Smart Cultural Practices 60
7.4.2	Climate-Smart Agriculture Technologies 60
7.4.3	Stress-Tolerant Varieties 61
7.4.4	Precision Management of Nutrients 61
7.4.5	Forestry and Agroforestry 61
7.5	Conclusions and Future Prospects 61
	References 62
8	Dynamic Photosynthetic Apparatus in Plants Combats Climate Change 65
	Ramwant Gupta and Ravinesh Rohit Prasad
8.1	Introduction 65
8.2	Climate Change and Photosynthetic Apparatus 66
8.3	Engineered Dynamic Photosynthetic Apparatus 66
8.4	Conclusion and Prospects 68
	References 68
9	CRISPR/Cas Enables the Remodeling of Crops for Sustainable Climate-Smart Agriculture
	and Nutritional Security 71
	Tanushri Kaul, Rachana Verma, Sonia Khan Sony, Jyotsna Bharti, Khaled Fathy Abdel Motelb,
	Arul Prakash Thangaraj, Rashmi Kaul, Mamta Nehra, and Murugesh Eswaran
9.1	
	Introduction: CRISPR/Cas Facilitated Remodeling of Crops 71
9.2	Impact of Climate Changes on Agriculture and Food Supply 72
9.3	Nutritionally Secure Climate-Smart Crops 73
9.4	Novel Game Changing Genome-Editing Approaches 74
9.4.1	Knockout-Based Approach 87
9.4.2	Knock-in-Based Approach 87
9.4.3	Activation or Repression-Based Approach 87
9.5	Genome Editing for Crop Enhancement: Ushering Towards Green Revolution 2.0 88
9.5.1	Mitigation of Abiotic Stress 88
9.5.2	Alleviation of Biotic Stress 89
9.5.3	Biofortification 89
9.6	Harnessing the Potential of NGS and ML for Crop Design Target 90
9.7	Does CRISPR/Cas Address the Snag of Genome Editing? 94
9.8	Edited Plant Code: Security Risk Assessment 95
9.9	Conclusion: Food Security on the Verge of Climate change 96
	References 96
	Part 3 Socioeconomic Aspects of Climate Change 113
10	Perspective of Evolution of the C ₄ Plants to Develop Climate Designer C ₄ Rice as a Strategy
	for Abiotic Stress Management 115
	•
10.1	Shuvobrata Majumder, Karabi Datta, and Swapan K. Datta
10.1	Introduction 115
10.2	How Did Plants Evolve to the C ₄ System? 117
10.2.1	Gene Amplification and Modification 117
10.2.2	Anatomical Preconditioning 117
10.2.3	Increase in Bundle Sheath Organelles 118
10.2.4	Glycine Shuttles and Photorespiratory CO ₂ Pumps 118

х	Contents	
	10.2.5	Enhancement of PEPC and PPDK Activity in the Mesophyll Tissue 118
	10.2.6	Integration of C ₃ and C ₄ Cycles 118
	10.3	What Are the Advantages of C ₄ Plants over C ₃ Plants? 118
	10.4	Molecular Engineering of C ₄ Enzymes in Rice 119
	10.4.1	Green Tissue-Specific Promoters 120
	10.4.2	Expressing C ₄ Enzyme, PEPC in Rice 120
	10.4.3	Expressing C ₄ Enzyme, PPDK in Rice 120
	10.4.4	Expressing C ₄ Enzyme, ME and NADP-ME in Rice 121
	10.4.5	Expressing Multiple C ₄ Enzymes in Rice 121
	10.5	Application of CRISPR for Enhanced Photosynthesis 121
	10.6	Single-Cell C ₄ Species 121
	10.7	Conclusion 122
		Acknowledgments 122
		References 122
	11	Role of Legume Genetic Resources in Climate Resilience 125 Ruchi Bansal, Swati Priya, and H. K. Dikshit
	11.1	Introduction 125
	11.2	Legumes Under Abiotic Stress 126
	11.2.1	Legumes Under Drought Stress 126
	11.2.2	Legumes Under Waterlogging 126
	11.2.3	Legumes Under Salinity Stress 127
	11.2.4	Legumes Under Extreme Temperature 127
	11.3	Genetic Resources for Legume Improvement 128
	11.3.1	Lentil 129
	11.3.2	Mungbean 130
	11.3.3	Pigeon Pea 131
	11.3.4	Chickpea 131
	11.4	Conclusion 133
		References 134
	12	Oxygenic Photosynthesis – a Major Driver of Climate Change and Stress Tolerance 141 Baishnab C. Tripathy
	12.1	Introduction 141
	12.2	Evolution of Chlorophyll 141
	12.3	The Great Oxygenation Event 142
	12.4	Role of Forest in the Regulation of O_2 and CO_2 Concentrations in the Atmosphere 142
	12.5	Evolution of C ₄ Plants 142
	12.6	The Impact of High Temperature 143
	12.7	C ₄ Plants Are Tolerant to Salt Stress 144
	12.8	Converting C_3 Plants into C_4 – A Himalayan Challenge 145
	12.9	Carbonic Anhydrase 145
	12.10	Phosphoenolpyruvate Carboxylase 146
	12.11	Malate Dehydrogenase 147
	12.12	Decarboxylating Enzymes 147
	12.12.1	· · · · · · · · · · · · · · · · · · ·
		Phosphoenolpyruvate Carboxykinase 149
	12.13	Pyruvate Orthophosphate Dikinase 149
	12.14	Regulation of C ₄ Photosynthetic Gene Expression 150
	12.15	Use of C ₃ Orthologs of C ₄ Enzymes 151
	12.16	Conclusions and Future Directions 151
		Acknowledgment 152
		References 152

