Kurzinhalt

Vorwort V Danksagung VIII

Teil I Kapitel 1	Einführung in die Immunologie und die angeborene Immunität 2 Grundbegriffe der Immunologie 3				
Kapitel 2	Die angeborene Immunität 53				
Teil II	Die Erkennung von Antigenen 140				
Kapitel 3	Antigenerkennung durch B-Zell- und T-Zell-Rezeptoren 141				
Kapitel 4	Die Entstehung von Antigenrezeptoren in Lymphocyten 181				
Kapitel 5	Wie Antigene den T-Lymphocyten präsentiert werden 227				
Teil III	Die Entstehung des Rezeptorrepertoires von reifen Lymphocyten 274				
Kapitel 6	Signalgebung durch Rezeptoren des Immunsystems 275				
Kapitel 7	Entwicklung und Überleben von Lymphocyten 325				
Teil IV	Die adaptive Immunantwort 406				
Kapitel 8	Die T-Zell-vermittelte Immunität 407				
Kapitel 9	Die humorale Immunantwort 479				
Kapitel 10	Die Dynamik der adaptiven Immunantwort 531				
Kapitel 11	Das mucosale Immunsystem 581				
Teil V	Das Immunsystem bei Gesundheit und Krankheit 626				
Kapitel 12	Das Versagen der Immunantwort 627				
Kapitel 13	Allergie und Hypersensitivität 699				
Kapitel 14	Autoimmunität und Transplantation 753				
Kapitel 15	Die gezielte Beeinflussung der Immunantwort 825				
Teil VI	Die Ursprünge des Immunsystems 892				
Kapitel 16	Die Evolution des Immunsystems 893				
Anhang					
Anhang I	Die Werkzeuge des Immunologen 923				
Anhang II	Die CD-Antigene 983				
Anhang III	Cytokine und ihre Rezeptoren 1007				
Anhang IV	Chemokine und ihre Rezeptoren 1013				
Anhang V	Immunologische Konstanten 1017				
Biografier	1019				

Glossar 1021

Index 1065

Inhaltsverzeichnis

Vorwort V Danksagung VIII

Teil I Einführung in die Immunologie und die angeborene Immunität

Kapitel 1 Grundbegriffe der Immunologie 3

2

Grundlagen der angeborenen und der erworbenen Immunität 5

- 1.1 Funktionen der Immunantwort 5
- 1.2 Die Zellen des Immunsystems gehen aus Vorläuferzellen im Knochenmark hervor 7
- 1.3 Die myeloide Zelllinie umfasst die meisten Zellen des angeborenen Immunsystems 7
- 1.4 Die lymphatische Zelllinie umfasst die Lymphocyten des adaptiven Immunsystems und die natürlichen Killerzellen der angeborenen Immunität 12
- 1.5 Lymphocyten reifen im Knochenmark oder im Thymus und sammeln sich dann überall im K\u00f6rper in den lymphatischen Geweben 14
- 1.6 Die meisten Krankheitserreger lösen Entzündungsreaktionen aus, indem sie die angeborene Immunität aktivieren 15
- 1.7 Die Aktivierung von spezialisierten antigenpräsentierenden Zellen ist ein notwendiger erster Schritt für das Auslösen der adaptiven Immunantwort 17
- 1.8 Das angeborene Immunsystem ermöglicht die erste Unterscheidung zwischen körpereigenen und nichtkörpereigenen Antigenen 19
- 1.9 Lymphocyten werden durch Antigene aktiviert, wobei Klone antigenspezifischer Zellen entstehen, die für die adaptive Immunität verantwortlich sind 20
- 1.10 Die klonale Selektion von Lymphocyten ist das zentrale Prinzip der erworbenen Immunität 21
- 1.11 Die Struktur der Antikörpermoleküle veranschaulicht das zentrale Prinzip der adaptiven Immunität 22
- 1.12 Jeder Lymphocyt erzeugt während seiner Entwicklung durch Umlagerung der Rezeptorgene einen spezifischen Antigenrezeptor 23

- 1.13 Immunglobuline binden eine große Vielfalt von chemischen Strukturen, während der T-Zell-Rezeptor darauf spezialisiert ist, fremde Antigene in Form von Peptidfragmenten zu erkennen, die an Proteine des Haupthistokompatibilitätskomplexes gebunden sind 24
- 1.14 Signale, die Lymphocyten über ihre Antigenrezeptoren empfangen, bestimmen ihre Entwicklung und ihr Überleben 26
- 1.15 Lymphocyten treffen in den peripheren lymphatischen Organen auf Antigene und reagieren darauf 26
- 1.16 Für die Aktivierung von Lymphocyten ist eine Wechselwirkung sowohl mit dem Antigen als auch mit anderen Zellen erforderlich 32
- 1.17 Lymphocyten, die durch ein Antigen aktiviert wurden, proliferieren in den peripheren lymphatischen Organen und erzeugen dadurch Effektorzellen und das immunologische Gedächtnis 34 Zusammenfassung 37

Effektormechanismen der adaptiven Immunität 38

- 1.18 Antikörper richten sich gegen extrazelluläre Krankheitserreger und ihre toxischen Produkte 39
- 1.19 T-Zellen sind für die Kontrolle intrazellulärer Krankheitserreger und für die Aktivierung von B-Zell-Reaktionen gegen die meisten Antigene erforderlich 41
- 1.20 CD4- und CD8-T-Zellen erkennen Peptide, die an MHC-Moleküle aus zwei verschiedenen Klassen gebunden sind 43
- 1.21 Defekte des Immunsystems führen zu einer erhöhten Anfälligkeit gegenüber Infektionen 46
- 1.22 Das Verständnis der adaptiven Immunantwort ist wichtig für die Bekämpfung von Allergien, Autoimmunkrankheiten und der Abstoßung von Transplantaten 46
- 1.23 Impfung ist die wirksamste Methode, Infektionskrankheiten unter Kontrolle zu bringen 48 Zusammenfassung 49

Zusammenfassung von Kapitel 1 50 Literatur 50

Kapitel 2 Die angeborene Immunität 53

Die vorderste Verteidigungslinie der Immunabwehr 55

- 2.1 Infektionskrankheiten werden durch verschiedene Organismen verursacht, die sich in ihrem Wirt vermehren 55
- 2.2 Um einen Infektionsherd im Körper bilden zu können, müssen Erreger die angeborenen Abwehrmechanismen des Wirtes überwinden 60
- 2.3 Die Oberflächenepithelien des Körpers bilden die erste Barriere gegen Infektionen 62
- 2.4 Nach dem Eindringen in das Gewebe werden viele Pathogene durch Phagocyten erkannt, aufgenommen und getötet 64
- 2.5 Durch das Erkennen von Krankheitserregern und bei Gewebeschäden kommt es zu einer Entzündungsreaktion 68 Zusammenfassung 71

Mustererkennung beim angeborenen Immunsystem 71

- 2.6 Rezeptoren mit einer Spezifität für die Moleküle von Pathogenen erkennen Muster von wiederholten Strukturmotiven 72
- 2.7 Die Toll-ähnlichen Rezeptoren sind signalgebende Rezeptoren, die zwischen verschiedenen Arten von Krankheitserregern unterscheiden können und die Entwicklung einer geeigneten Immunantwort unterstützen 75
- 2.8 Die Effekte von bakteriellen Lipopolysacchariden auf Makrophagen werden durch die Bindung von CD14 an TLR-4 vermittelt 76
- 2.9 NOD-Proteine fungieren als intrazelluläreSensoren für bakterielle Infektionen 77
- 2.10 Die Aktivierung von Toll-ähnlichen Rezeptoren und NOD-Proteinen löst die Produktion von proinflammatorischen Cytokinen und Chemokinen sowie die Expression costimulierender Moleküle aus 78 Zusammenfassung 80

Das Komplementsystem und die angeborene Immunität 81

- 2.11 Das Komplement ist ein System von Plasmaproteinen, das durch das Vorhandensein von Pathogenen aktiviert wird 81
- 2.12 Das Komplement tritt mit Krankheitserregern in Wechselwirkung und markiert sie dabei für die Zerstörung durch Phagocyten 83
- 2.13 Die Aktivierung des C1-Komplexes leitet den klassischen Weg ein 86