13	Expand the Survival Limits of Crop Plants Under Cold Climate Region 161 Bhuvnesh Sareen and Rohit Joshi
13.1	Introduction 161
13.2	Physiology of Cold Stress Tolerant Plants 162
13.3	Stress Perception and Signaling 163
13.4	Plant Survival Mechanism 164
13.5	Engineering Cold Stress Tolerance 165
13.6	Future Directions 168
	Acknowledgment 168
	References 168
14	Arbuscular Mycorrhizal Fungi (AMF) and Climate-Smart Agriculture: Prospects and Challenges 175
	Sharma Deepika, Vikrant Goswami, and David Kothamasi
14.1	Introduction 175
14.2	What Is Climate-Smart Agriculture? 176
14.3	AMF as a Tool to Practice Climate-Smart Agriculture 177
14.3.1	AMF in Increasing Productivity of Agricultural Systems 177
14.3.1.1	Plant Nutrition and Growth 177
14.3.1.2	Improved Soil Structure and Fertility 181
14.3.2	AMF-Induced Resilience in Crops to Climate Change 182
14.3.2.1	AMF and Draught Stress 182
14.3.2.2 14.3.2.3	AMF and Drought Stress 183 AMF and Heat Stress 184
14.3.2.3	AMF and Cold Stress 184
14.3.2.4	AMF-Mediated Mitigation of Climate Change 186
14.3.4	Agricultural Practices and AMF Symbiosis – Crop Rotations, Tillage, and Agrochemicals 187
14.3.5	AMF Symbiosis and Climate Change 187
14.3.6	Conclusions and Future Perspectives 188
11.5.0	Acknowledgment 189
	References 189
	Part 4 Plant Stress Under Climate Change: Molecular Insights 201
15	Plant Stress and Climate Change: Molecular Insight 203
	Anamika Roy , Mamun Mandal, Ganesh Kumar Agrawal, Randeep Rakwal, and Abhijit Sarkar
15.1	Introduction 203
15.2	Different Stress Factors and Climate Changes Effects in Plants 206
15.2.1	Water Stress 206
15.2.1.1	Drought 206
15.2.1.2	Flooding or Waterlogging 206
15.2.2	Temperature Stress 207
15.2.2.1	High Temperature Stress 207
15.2.2.2	Low Temperature Stress 207
15.2.3	Salinity Stress 207
15.2.4	Ultraviolet (UV) Radiation Stress 207
15.2.5	Heavy Metal Stress 207
15.2.6	Air Pollution Stress 208
15.2.7	Climate Change 208
15.3	Plant Responses Against Stress 208
15.3.1	Water Stress Responses 208 Drought Responses 208
15711	