- 2.14 Der Lektinweg ist zum klassischen Weg homolog 88
- 2.15 Die Aktivierung des Komplementsystems beschränkt sich größtenteils auf die Oberfläche, an der die Initiation erfolgte 89
- 2.16 Die Hydrolyse von C3 setzt den alternativen Komplementweg in Gang 91
- 2.17 Membran- und Plasmaproteine, die die Bildung und Stabilität der C3-Konvertase regulieren, bestimmen das Ausmaß der Komplementaktivierung unter verschiedenen Bedingungen 93
- 2.18 Die oberflächengebundene C3-Konvertase lagert an der Oberfläche eines Krankheitserregers große Mengen von C3b-Fragmenten ab und erzeugt die C5-Konvertase-Aktivität 95
- 2.19 Rezeptoren für gebundene Komplementproteine vermitteln die Aufnahme von komplementmarkierten Krankheitserregern durch die Phagocyten 96
- 2.20 Kleine Peptidfragmente einiger Komplementproteine können eine lokale Entzündungsreaktion auslösen 98
- 2.21 Die terminalen Komplementproteine polymerisieren und bilden Poren in Membranen, die bestimmte Pathogene töten können 99
- 2.22 Komplementregulationsproteine steuern alle drei Reaktionswege der Komplementaktivierung und schützen den Körper vor deren zerstörerischen Effekten 101 Zusammenfassung 106

Induzierte Antworten der angeborenen Immunität auf eine Infektion 107

- 2.23 Aktivierte Makrophagen sezernieren eine Reihe von Cytokinen, die zahlreiche verschiedene lokale Effekte und Fernwirkungen zeigen 107
- 2.24 Chemokine, die von Phagocyten und dendritischen Zellen freigesetzt werden, locken Zellen zu Infektionsherden 109
- 2.25 Zelladhäsionsmoleküle steuern bei einer Entzündungsreaktion die Wechselwirkung zwischen Leukocyten und Endothelzellen 112
- 2.26 Neutrophile Zellen sind die ersten Zellen, welche die Blutgefäßwand durchqueren und in Entzündungszonen eindringen 114
- 2.27 TNF-α ist ein wichtiges Cytokin, das die lokale Eindämmung von Infektionen aktiviert, aber bei systemischer Freisetzung einen Schock verursacht 117
- 2.28 Von Phagocyten freigesetzte Cytokine aktivieren die Akute-Phase-Reaktion 119
- 2.29 Durch eine Virusinfektion induzierte Interferone tragen auf verschiedene Weise zur Immunabwehr bei 121

- 2.30 Interferone und Cytokine der Makrophagen aktivieren natürliche Killerzellen, damit diese bestimmte intrazelluläre Infektionen früh abwehren 123
- 2.31 NK-Zellen besitzen Rezeptoren für körpereigene Moleküle, die ihre Aktivierung gegen nichtinfizierte Zellen blockieren 124
- 2.32 NK-Zellen tragen Rezeptoren, die als Reaktion auf Liganden, welche von infizierten Zellen oder Tumorzellen präsentiert werden, die Abtötungsfunktion aktivieren 128
- 2.33 Der NKG2D-Rezeptor aktiviert einen anderen Signalweg als die übrigen aktivierenden NK-Rezeptoren 129
- 2.34 Mehrere Untergruppen der Lymphocyten verhalten sich wie *innate like*-Lymphocyten 129 Zusammenfassung 132

Zusammenfassung von Kapitel 2 133 Literatur 134

Teil II Die Erkennung von Antigenen 140

Kapitel 3 Antigenerkennung durch B-Zell- und T-Zell-Rezeptoren 141

Die Struktur eines typischen Antikörpermoleküls 143

- 3.1 IgG-Antikörper bestehen aus vier Polypeptidketten 143
- 3.2 Die schweren und leichten Ketten der Immunglobuline setzen sich aus konstanten und variablen Regionen zusammen 145
- 3.3 Das Antikörpermolekül lässt sich leicht in funktionell unterschiedliche Fragmente spalten 145
- 3.4 Das Immunglobulinmolekül ist beweglich, besonders in der Gelenkregion 147
- 3.5 Alle Domänen eines Immunglobulinmoleküls besitzen eine ähnliche Struktur 149 Zusammenfassung 150

Die Wechselwirkung des Antikörpermoleküls mit einem spezifischen Antigen 151

- 3.6 Bestimmte Bereiche mit hypervariabler Sequenz bilden die Antigenbindungsstelle 151
- 3.7 Antikörper binden Antigene durch Kontakte mit Aminosäuren in CDRs, wobei die Einzelheiten der Bindung von der Größe und von der Form des Antigens abhängen 152

- 3.8 Antikörper binden an strukturell passende Bereiche auf den Oberflächen von Antigenen 154
- 3.9 An Antigen-Antikörper-Reaktionen sind verschiedene Kräfte beteiligt 154
 Zusammenfassung 156

Die Antigenerkennung durch T-Zellen 157

- 3.10 Der T-Zell-Rezeptor ähnelt dem Fab-Fragment eines Immunglobulins 157
- 3.11 T-Zell-Rezeptoren erkennen ein Antigen in Form eines Komplexes aus einem fremden Peptid und einem daran gebundenen MHC-Molekül 159
- 3.12 Es gibt zwei Klassen von MHC-Molekülen mit unterschiedlichem Aufbau der Untereinheiten, aber ähnlichen dreidimensionalen Strukturen 160
- 3.13 Peptide werden fest an MHC-Moleküle gebunden und dienen auch der Stabilisierung des MHC-Moleküls auf der Zelloberfläche 163
- 3.14 MHC-Klasse-I-Moleküle binden kurze, acht bis zehn Aminosäuren lange Peptide an beiden Enden 164
- Die Länge der Peptide, die von MHC-Klasse-II-Molekülen gebunden werden, ist nicht beschränkt 165
- 3.16 Die Kristallstrukturen mehrerer Peptid:MHC:TZell-Rezeptor-Komplexe zeigen eine ähnliche
 Orientierung des T-Zell-Rezeptors in Bezug auf den
 Peptid:MHC-Komplex 167
- 3.17 Für eine effektive Immunantwort auf Antigene sind die T-Zell-Oberflächenproteine CD4 und CD8 notwendig 169
- 3.18 Die beiden Klassen von MHC-Molekülen werden auf Zellen unterschiedlich exprimiert 172
- 3.19 Eine bestimmte Untergruppe von T-Zellen trägt einen alternativen Rezeptor aus einer γ- und einer δ-Kette 173
 Zusammenfassung 174

Zusammenfassung von Kapitel 3 175 Literatur 176

Kapitel 4 Die Entstehung von Antigenrezeptoren in Lymphocyten 181

Primäre Umlagerung von Immunglobulingenen 182

- 4.1 In antikörperproduzierenden Zellen werden Immunglobulingene neu geordnet 183
- 4.2 Durch die somatische Rekombination separater Gensegmente entstehen die vollständigen Gene für eine variable Region 184
- 4.3 Jeder Immunglobulinlocus besteht aus vielen hintereinanderliegenden V-Gen-Segmenten 186

- 4.4 Die Umlagerung der V-, D- und J-Gen-Segmente wird durch flankierende DNA-Sequenzen gesteuert 188
- 4.5 An der Reaktion, die V-, D- und J-Gen-Segmente rekombiniert, sind sowohl lymphocytenspezifische als auch ubiquitäre DNA-modifizierende Enzyme beteiligt 189
- 4.6 Für die Erzeugung der Immunglobulinvielfalt gibt es vier grundlegende Mechanismen 194
- 4.7 Die mehrfachen ererbten Gensegmente werden in verschiedenen Kombinationen verwendet 194
- 4.8 Unterschiede beim Einfügen und Entfernen von Nucleotiden an den Verbindungsstellen zwischen den Gensegmenten tragen zur Vielfalt in der dritten hypervariablen Region bei 195 Zusammenfassung 197

Die Umlagerung der Gene von T-Zell-Rezeptoren 198

- 4.9 Die Loci von T-Zell-Rezeptoren sind ähnlich angeordnet wie die Loci der Immunglobuline und werden mithilfe derselben Enzyme umgelagert 198
- 4.10 Bei den T-Zell-Rezeptoren ergibt sich die Vielfalt durch die dritte hypervariable Region 201
- 4.11 γ:δ-T-Zell-Rezeptoren entstehen ebenfalls durch Genumlagerung 201 Zusammenfassung 202

Strukturvariationen der konstanten Immunglobulinregionen 203

- 4.12 Die Isotypen der Immunglobuline unterscheiden sich in der Struktur der konstanten Regionen ihrer schweren Ketten 204
- 4.13 Die konstanten Regionen der Antikörper sind für die funktionelle Spezialisierung verantwortlich 206
- 4.14 Reife naive B-Zellen exprimieren auf ihrer Oberfläche IgM und IgD 207
- 4.15 Die membrandurchspannende und die sezernierte Form der Immunglobuline stammen von verschiedenen Transkripten für die schwere Kette 208
- 4.16 IgM und IgA können Polymere bilden 208
 Zusammenfassung 211