15.3.1.2 Waterlogging Responses 210

xii	Contents	
	15.3.2	Temperature Stress Responses 210
		High Temperature Stress Responses 210
		Low Temperature Stress Responses 211
	15.3.3	Salinity Stress Responses 212
		Genomic Responses 212
		Proteomic Responses 212
		Transcriptomic Responses 212
		Metabolomic Responses 213
	15.3.4	Ultraviolet (UV) Radiation Stress 213
	15.3.4.1	Genomic Responses 213
		Proteomic Responses 213
		Transcriptomic Responses 213
		Metabolomic Responses 213
	15.3.5	Heavy Metal Stress Responses 214
	15.3.5.1	Genomic Responses 214
		Proteomic Responses 214
		Transcriptomic Responses 214
		Metabolomic Responses 214
	15.3.6	Air Pollution Stress Responses 214
	15.3.6.1	Genomic Responses 215
	15.3.6.2	Proteomic Responses 215
	15.3.6.3	Transcriptomic Responses 215
	15.3.6.4	Metabolomic Responses 215
	15.3.7	Climate Change Responses 215
	15.3.7.1	Genomic Responses 215
	15.3.7.2	Proteomic Responses 216
	15.3.7.3	Transcriptomic Responses 216
	15.3.7.4	Metabolomic Responses 216
	15.4	Conclusion 216
		References 216
	16	Developing Stress-Tolerant Plants: Role of Small GTP Binding Proteins (RAB and RAN) 229
	161	Manas K. Tripathy and Sudhir K. Sopory
	16.1	Introduction 229
	16.2	A Brief Overview of GTP-Binding Proteins 230
	16.3 16.3.1	Small GTP-Binding Proteins 230 RAB 231
	16.3.1.1	RAB 231 Role of RAB's in Plant 231
	16.3.1.1	RAN 234
	16.3.2.1	Role of RAN in Plants 234
	16.4	Conclusions 236
	10.1	Acknowledgments 237
		References 237
	17	Biotechnological Strategies to Generate Climate-Smart Crops: Recent Advances and Way Forward 241
		Jyoti Maurya, Roshan Kumar Singh, and Manoj Prasad
	17.1	Introduction 241
	17.2	Climate Change and Crop Yield 242
	17.3	Effect of Climate Change on Crop Morpho-physiology, and Molecular Level 243
	17.4	Plant Responses to Stress Conditions 244
	17.5	Strategies to Combat Climate Change 245
	17.5.1	Cultural and Conventional Methods 245
	17.5.2	Multi-omics Approach 245

17.5.3 17.5.3.1	Biotechnological Approaches 248 Combating Climate Change Through Overexpression of Candidate Gene(s) 248
17.5.3.2	Small RNA-Mediated Gene Silencing Approach 249
17.5.3.3 17.6	Gene Editing Through Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Approach Conclusion and Way Forward 251
	Acknowledgments 252 Declaration of Interest Statement 252
	References 252
18	Receptor-Like Kinases and ROS Signaling: Critical Arms of Plant Response to Stress 263 Samir Sharma
18.1	Preamble 263
18.2	Climate Change: The Agent of Stress 264
18.3	Abiotic Stress: A Severe Threat by Itself and a Window of Opportunity for Biotic Stress Agents 264
18.4	Plant Receptor-Like Kinases (RLKs) 265
18.5	Receptor-Like Cytosolic Kinases 267
18.6	Why Are Receptor-Like Cytosolic Kinases Needed? 268
18.7	Receptor-Like Cytosolic Kinases in Plant Defense 269
18.8	Receptor-Like Cytosolic Kinases in Plant Development 270
18.9	Reactive Oxygen Species: Dual Role in Plants and Links to Receptor-Like Protein Kinases 272
18.10	Conclusion 273 References 273
19	Phytohormones as a Novel Weapon in Management of Plant Stress Against Biotic Agents 277
	Rewaj Subba, Swarnendu Roy, and Piyush Mathur
19.1	Introduction 277
19.2	Phytohormones and Biotic Stress Management 278
19.2.1	Salicylic Acid 278
19.2.2	Jasmonic Acid (JA) 278
19.2.3	Ethylene (ET) 279
19.2.4	Abscisic Acid (ABA) 279
19.3	Phytohormone Mediated Cross-Talk in Plant Defense Under Biotic Stress 281 References 282
20	Recent Perspectives of Drought Tolerance Traits: Physiology and Biochemistry 287
20.1	Priya Yadav, Mohammad Wahid Ansari, Narendra Tuteja, and Moaed Al Meselmani
20.1	Introduction 287 Effects and Response During Drought Stress on Physiological and Ricch amical Traits of Plants 288
20.2	Effects and Response During Drought Stress on Physiological and Biochemical Traits of Plants 288 Recent Advances in Drought Stress Tolerance 289
20.3 20.4	Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Rhizobacteria (PGPRs)
20.4	in Drought Stress Tolerance 291
20.5	Genomic Level Approach in Drought Stress Tolerance 291
20.6	Conclusion 293
20.0	References 293
21	Understanding the Role of Key Transcription Factors in Regulating Salinity Tolerance in Plants 299 Sahana Basu and Gautam Kumar
21.1	Introduction 299
21.2	Transcription Factors Conferring Salinity Tolerance 299
21.2.1	APETALA2/Ethylene Responsive Factor 299
21.2.1.1	Structure of AP2/ERF Transcription Factors 301
21.2.1.2	Classification of AP2/ERF Transcription Factors 301