Sekundäre Diversifikation des Antikörperrepertoires 211

- 4.17 Die aktivierungsinduzierte Cytidin-Desaminase (AID) führt Mutationen in Gene ein, die in B-Zellen transkribiert werden 213
- 4.18 Die somatische Hypermutation bewirkt eine weitere Diversifikation umgelagerter V-Gene 215
- 4.19 Bei einigen Spezies findet die Diversifikation der Immunglobulingene nach der Genumlagerung statt 217

4.20 Durch Klassenwechsel kann dasselbe V_H -Exon im Verlauf einer Immunantwort mit verschiedenen C_H -Genen assoziieren 218 Zusammenfassung 221

Zusammenfassung von Kapitel 4 221

Literatur 223

Kapitel 5 Wie Antigene den T-Lymphocyten präsentiert werden 227

Die Erzeugung von T-Zell-Rezeptor-Liganden 228

- 5.1 Die MHC-Klasse-I- und -Klasse-II-Moleküle befördern Peptide aus zwei verschiedenen intrazellulären Kompartimenten an die Zelloberfläche 228
- 5.2 Peptide, die an MHC-Klasse-I-Moleküle binden, werden aktiv vom Cytosol in das endoplasmatische Reticulum transportiert 230
- 5.3 Peptide für den Transport in das endoplasmatische Reticulum entstehen im Cytosol 232
- 5.4 Durch retrograden Transport vom endoplasmatischen Reticulum in das Cytosol können exogene Proteine für die Kreuzpräsentation durch MHC-Klasse-I-Moleküle prozessiert werden 235
- 5.5 Neu synthetisierte MHC-Klasse-I-Moleküle werden im endoplasmatischen Reticulum zurückgehalten, bis sie Peptide binden 236
- 5.6 Viele Viren produzieren Immunoevasine, die die Antigenpräsentation durch MHC-Klasse-I-Moleküle stören 238
- 5.7 Peptide, die von MHC-Klasse-II-Molekülen präsentiert werden, entstehen in angesäuerten endocytotischen Vesikeln 240
- 5.8 Die invariante Kette dirigiert neu synthetisierte MHC-Klasse-II-Moleküle zu angesäuerten intrazellulären Vesikeln 242
- 5.9 Ein spezialisiertes, MHC-Klasse-II-ähnliches Molekül katalysiert die Beladung von MHC-Klasse-II-Molekülen mit Peptiden 244
- 5.10 Die feste Bindung von Peptiden durch MHC-Moleküle ermöglicht eine effiziente Antigenpräsentation an der Zelloberfläche 245 Zusammenfassung 246

Der Haupthistokompatibilitätskomplex und seine Funktionen 247

- 5.11 Gene im Haupthistokompatibilitätskomplex codieren viele Proteine, die an der Prozessierung und Präsentation von Antigenen beteiligt sind 248
- 5.12 Die Proteinprodukte von MHC-Klasse-I- und -Klasse-II-Genen sind hoch polymorph 251

- 5.13 Der MHC-Polymorphismus beeinflusst die Antigenerkennung durch T-Zellen über die Regulation der Peptidbindung und der Kontakte zwischen T-Zell-Rezeptor und MHC-Molekülen 254
- 5.14 Alloreaktive T-Zellen, die Nichtselbst-MHC-Moleküle erkennen, sind sehr verbreitet 258
- 5.15 Viele T-Zellen reagieren auf Superantigene 259
- 5.16 Der MHC-Polymorphismus erweitert das Spektrum von Antigenen, auf die das Immunsystem reagieren kann 261
- 5.17 Eine Reihe von Genen mit speziellen Immunfunktionen liegt ebenfalls im MHC 262
- 5.18 Spezialisierte MHC-Klasse-I-Moleküle agieren als Liganden zur Aktivierung und Hemmung von NK-Zellen 263
- 5.19 Die CD1-Familie der MHC-Klasse-I-artigen Moleküle ist außerhalb des MHC codiert und präsentiert CD1-abhängigen T-Zellen mikrobielle Lipide 266 Zusammenfassung 267

Zusammenfassung von Kapitel 5 268Literatur 269

Teil III Die Entstehung des Rezeptorrepertoires von reifen Lymphocyten 274

Kapitel 6 Signalgebung durch Rezeptoren des Immunsystems 275

Allgemeine Prinzipien der Signalübertragung 276

- 6.1 Transmembranrezeptoren wandeln extrazelluläre Signale in intrazelluläre biochemische Ereignisse um 276
- 6.2 Die intrazelluläre Signalübertragung erfolgt häufig über große Signalkomplexe aus vielen Proteinen 278
- 6.3 Die Aktivierung bestimmter Rezeptoren führt zur Produktion von kleinen Second-Messenger-Molekülen 280
- 6.4 In vielen Signalwegen fungieren kleine G-Proteine als molekulare Schalter 281
- 6.5 Signalproteine werden durch eine Reihe verschiedener Mechanismen zur Membran gelenkt 283
- 6.6 Signalübertragungsproteine sind in der Plasmamembran in Strukturen organisiert, die man als Lipidflöße bezeichnet 284
- 6.7 Der Proteinabbau besitzt eine wichtige Funktion bei der Beendigung von Signalreaktionen 285 Zusammenfassung 286

Signale der Antigenrezeptoren und die Aktivierung von Lymphocyten 286

- 6.8 Die variablen Ketten der Antigenrezeptoren sind mit invarianten akzessorischen Ketten verknüpft, die die Signalfunktion des Rezeptors übernehmen 287
- 6.9 Lymphocyten sind gegenüber ihren spezifischen Antigenen sehr sensitiv 289
- 6.10 Die Antigenbindung führt zur Phosphorylierung der ITAM-Sequenzen, die mit den Antigenrezeptoren assoziiert sind 291
- 6.11 Bei den T-Zellen binden vollständig phosphorylierte ITAM-Sequenzen an die Kinase ZAP-70 und machen sie einer Aktivierung zugänglich 293
- 6.12 Die aktivierte Kinase ZAP-70 phosphoryliert Gerüstproteine, die zahlreiche nachgeschaltete Auswirkungen des Antigenrezeptorsignals vermitteln 293
- 6.13 Die PLC-y wird durch Tec-Tyrosinkinasen aktiviert 295
- 6.14 Die Aktivierung des kleinen G-Proteins Ras aktiviert eine MAP-Kinase-Kaskade, was schließlich zur Produktion des Transkriptionsfaktors AP-1 führt 297
- 6.15 Der Transkriptionsfaktor NFAT wird direkt durch Ca²⁺ aktiviert 298
- 6.16 Der Transkriptionsfaktor NFkB wird durch die Wirkung von Proteinkinase C aktiviert 299
- 6.17 Das Prinzip der Signalbildung von B-Zell-Rezeptoren entspricht der von T-Zell-Rezeptoren, aber einige Signalkomponenten sind spezifisch für B-Zellen 301
- 6.18 ITAM-Sequenzen gibt es auch bei Rezeptoren auf Leukocyten, die Signale für die Zellaktivierung liefern 302
- 6.19 Das Oberflächenprotein CD28 ist ein costimulierender Rezeptor für naive T-Zellen 304
- 6.20 Inhibitorische Rezeptoren auf den Lymphocyten unterstützen die Regulation der Immunantworten 306 Zusammenfassung 307

Andere Rezeptoren und Signalübertragungswege 308

- 6.21 Cytokine aktivieren im Allgemeinen schnelle Signalwege, die in den Zellkern führen 308
- 6.22 Cytokinrezeptoren bilden bei der Bindung eines Liganden Dimere oder Trimere 309
- 6.23 Cytokinrezeptoren sind mit Tyrosinkinasen der JAK-Familie assoziiert, die STAT-Transkriptionsfaktoren aktivieren 309
- 6.24 Cytokinsignale werden durch einen negativen Rückkopplungsmechanismus beendet 311

- 6.25 Die Rezeptoren, die die Apoptose induzieren, aktivieren spezialisierte intrazelluläre Proteasen, die man als Caspasen bezeichnet 312
- 6.26 Der intrinsische Weg der Apoptose wird durch die Freisetzung von Cytochrom c aus den Mitochondrien eingeleitet 314
- 6.27 Mikroorganismen und ihre Produkte wirken über Toll-ähnliche Rezeptoren und aktivieren NFkB 316
- 6.28 Bakterielle Peptide, Mediatoren von Entzündungsreaktionen und Chemokine erzeugen ihre Signale über G-Protein-gekoppelte Rezeptoren 317 Zusammenfassung 319