21.2.1.3 Role of AP2/ERF Transcription Factors in Salinity Tolerance 302

xiv	Contents	
'	21.2.2	WRKY 302
		Structure of WRKY Transcription Factors 302
		Classification of WRKY Transcription Factors 302
		Role of WRKY Transcription Factors in Salinity Tolerance 306
	21.2.3	Basic Helix-Loop-Helix 307
		Structure of bHLH Transcription Factors 307
		Classification of bHLH Transcription Factors 307
		Role of bHLH Transcription Factors in Salinity Tolerance 307
	21.2.4	v-Myb Myeloblastosis Viral Oncogene Homolog 308
	21.2.4.1	Structure of MYB Transcription Factors 308
	21.2.4.2	Classification of MYB Transcription Factors 308
	21.2.4.3	Role of MYB Transcription Factors in Salinity Tolerance 309
	21.2.5	NAM (for no apical meristem), ATAF1 and -2, and CUC2 (for cup-shaped cotyledon) 309
		Structure of NAC Transcription Factors 309
		Classification of NAC Transcription Factors 309
		Role of NAC Transcription Factors in Salinity Tolerance 310
	21.2.6	Nuclear Factor-Y 310
		Structure of NF-Y Transcription Factors 310
		Classification of NF-Y Transcription Factors 310
		Role of NF-Y Transcription Factors in Salinity Tolerance 311
	21.2.7	Basic Leucine Zipper 311 Structure of bZIP Transcription Factors 311
		Classification of bZIP Transcription Factors 312
		Role of bZIP Transcription Factors in Salinity Tolerance 312
	21.3	Conclusion 312
	21.3	References 312
		Part 5 Stress Management Strategies for Sustainable Agriculture 317
	22	Seed Quality Assessment and Improvement Between Advancing Agriculture
		and Changing Environments 319
		Andrea Pagano, Paola Pagano, Conrado Dueñas, Adriano Griffo, Shraddha Shridhar Gaonkar,
	22.1	Francesca Messina, Alma Balestrazzi, and Anca Macovei
	22.1	Introduction: A Seed's Viewpoint on Climate Change 319
	22.2 22.3	Assessing Seed Quality: Invasive and Non-invasive Techniques for Grain Testing 321 Improving Seed Quality: Optimizing Priming Techniques to Face the Challenges of Climate Changes 324
	22.4	Improving Seed Quality: Optimizing Priming Techniques to Face the Challenges of Climate Changes 324 Understanding Seed Quality: Molecular Hallmarks and Experimental Models for Future Perspectives
	22.4	in Seed Technology 327
	22.5	Conclusive Remarks 329
		References 329
	23	CRISPR/Cas9 Genome Editing and Plant Stress Management 335
	22.1	Isorchand Chongtham and Priya Yadav
	23.1	Introduction 335
	23.2	CRISPR/Cas9 336
	23.2.1	CRISPR Cas System 336
	23.2.2	CRISPR Cas9 337 CRISPR/Cas9 Mechanism 338
	23.2.3	
	7377	
	23.2.4	CRISPR/Cas9 Types of Gene Editing 339 Construct of the CRISPR/Cas9 341
	23.2.4 23.3 23.3.1	Construct of the CRISPR/Cas9 341 The gRNA 341

23.3.2	The Choice of Gene Regulatory Elements (GREs) 341
23.3.3	Multiplex CRISPR 341
23.4	Plant Genome Editing 343
23.4.1	Procedure 343
23.4.2	Plant Improvement Strategies Based on Genome Editing 344
23.5	Plant Stress 344
23.5.1	Plant Stress and Their Types 344
23.5.2	Plant Remedial Measures Toward Stress 345
23.6	Genome Editing for Plant Stress 346 Biotic Stress 348
23.6.1	
	Bacterium 348
	Virus 348 Fungus 348
	Insect 349
23.6.2	Abiotic Stress 349
	Chemicals 349
	Environmental 349
23.7	Elimination of CRISPR/Cas from the System After Genetic Editing 350
23.8	Prospects and Limitations 350
23.0	References 351
24	Ethylene Mediates Plant-Beneficial Fungi Interaction That Leads to Increased Nutrient Uptake,
	Improved Physiological Attributes, and Enhanced Plant Tolerance Under
	Salinity Stress 361
	Priya Yadav, Mohammad Wahid Ansari, Narendra Tuteja, and Ratnum K. Wattal
24.1	Introduction 361
24.2	Plant Response Towards Salinity Stress 361
24.3	Plant–Fungal Interaction and the Mechanism of Plant Growth Promotion by Fungi 362
24.3.1	Nutrient Acquisition and Phytohormones Production 362
24.3.2	Activation of Systemic Resistance 364
24.3.3	Production of Siderophores 364
24.3.4	Production of Antibiotics and Secondary Metabolites 365
24.3.5	Protection to Biotic and Abiotic Stress 365
24.4	Fungi and Ethylene Production and Its Effects 365
24.5	Role and Mechanism of Ethylene in Salinity Stress Tolerance 366
24.6	Conclusion 367
	References 367
25	Role of Chemical Additives in Plant Salinity Stress Mitigation 371
	Priya Yadav, Mohammad Wahid Ansari, and Narendra Tuteja
25.1	Introduction 371
25.2	Types of Chemical Additives and Their Source 372
25.3	Application and Mechanism of Action 373
25.4	NO (Nitric Oxide) in Salt Stress Tolerance 374
25.5	Melatonin in Salt Stress Tolerance 374
25.6	Polyamines in Salt Stress Tolerance 374
25.7	Salicylic Acid (SA) in Salt Stress Tolerance 375 Ethylene in Salinity Stress Tolerance 376
25.8 25.9	Trehalose in Salinity Stress Tolerance 377
25.10	Kresoxim-Methyl (KM) in Salinity Stress Tolerance 377
25.10	Conclusion 377
25.11	References 377

Contents	
26	Role of Secondary Metabolites in Stress Management Under Changing Climate Conditions 383
	Priya Yadav and Zahid Hameed Siddiqui
26.1	Introduction 383
26.1.1	Types of Plant Secondary Metabolites 383
26.1.1.1	Phenolics 384
26.1.1.2	Terpenoids 384
26.1.1.3	Nitrogen-Containing Secondary Metabolites 384
26.2	Biosynthesis of Plant Secondary Metabolites 385
26.2.1	Role of Secondary Metabolites in Mitigating Abiotic Stress 388
26.2.2	Secondary Metabolites in Drought Stress Mitigation 389
26.2.2.1	Phenolic compounds and drought stress 389
26.2.2.2	Terpenoids in drought stress tolerance 389
26.2.3	Secondary Metabolites in Mitigating Salinity Stress 390
26.2.4	Secondary Metabolites as UV Scavengers 390
26.3	Heavy Metal Stress and Secondary Metabolites 390
26.3.1.1	Phenolic compounds and metal stress 391
26.3.2	Role of Secondary Metabolites in Biotic Stress Mitigation 392
26.3.2.1	Terpenoids and Biotic Stress 392
26.3.2.2	Phenolic Compounds and Biotic Stress 392
26.3.2.3	Nitrogen-Containing Compound and Biotic Stress 393
26.4	Counteradaptation of Insects Against Secondary Metabolites 393
26.5	Sustainable Crop Protection and Secondary Metabolites 393
26.6	Conclusion 393
	References 394
27	Osmolytes: Efficient Oxidative Stress-Busters in Plants 399
	Naser A. Anjum, Palaniswamy Thangavel, Faisal Rasheed, Asim Masood, Hadi Pirasteh-Anosheh,
	and Nafees A. Khan
27.1	Introduction 399
27.1.1	Plant Health, Stress Factors, and Oxidative Stress and Its Markers 399
27.1.2	Modulators of Oxidative Stress Markers and Antioxidant Metabolism 399
27.2	Osmolytes – An Overview 400
27.2.1	Role of Major Osmolytes in Protection of Plants Against Oxidative Stress 401
27.2.1.1	Betaines and Related Compounds 401
27.2.1.2	Proline 401
27.2.1.3	γ-Aminobutyric Acid (Gamma Amino Butyric Acid) 402
27.2.1.4	Polyols 402

Index 411

References 404

Conclusion and Perspectives 404

27.2.1.5 Sugars 403

27.3

xvi