Zusammenfassung von Kapitel 6 319

Literatur 320

Kapitel 7 Entwicklung und Überleben von Lymphocyten 325

Entwicklung der B-Lymphocyten 327

- 7.1 Lymphocyten stammen von hämatopoetischen Stammzellen im Knochenmark ab 327
- 7.2 Die Entwicklung der B-Zellen beginnt mit der Umlagerung des Locus für die schwere Kette 331
- 7.3 Der Prä-B-Zell-Rezeptor prüft, ob eine vollständige schwere Kette produziert wurde und gibt das Signal für die Proliferation der B-Zellen 335
- 7.4 Signale des Prä-B-Zell-Rezeptors blockieren weitere Umlagerungen des Locus für die schwere Kette und erzwingen einen Allelausschluss 336
- 7.5 In Prä-B-Zellen wird der Locus der leichten Kette umgelagert und ein Zelloberflächenimmunglobulin exprimiert 337
- 7.6 Unreife B-Zellen werden auf Autoreaktivität geprüft, bevor sie das Knochenmark verlassen 340 Zusammenfassung 344

Entwicklung der T-Zellen im Thymus 345

- 7.7 Vorläufer der T-Zellen entstehen im Knochenmark, aber alle wichtigen Vorgänge ihrer Entwicklung finden im Thymus statt 345
- 7.8 Im Thymus proliferieren T-Vorläuferzellen besonders stark, aber die meisten sterben ab 349
- 7.9 Die aufeinanderfolgenden Stadien der Thymocytenentwicklung sind durch Änderungen in den Zelloberflächenmolekülen gekennzeichnet 350
- 7.10 In unterschiedlichen Bereichen des Thymus findet man Thymocyten verschiedener Entwicklungsstadien 354
- 7.11 T-Zellen mit α:β- oder γ:δ-Rezeptoren haben einen gemeinsamen Vorläufer 355

- 7.12 T-Zellen, die bestimmte V-Regionen der γ- und
 δ-Ketten exprimieren, entstehen schon zu Beginn des Lebens in einer bestimmten Reihenfolge 357
- 7.13 Die erfolgreiche Synthese einer umgelagerten β-Kette ermöglicht die Produktion eines Prä-T-Zell-Rezeptors, der die Zellproliferation auslöst und die weitere Umlagerung des Gens für die β-Kette blockiert 358
- 7.14 Die Gene für die a-Kette werden so lange immer wieder umgelagert, bis es zu einer positiven Selektion kommt oder der Zelltod eintritt 362 Zusammenfassung 363

Positive und negative Selektion von T-Zellen 364

- 7.15 Der MHC-Typ des Thymusstromas selektiert ein Repertoire von reifen T-Zellen, die fremde Antigene erkennen können, welche durch denselben MHC-Typ präsentiert werden 365
- 7.16 Nur Thymocyten, deren Rezeptoren mit Selbst-Peptid:Selbst-MHC-Komplexen interagieren, können überleben und heranreifen 367
- 7.17 Die positive Selektion wirkt auf ein Rezeptorrepertoire mit inhärenter Spezifität für MHC-Moleküle 368
- 7.18 Durch positive Selektion wird die Expression von CD4 und CD8 mit der Spezifität des T-Zell-Rezeptors und den potenziellen Effektorfunktionen der Zelle in Einklang gebracht 369
- 7.19 Die corticalen Thymusepithelzellen bewirken eine positive Selektion sich entwickelnder Thymocyten 371
- 7.20 T-Zellen, die stark auf ubiquitäre Autoantigene reagieren, werden im Thymus eliminiert 373
- 7.21 Die negative Selektion erfolgt sehr effizient durch antigenpräsentierende Zellen aus dem Knochenmark 375
- 7.22 Die Spezifität und/oder die Stärke der Signale für die negative und die positive Selektion müssen sich unterscheiden 376 Zusammenfassung 377

Überleben und Heranreifen von Lymphocyten in den peripheren Lymphgeweben 378

- 7.23 In den verschiedenen Regionen der peripheren lymphatischen Gewebe kommen verschiedene Untergruppen von Lymphocyten vor 378
- 7.24 Proteine aus der Familie der Tumornekrosefaktoren steuern die Entwicklung und Organisation der peripheren Lymphgewebe 380
- 7.25 Lymphocyten werden durch Chemokine in spezifische Regionen der peripheren lymphatischen Gewebe gelockt 382

- 7.26 Lymphocyten, die zum ersten Mal in der Peripherie mit einer ausreichenden Menge an Autoantigenen in Kontakt kommen, werden vernichtet oder inaktiviert 384
- 7.27 Die meisten unreifen B-Zellen, die in der Milz ankommen, sind kurzlebig und benötigen Cytokine und positive Signale über den B-Zell-Rezeptor, um heranreifen und überleben zu können 385
- 7.28 B-1-Zellen und B-Zellen der Randzonen sind eigene B-Zell-Subtypen mit einer einzigartigen Spezifität des Antigenrezeptors 387
- 7.29 Die Homöostase der T-Zellen in der Peripherie wird durch Cytokine und Selbst-MHC-Wechselwirkungen reguliert 389 Zusammenfassung 390

Tumoren des Lymphsystems 391

- 7.30 B-Zell-Tumoren und ihre normalen Gegenstücke befinden sich oft an denselben Stellen 391
- 7.31 T-Zell-Tumoren entsprechen nur einer geringen Anzahl von T-Zell-Entwicklungsstadien 395
- 7.32 B-Zell-Lymphome tragen häufig Chromosomentranslokationen, die Immunglobulinloci mit Genen verknüpfen, die das Zellwachstum steuern 396 Zusammenfassung 397

Zusammenfassung von Kapitel 7 397 Literatur 401

Teil IV Die adaptive Immunantwort 406

Kapitel 8 Die T-Zell-vermittelte Immunität 407

Eintritt der naiven T-Zellen und der antigenpräsentierenden Zellen in die peripheren lymphatischen Organe 410

- 8.1 Naive T-Zellen wandern durch die peripheren lymphatischen Gewebe und überprüfen die Peptid:MHC-Komplexe auf der Oberfläche antigenpräsentierender Zellen 410
- 8.2 Lymphocyten können nur mithilfe von Chemokinen und Adhäsionsmolekülen in die lymphatischen Gewebe gelangen 411
- 8.3 Aufgrund der Aktivierung von Integrinen durch Chemokine können naive T-Zellen in die Lymphknoten gelangen 414
- 8.4 T-Zell-Antworten werden in den peripheren lymphatischen Organen durch aktivierte dendritische Zellen ausgelöst 418

- 8.5 Es gibt zwei verschiedene funktionelle Klassen von dendritischen Zellen 420
- 8.6 Dendritische Zellen prozessieren Antigene aus einem breiten Spektrum von Krankheitserregern 421
- 8.7 Durch Pathogene ausgelöste TLR-Signale führen bei dendritischen Zellen dazu, dass sie in die lymphatischen Organe wandern und die Prozessierung von Antigenen zunimmt 424
- 8.8 Plasmacytoide dendritische Zellen erkennen Virusinfektionen und produzieren große Mengen an Typ-I-Interferonen und entzündungsfördernden Cytokinen 427
- 8.9 Makrophagen sind Fresszellen und werden von Pathogenen dazu veranlasst, naiven T-Zellen Fremdantigene zu präsentieren 428
- 8.10 B-Zellen präsentieren Antigene sehr effektiv, die an ihre Oberflächenimmunglobuline binden 430 Zusammenfassung 432

Das Priming von naiven T-Zellen durch dendritische Zellen, die von Krankheitserregern aktiviert wurden 433

- 8.11 Adhäsionsmoleküle sorgen für die erste Wechselwirkung von T-Zellen mit antigenpräsentierenden Zellen 433
- 8.12 Antigenpräsentierende Zellen liefern drei Arten von Signalen für die klonale Vermehrung und Differenzierung von naiven T-Zellen 434
- 8.13 Die CD28-abhängige Costimulation von aktivierten T-Zellen induziert die Expression des T-Zell-Wachstumsfaktors Interleukin-2 und des hoch affinen IL-2-Rezeptors 435
- 8.14 Signal 2 kann durch zusätzliche costimulierende Signalwege verändert werden 436
- 8.15 Ohne Costimulation führt die Antigenerkennung zur funktionellen Inaktivierung oder klonalen Deletion 438
- 8.16 Proliferierende T-Zellen differenzieren sich zu T-Effektorzellen, die ohne Costimulation auskommen 440
- 8.17 T-Zellen differenzieren sich zu verschiedenen Subpopulationen mit funktionell unterschiedlichen Effektorzellen 441
- 8.18 CD8-T-Zellen können auf unterschiedliche Weise dazu gebracht werden, sich in cytotoxische Effektorzellen zu verwandeln 443
- 8.19 Die verschiedenen Formen von Signal 3 bewirken, dass sich naive CD4-T-Zellen entlang bestimmter Effektorwege differenzieren 444

Allgemeine Eigenschaften von T-Effektorzellen und ihren Cytokinen 450

- 8.21 Antigenunspezifische Zelladhäsionsmoleküle führen zu Wechselwirkungen zwischen T-Effektorzellen und Zielzellen 450
- 8.22 Die Bindung an den T-Zell-Rezeptor-Komplex steuert die Freisetzung von Effektormolekülen und Jenkt diese zur Zielzelle 451
- 8.23 Die Effektorfunktionen von T-Zellen hängen davon ab, welches Spektrum an Effektormolekülen sie hervorbringen 452
- 8.24 Cytokine können lokal, aber auch in größerer Entfernung wirken 453
- 8.25 Cytokine und ihre Rezeptoren bilden eigene Familien strukturell verwandter Proteine 456
- 8.26 Die TNF-Familie der Cytokine besteht aus trimeren Proteinen, die normalerweise mit der Zelloberfläche assoziiert sind 458 Zusammenfassung 458

Die T-Zell-vermittelte Cytotoxizität 459

- 8.27 Cytotoxische T-Zellen können bei Zielzellen einen programmierten Zelltod herbeiführen 460
- 8.28 In den Granula cytotoxischer CD8-T-Zellen befinden sich cytotoxische Effektorproteine, die eine Apoptose auslösen 461
- 8.29 Cytotoxische T-Zellen töten selektiv und nacheinander Zielzellen, die ein spezifisches Antigen exprimieren 463
- 8.30 Cytotoxische T-Zellen wirken auch, indem sie Cytokine ausschütten 464 Zusammenfassung 465

Die Aktivierung von Makrophagen durch T_H1-Zellen 465

- 8.31 T_H1-Zellen spielen eine zentrale Rolle bei der Makrophagenaktivierung 466
- 8.32 Die Aktivierung von Makrophagen durch T_H1-Zellen bewirkt, dass Bakterien abgetötet werden, und muss sehr präzise reguliert werden, um eine Schädigung des Wirtsgewebes zu vermeiden 467
- 8.33 T_H1-Zellen koordinieren die Reaktion des Wirts auf intrazelluläre Krankheitserreger 469 Zusammenfassung 471

Zusammenfassung von Kapitel 8 47 Literatur 473

Kapitel 9 Die humorale Immunantwort 479

Aktivierung von B-Zellen und Produktion von Antikörpern 481

- 9.1 Die humorale Immunantwort wird ausgelöst, wenn B-Zellen an Antigene binden und von T-Helferzellen oder nur von bestimmten mikrobiellen Antigenen ein Signal erhalten 481
- 9.2 B-Zell-Antworten auf Antigene werden durch die gleichzeitige Verknüpfung mit dem B-Zell-Corezeptor verstärkt 482
- 9.3 T-Helferzellen aktivieren B-Zellen, die dasselbe Antigen erkennen 483
- 9.4 An MHC-Klasse-II-Moleküle auf B-Zellen gebundene Antigenpeptide induzieren bei T-Helferzellen die Bildung membranständiger und sezernierter Moleküle, die B-Zellen aktivieren können 485
- 9.5 B-Zellen, die über ihren B-Zell-Rezeptor ein Antigen gebunden haben, werden in den T-Zell-Zonen der sekundären lymphatischen Gewebe festgehalten 487
- 9.6 Aktivierte B-Zellen differenzieren sich zu antikörpersezernierenden Plasmazellen 488
- 9.7 Die zweite Phase der primären B-Zell-Immunantwort beginnt damit, dass aktivierte B-Zellen zu den Follikeln wandern, dort proliferieren und Keimzentren bilden 490
- 9.8 Die B-Zellen des Keimzentrums durchlaufen eine somatische Hypermutation der V-Region, und Zellen werden selektiert, bei denen Mutationen die Affinität für ein Antigen verbessert haben 492
- 9.9 Für einen Isotypwechsel bei thymusabhängigen Antikörperreaktionen, der durch Cytokine gesteuert wird, muss der CD40-Ligand auf der T-Helferzelle exprimiert werden 495
- 9.10 Um die B-Zellen in den Keimzentren am Leben zu halten, muss die Bindung des B-Zell-Rezeptors und von CD40 an ihre Liganden mit einem direkten T-Zell-Kontakt einhergehen 497
- 9.11 Überlebende B-Zellen des Keimzentrums entwickeln sich entweder zu Plasma- oder zu Gedächtniszellen 499
- 9.12 B-Zell-Antworten gegen bakterielle Antigene, die B-Zellen aktivieren k\u00f6nnen, ben\u00f6tigen keine T-Zell-Unterst\u00fctzung 500
- 9.13 B-Zell-Antworten gegen bakterielle Polysaccharide erfordern keine peptidspezifische
 T-Zell-Unterstützung 501
 Zusammenfassung 503

Verteilung und Funktionen der Immunglobulinisotypen 504

- 9.14 Antikörper mit verschiedenen Isotypen wirken an unterschiedlichen Stellen und haben verschiedene Effektorfunktionen 505
- 9.15 Transportproteine, die an die Fc-Domäne der Antikörper binden, schleusen spezifische Isotypen durch Epithelien 507
- 9.16 Hoch affine IgG- und IgA-Antikörper können bakterielle Toxine neutralisieren 509
- 9.17 Hoch affine IgG- und IgA-Antikörper können die Infektiosität von Viren hemmen 511
- 9.18 Antikörper können die Anheftung von Bakterien an Wirtszellen verhindern 512
- 9.19 Antigen-Antikörper-Komplexe lösen durch Bindung an C1q den klassischen Weg der Komplementaktivierung aus 512
- 9.20 Komplementrezeptoren sind wichtig für das Entfernen von Immunkomplexen aus dem Kreislauf 514 Zusammenfassung 515

Die Zerstörung antikörperbeschichteter Krankheitserreger mithilfe von Fc-Rezeptoren 516

- 9.21 Die Fc-Rezeptoren akzessorischer Zellen sind spezifische Signalmoleküle für Immunglobuline verschiedener Isotypen 517
- 9.22 An die Oberfläche von Erregern gebundene Antikörper aktivieren Fc-Rezeptoren von Phagocyten, wodurch diese Pathogene aufnehmen und zerstören können 518
- 9.23 Fc-Rezeptoren regen NK-Zellen an, mit Antikörpern bedeckte Zielzellen zu zerstören 520
- 9.24 Mastzellen, Basophile und aktivierte Eosinophile binden über den hoch affinen Fce-Rezeptor an IgE-Antikörper 521
- 9.25 Die IgE-vermittelte Aktivierung akzessorischer Zellen spielt eine wichtige Rolle bei der Resistenz gegen Parasiteninfektionen 522 Zusammenfassung 524

Zusammenfassung von Kapitel 9 524 Literatur 526

Kapitel 10 Die Dynamik der adaptiven Immunantwort 531

Der zeitliche Verlauf der Immunreaktion bei einer Infektion 532

10.1 Eine Infektion durchläuft unterschiedliche Phasen 533

- 10.2 Die unspezifischen Reaktionen der angeborenen Immunabwehr sind erforderlich, um eine adaptive Immunantwort auszulösen 536
- 10.3 In den ersten Phasen einer Infektion gebildete Cytokine beeinflussen die Differenzierung von CD4-T-Zellen zur T_H17-Untergruppe 537
- 10.4 Cytokine, die in den späteren Phasen einer Infektion produziert werden, beeinflussen die Differenzierung der CD4-T-Zellen in T_H1- oder T_H2-Zellen 540
- 10.5 Die verschiedenen Untergruppen von T-Zellen können sich gegenseitig bei der Differenzierung regulieren 542
- 10.6 T-Effektorzellen werden durch Chemokine und neu exprimierte Adhäsionsmoleküle zu den Infektionsherden geleitet 546
- 10.7 Differenzierte T-Effektorzellen sind keine statische Population, sondern sie reagieren weiterhin auf Signale, w\u00e4hrend sie ihre Effektorfunktionen ausf\u00fchren 549
- 10.8 Primäre CD8-T-Zell-Reaktionen auf Krankheitserreger können auch ohne die Unterstützung durch CD4-Zellen stattfinden 550
- 10.9 CD4-T-Helferzellen bestimmen, welche Form die Antik\u00f6rperreaktionen in Lymphgeweben annehmen 552
- 10.10 In den Marksträngen der Lymphknoten und im Knochenmark laufen die Antikörperreaktionen weiter 554
- 10.11 Auf welche Weise eine Infektion beseitigt wird, hängt vom Krankheitserreger ab 555
- 10.12 Wird eine Infektion beseitigt, sterben die meisten Effektorzellen, und es entstehen Gedächtniszellen 557 Zusammenfassung 558

Das immunologische Gedächtnis 559

- 10.13 Nach einer Infektion oder Impfung bildet sich ein lang anhaltendes immunologisches Gedächtnis aus 559
- 10.14 Die Reaktionen von B-Gedächtniszellen unterscheiden sich auf verschiedene Weise von den Reaktionen der naiven B-Zellen 561
- 10.15 Wiederholte Immunisierungszyklen führen aufgrund von somatischen Hypermutationen und Selektion durch Antigene in Keimzentren zu einer erhöhten Antikörperaffinität 563
- 10.16 T-Gedächtniszellen sind zahlreicher im Vergleich zu naiven T-Zellen, die für dasselbe Antigen spezifisch sind, werden unter anderen Bedingungen aktiviert und besitzen andere Oberflächenproteine als T-Effektorzellen 564
- 10.17 T-Gedächtniszellen sind heterogen und umfassen Untergruppen aus zentralen Gedächtniszellen und Effektorgedächtniszellen 568

- 10.18 Für die CD8-T-Gedächtniszellen ist die Unterstützung durch CD4-T-Helferzellen erforderlich, außerdem spielen CD40- und IL-2-Signale eine Rolle 570
- 10.19 Bei immunen Individuen werden die sekundären und späteren Reaktionen vor allem von den Gedächtnislymphocyten hervorgerufen 571 Zusammenfassung 573

Zusammenfassung von Kapitel 10 574 Literatur 576

Kapitel 11 Das mucosale Immunsystem 581

Aufbau und Funktionsweise des mucosalen Immunsystems 581

- 11.1 Das mucosale Immunsystem schützt die inneren Oberflächen des Körpers 582
- 11.2 Das mucosale Immunsystem ist möglicherweise das ursprüngliche Immunsystem der Vertebraten 584
- 11.3 Das mucosaassoziierte lymphatische Gewebe liegt in anatomisch definierten Kompartimenten des Verdauungstraktes 585
- 11.4 Der Darm besitzt spezielle Wege und Mechanismen für die Aufnahme von Antigenen 588
- 11.5 Das Immunsystem der Schleimhäute enthält eine große Zahl von Effektorlymphocyten, selbst wenn keine Erkrankung vorliegt 590
- 11.6 Das Zirkulieren der Lymphocyten innerhalb des mucosalen Immunsystems wird durch gewebespezifische Adhäsionsmoleküle und Chemokinrezeptoren reguliert 591
- 11.7 Das Priming von Lymphocyten in einem mucosalen Gewebe kann an anderen mucosalen Oberflächen einen Immunschutz herbeiführen 593
- 11.8 Die sezernierten IgA-Antikörper bilden den Isotyp, der mit dem mucosalen Immunsystem verknüpft ist 594
- 11.9 Beim Menschen kommt es häufig zu einem
 IgA-Defekt, der sich jedoch durch sekretorische
 IgM-Antikörper ausgleichen lässt 596
- 11.10 Das mucosale Immunsystem enthält ungewöhnliche T-Lymphocyten 597Zusammenfassung 601

Die mucosale Reaktion auf eine Infektion und die Regulation der Immunantworten 602

11.11 Enterische Krankheitserreger verursachen eine lokale Entzündungsreaktion und führen zur Entwicklung eines Immunschutzes 602

- 11.12 Die Auswirkungen einer Infektion des Darms durch Krankheitserreger werden durch komplexe Wechselwirkungen zwischen dem Mikroorganismus und dem Immunsystem des Wirtes bestimmt 605
- 11.13 Das mucosale Immunsystem muss bei einer großen Anzahl von k\u00f6rperfremden Antigenen ein Gleichgewicht zwischen dem Immunschutz und der Hom\u00f6ostase aufrechterhalten 607
- 11.14 Der gesunde Darm enthält große Mengen an Bakterien, erzeugt aber keine produktive Immunität gegen sie 609
- 11.15 Vollständige Immunantworten gegen kommensale Bakterien führen zu Erkrankungen des Darms 613
- 11.16 Helminthen im Darm lösen starke T_H2-vermittelte Immunantworten aus 614
- 11.17 Andere eukaryotische Parasiten erzeugen im Darm einen Immunschutz und eine Erkrankung 617
- 11.18 Die dendritischen Zellen an den mucosalen Oberflächen unterstützen die Ausbildung einer Toleranz unter physiologischen Bedingungen und halten eine physiologische Entzündung aufrecht 617 Zusammenfassung 619

Zusammenfassung von Kapitel 11 620 Literatur 621

Teil V Das Immunsystem bei Gesundheit und Krankheit 626

Kapitel 12 Das Versagen der Immunantwort 627

Wie die Immunabwehr umgangen und unterwandert wird 628

- 2.1 Durch Antigenvariabilität können Krankheitserreger der Immunabwehr entkommen 628
- 12.2 Einige Viren persistieren *in vivo*, indem sie sich so lange nicht vermehren, bis die Immunität nach-
- 12.3 Einige Krankheitserreger entgehen der Zerstörung durch das Immunsystem des Wirts oder nutzen es für ihre eigenen Zwecke 633
- 12.4 Eine Immunsuppression oder unzureichende Immunantworten k\u00f6nnen dazu beitragen, dass sich Infektionen dauerhaft etablieren 635

- 12.5 Die Immunantwort kann direkt an der Pathogenese beteiligt sein 638
- 12.6 Regulatorische T-Zellen k\u00f6nnen die Folgen einer Infektionskrankheit beeinflussen 639
 Zusammenfassung 639

Immunschwächekrankheiten 640

- 12.7 Eine Krankengeschichte mit wiederholten Infektionen legt eine Immunschwäche als Diagnose nahe 640
- 12.8 Erbliche Immunschwächekrankheiten beruhen auf rezessiven Gendefekten 640
- 12.9 Die wichtigste Folge einer zu niedrigen Antikörperkonzentration ist die Unfähigkeit, extrazelluläre Bakterien zu beseitigen 643
- 12.10 Einige Antikörperschwächen können entweder auf B- oder auf T-Zell-Defekte zurückzuführen sein 646
- 12.11 Defekte im Komplementsystem schwächen die humorale Immunantwort 648
- 12.12 Defekte in Phagocyten ermöglichen ausgedehnte bakterielle Infektionen 649
- 12.13 Defekte in der T-Zell-Differenzierung k\u00f6nnen schwere kombinierte Immundefekte verursachen 652
- 12.14 Störungen bei der Umlagerung der Antigenrezeptorgene führen zu SCID 654
- 12.15 Defekte bei der Signalgebung durch Antigenrezeptoren können zu einer schweren Immunschwäche führen 655
- 12.16 Genetisch bedingte Defekte der Thymusfunktion, welche die Entwicklung der T-Zellen blockieren, führen zu schweren Immunschwächen 656
- 12.17 Die normalen Reaktionswege der Immunabwehr gegen intrazelluläre Bakterien lassen sich aufgrund von genetischen Defekten in IFN-y und IL-12 sowie deren Rezeptoren untersuchen 658
- 12.18 Das X-gekoppelte lymphoproliferative Syndrom geht mit einer tödlich verlaufenden Infektion durch das Epstein-Barr-Virus und der Entwicklung von Lymphomen einher 660
- 12.19 Genetisch bedingte Anomalien im sekretorischen Cytotoxizitätsweg der Lymphocyten verursachen bei Virusinfektionen eine unkontrollierte Vermehrung dieser Zellen und Entzündungsreaktionen 661
- 12.20 Durch Knochenmarktransplantation oder Gentherapie lassen sich Gendefekte beheben 662
- 12.21 Sekundäre Immunschwächen sind die bedeutendsten Prädispositionen für Infektionen mit Todesfolge 664
 Zusammenfassung 665

Das erworbene Immunschwächesyndrom (AIDS) 666

- 12.22 Die meisten HIV-Infizierten erkranken auf lange Sicht an AIDS 667
- 12.23 HIV ist ein Retrovirus, das CD4-T-Zellen, dendritische Zellen und Makrophagen infiziert 670
- 12.24 Die genetische Variabilität im Wirt kann die Geschwindigkeit des Krankheitsverlaufs verändern 672
- 12.25 Aufgrund eines genetischen Defekts im Corezeptor CCR5 kommt es in vivo zu einer Resistenz gegenüber einer HIV-Infektion 674
- 12.26 Eine Reverse Transkriptase des HIV schreibt die Virus-RNA in cDNA um, die in das Genom der Wirtszelle integriert wird 674
- 12.27 Die Replikation von HIV erfolgt nur in aktivierten T-Zellen 677
- 12.28 Das Lymphgewebe ist das Hauptreservoir einer HIV-Infektion 678
- 12.29 Eine Immunantwort hält HIV zwar unter Kontrolle, beseitigt es aber nicht 679
- 12.30 Die Zerstörung der Immunfunktion als Folge einer HIV-Infektion führt zu einer erhöhten Anfälligkeit gegenüber opportunistischen Infektionen und schließlich zum Tod 682
- 12.31 Medikamente, welche die HIV-Replikation blockieren, führen zu einer raschen Abnahme des Titers an infektiösen Viren und zu einer Zunahme der Anzahl der CD4-T-Zellen 682
- 12.32 Jeder HIV-Infizierte häuft im Verlauf der Infektion zahlreiche HIV-Mutationen an, und die Behandlung mit Medikamenten führt bald zur Entstehung von resistenten Varianten des Virus 685
- 12.33 Ein Impfstoff gegen HIV ist erstrebenswert, wirft aber auch viele Probleme auf 686
- 12.34 Vorbeugung und Aufklärung sind eine Möglichkeit, die Ausbreitung von HIV und AIDS einzudämmen 688 Zusammenfassung 689

Zusammenfassung von Kapitel 12 689 Literatur 690

Kapitel 13 Allergie und Hypersensitivität 699

Sensibilisierung und Produktion von IgE 701

- 13.1 Allergene gelangen häufig in geringen Dosen über die Schleimhäute in den Körper, also auf eine Weise, welche die Erzeugung von IgE begünstigt 702
- 13.2 Allergien werden oft durch Enzyme ausgelöst 702

- 13.3 Spezifische Signale begünstigen bei B-Lymphocyten den Isotypwechsel zu IgE 704
- 13.4 Sowohl genetische Faktoren als auch Umwelteinflüsse tragen zur Entwicklung von IgE-vermittelten Allergien bei 706
- 13.5 Regulatorische T-Zellen können allergische Reaktionen kontrollieren 711

Effektormechanismen bei allergischen Reaktionen 713

- 13.6 IgE ist größtenteils an Zellen gebunden und bewirkt Effektormechanismen des Immunsystems auf anderen Wegen als die übrigen Antikörperisotypen 714
- 13.7 Mastzellen sind in Geweben lokalisiert und maßgeblich an allergischen Reaktionen beteiligt 715
- 13.8 Eosinophile Zellen unterliegen normalerweise einer strengen Kontrolle zur Verhinderung unpassender toxischer Reaktionen 717
- 13.9 Eosinophile und basophile Zellen verursachen bei allergischen Reaktionen Entzündungen und Gewebeschäden 719
- 13.10 Eine allergische Reaktion kann man in eine Sofort- und in eine Spätreaktion einteilen 719
- 13.11 Abhängig vom Ort der Mastzellaktivierung kommt es zu unterschiedlichen klinischen Auswirkungen 721
- 13.12 Das Einatmen von Allergenen führt zu Rhinitis und Asthma 723
- 13.13 Hautallergien manifestieren sich als Urticaria (Nesselsucht) oder chronische Ekzeme 726
- 13.14 Nahrungsmittelallergien verursachen systemische Reaktionen sowie auf den Verdauungstrakt beschränkte Symptome 728
- 13.15 Zöliakie ist ein Modell für eine antigenspezifische Immunpathologie 729
- 13.16 Bei der Behandlung von Allergien versucht man, entweder die IgE-Produktion zu unterdrücken oder die Reaktionswege, die durch die Antigenvernetzung von zellgebundenem IgE aktiviert werden, zu blockieren 731 Zusammenfassung 735

Hypersensitivitätserkrankungen 735

- 13.17 Bei anfälligen Personen kann die Bindung harmloser Antigene an die Oberflächen zirkulierender Blutzellen Hypersensitivitätsreaktionen vom Typ II hervorrufen 735
- 13.18 Die Aufnahme großer Mengen von unzureichend metabolisierten Antigenen kann aufgrund der Bildung von Immunkomplexen zu systemischen Krankheiten führen 736

- 13.19 Hypersensitivitätsreaktionen vom verzögerten Typ werden durch T_H1-Zellen und cytotoxische CD8-T-Zellen vermittelt 738
- 13.20 Mutationen in den molekularen Entzündungsregulatoren können entzündliche Hypersensitivitätsreaktionen verursachen, die zu einer "autoinflammatorischen Krankheit" führen 742
- 13.21 Morbus Crohn ist eine relativ häufige inflammatorische Erkrankung mit einer komplexen Ätiologie 744
 Zusammenfassung 745

Zusammenfassung von Kapitel 13 746 Literatur 747

Kapitel 14 Autoimmunität und Transplantation 753

Das Entstehen und der Zusammenbruch der Selbst-Toleranz 754

- 14.1 Eine grundlegende Funktion des Immunsystems besteht darin, körpereigen und körperfremd zu unterscheiden 754
- 14.2 Vielfache Toleranzmechanismen verhindern normalerweise eine Autoimmunität 756
- 14.3 Die zentrale Deletion oder Inaktivierung von neu gebildeten Lymphocyten ist der erste Kontroll-punkt der Selbst-Toleranz 757
- 14.4 Lymphocyten, die k\u00f6rpereigene Antigene mit relativ geringer Affinit\u00e4t binden, ignorieren diese normalerweise, k\u00f6nnen aber unter bestimmten Bedingungen aktiviert werden 759
- 14.5 Antigene in immunologisch privilegierten Regionen induzieren zwar keine Immunreaktion, können jedoch zum Ziel eines Immunangriffs werden 761
- 14.6 Autoreaktive T-Zellen, die bestimmte Cytokine exprimieren, können nichtpathogen sein oder pathogene Lymphocyten unterdrücken 763
- 14.7 Autoimmunreraktionen k\u00f6nnen in verschiedenen Stadien durch regulatorische T-Zellen unter Kontrolle gebracht werden 763 Zusammenfassung 766

Autoimmunerkrankungen und pathogene Mechanismen 767

- 14.8 Spezifische adaptive Immunreaktionen gegen körpereigene Antigene können Autoimmunerkrankungen verursachen 768
- 14.9 Autoimmunerkrankungen lassen sich in Cluster von organspezifischen und systemischen Erkrankungen einteilen 769

- 14.10 Bei einer Autoimmunerkrankung werden im Allgemeinen mehrere Teilbereiche des Immunsystems mobilisiert 770
- 14.11 Eine chronische Autoimmunerkrankung entwickelt sich durch eine positive Rückkopplung aus der Entzündung, da das körpereigene Antigen nicht vollständig beseitigt wird und sich die Autoimmunreaktion ausweitet 774
- 14.12 Sowohl Antikörper als auch T-Effektorzellen können bei Autoimmunerkrankungen das Gewebe schädigen 776
- 14.13 Autoantikörper gegen Blutzellen fördern deren Zerstörung 778
- 14.14 Die Bindung von geringen, nichtlytischen Mengen des Komplements an Gewebezellen führt zu starken Entzündungsreaktionen 779
- 14.15 Autoantikörper gegen Rezeptoren verursachen Krankheiten, indem sie die Rezeptoren stimulieren oder blockieren 780
- 14.16 Autoantikörper gegen extrazelluläre Antigene verursachen entzündliche Schädigungen ähnlich wie die Hypersensitivitätsreaktionen vom Typ II und Typ III 782
- 14.17 T-Zellen mit einer Spezifität für körpereigene Antigene können unmittelbar Gewebeschädigungen hervorrufen und bewirken die Aufrechterhaltung von Autoantikörperreaktionen 783 Zusammenfassung 787

Die genetischen und umgebungsbedingten Ursachen der Autoimmunität 788

- 14.18 Autoimmunerkrankungen haben eine stark genetisch bedingte Komponente 788
- 14.19 Ein Defekt in einem einzigen Gen kann eine Autoimmunerkrankung auslösen 789
- 14.20 Mehrere Herangehensweisen haben Einsichten in die genetischen Grundlagen der Autoimmunität ermöglicht 790
- 14.21 Gene, die eine Prädisposition für Autoimmunität hervorrufen, gehören zu bestimmten Gengruppen, die einen oder mehrere Toleranzmechanismen beeinflussen 793
- 14.22 MHC-Gene sind bei der Kontrolle der Anfälligkeit für Autoimmunerkrankungen von großer Bedeutung 794
- 14.23 Äußere Faktoren können Autoimmunität auslösen 797
- 14.24 Eine Infektion kann zu einer Autoimmunerkrankung führen, indem dadurch Bedingungen geschaffen werden, welche die Lymphocytenaktivierung stimulieren 798

- 14.25 Kreuzreaktivität zwischen k\u00f6rperfremden Molek\u00fclen auf Pathogenen und k\u00f6rpereigenen Molek\u00fclen k\u00f6nnen zu Immunreaktionen gegen k\u00f6rpereigene Antigene und zu einer Autoimmunerkrankung f\u00fchren 799
- 14.26 Medikamente und Toxine können Autoimmunsyndrome hervorrufen 800
- 14.27 Beim Auslösen von Autoimmunität können zufällige Ereignisse ebenfalls von Bedeutung sein 801
 Zusammenfassung 801

Reaktionen auf Alloantigene und Transplantatabstoßung 802

- 14.28 Die Transplantatabstoßung ist eine immunologische Reaktion, die primär von T-Zellen vermittelt wird 803
- 14.29 Das Abstimmen des MHC-Typs zwischen Spender und Empfänger verbessert das Transplantationsergebnis 804
- 14.30 Bei MHC-identischen Transplantaten beruht die Abstoßung auf Peptiden von anderen Alloantigenen, die an die MHC-Moleküle des Transplantats gebunden sind 805
- 14.31 Alloantigene auf einem Transplantat werden den T-Lymphocyten des Empfängers auf zwei Arten präsentiert 806
- 14.32 Antikörper, die mit Endothelzellen reagieren, verursachen hyperakute Abstoßungsreaktionen 808
- 14.33 Entzündungsbedingte Gefäßschädigungen im transplantierten Organ führen zu einer chronischen Organabstoßung 810
- 14.34 Viele verschiedene Organe werden heute routinem\u00e4\u00dfig transplantiert 811
- 14.35 Die umgekehrte Abstoßungsreaktion nennt man graft versus host-Krankheit 811
- 14.36 An der alloreaktiven Immunantwort sind regulatorische T-Zellen beteiligt 814
- 14.37 Der Fetus ist ein allogenes Transplantat, welches das Immunsystem immer wieder toleriert 815
 Zusammenfassung 816

Zusammenfassung von Kapitel 14 817 Literatur 818

Kapitel 15 Die gezielte Beeinflussung der Immunantwort 825

Behandlungsmethoden zur Regulation unerwünschter Immunreaktionen 825

15.1 Corticosteroide sind hochwirksame entzündungshemmende Mittel, welche die Transkription vieler Gene verändern 827

- 15.2 Cytotoxische Medikamente führen zu einer Immunsuppression, indem sie Zellen während ihrer Teilung abtöten, und haben daher schwere Nebenwirkungen 828
- 15.3 Cyclosporin A, Tacrolimus (FK506) und Rapamycin (Sirolimus) sind wirksame Immunsuppressiva, die die Signalübertragung in T-Zellen stören 829
- 15.4 Immunsuppressiva eignen sich hervorragend für die Erforschung der intrazellulären Signalwege in Lymphocyten 831
- 15.5 Mit Antikörpern gegen Zelloberflächenantigene kann man bestimmte Subpopulationen von Lymphocyten beseitigen oder ihre Funktion hemmen 832
- 15.6 Man kann Antikörper so konstruieren, dass ihre Immunogenität für den Menschen herabgesetzt wird 833
- 15.7 Monoklonale Antikörper lassen sich möglicherweise einsetzen, um Transplantatabstoßungen zu verhindern 834
- 15.8 Biologische Moleküle eignen sich möglicherweise zur Linderung und zur Unterdrückung von Autoimmunerkrankungen 837
- 15.9 Die Eliminierung oder Hemmung von autoreaktiven Lymphocyten kann zur Behandlung von Autoimmunerkrankungen beitragen 840
- 15.10 Durch Störung der costimulierenden Signalwege für die Aktivierung der Lymphocyten lassen sich möglicherweise Autoimmunerkrankungen behandeln 841
- 15.11 Die Induktion von regulatorischen T-Zellen durch eine Antikörpertherapie kann eine Autoimmun- erkrankung hemmen 843
- 15.12 Eine Reihe von häufig angewendeten Medikamenten haben immunmodulierende Eigenschaften 844
- 15.13 Mit kontrollierten Antigengaben kann man die Art der antigenspezifischen Immunantwort beeinflussen 845 Zusammenfassung 846

Der Einsatz der Immunreaktion zur Tumorbekämpfung 848

- 15.14 Die Entwicklung von transplantierbaren Tumoren bei Mäusen führte zur Entdeckung, dass Mäuse eine schützende Immunantwort gegen Tumoren entwickeln können 849
- 15.15 Tumoren können der Abstoßung auf vielfältige Weise entgehen 849
- 15.16 T-Lymphocyten können spezifische Antigene von menschlichen Tumoren erkennen, und man

- testet die adoptive Übertragung von T-Zellen auf Krebspatienten 854
- 15.17 Durch monoklonale Antikörper gegen
 Tumorantigene allein oder an Toxine gekoppelt lässt sich das Tumorwachstum beeinflussen 859
- 15.18 Die Verstärkung der Immunantwort gegen Tumoren durch Impfung ist ein viel versprechender Ansatz in der Krebstherapie 862 Zusammenfassung 865

Die Bekämpfung von Infektionen durch Beeinflussung der Immunantwort 866

- 15.19 Ein wirksamer Impfstoff muss verschiedene Bedingungen erfüllen 868
- 15.20 Die Geschichte der Keuchhustenimpfung zeigt, wie wichtig es ist, dass ein wirksamer Impfstoff auch sicher ist 869
- 15.21 Erkenntnisse über das Zusammenwirken von T- und B-Zellen bei der Immunantwort führten zur Entwicklung von Konjugatimpfstoffen 871
- 15.22 Die Verwendung von Adjuvanzien ist ein weiteres wichtiges Verfahren, um die Immunogenität von Impfstoffen zu erhöhen 872
- 15.23 Virale attenuierte Lebendimpfstoffe sind wirksamer als Impfstoffe aus "toten" Viren, und sie können mithilfe der Gentechnik noch sicherer gemacht werden 874
- 15.24 Bakterielle attenuierte Lebendimpfstoffe lassen sich durch Selektion von nichtpathogenen Mutanten oder Mangelmutanten gewinnen 876
- 15.25 Synthetische Peptide aus schützenden Antigenen können einen Immunschutz hervorrufen 877
- 15.26 Der Art der Verabreichung einer Impfung ist für ihren Erfolg wichtig 879
- 15.27 Die Injektion von DNA, die mikrobielle Antigene und menschliche Cytokine codiert, in Muskelgewebe führt zu einer schützenden Immunität 880
- 15.28 Die Wirksamkeit eines Impfstoffes lässt sich erhöhen, indem man ihn gezielt auf Bereiche der Antigenpräsentation ausrichtet 881
- 15.29 Lassen sich Impfungen zur Bekämpfung etablierter chronischer Infektionen einsetzen? 882
- 15.30 Durch eine Modulation des Immunsystems lassen sich vielleicht pathologische Immunantworten gegen infektiöse Erreger hemmen 883 Zusammenfassung 884

Zusammenfassung von Kapitel 15 885 Literatur 886

Teil VI Die Ursprünge des Immunsystems 892

Kapitel 16 Die Evolution des Immunsystems 893

Die Evolution des angeborenen Immunsystems 894

- 16.1 Die Evolution des Immunsystems lässt sich untersuchen, indem man die Genexpression in verschiedenen Spezies vergleicht 894
- 16.2 Die ältesten immunologischen Abwehrmechanismen sind wahrscheinlich antimikrobielle Peptide 896
- 16.3 Das älteste Erkennungssystem für Pathogene sind möglicherweise Toll-ähnliche Rezeptoren 897
- 16.4 In einigen Wirbellosenarten erfolgte eine extensive Diversifikation von Genen für Toll-ähnliche Rezeptoren 900
- 16.5 Drosophila verfügt über ein zweites Erkennungssystem, homolog zum TNF-Rezeptor-Signalübertragungsweg in Säugetieren, das vor gramnegativen Bakterien schützt 901
- 16.6 Ein ursprüngliches Komplementsystem opsonisiert Pathogene, damit phagocytierende Zellen sie aufnehmen können 902
- Der Lektinweg der Komplementaktivierung entstand in Wirbellosen 904
 Zusammenfassung 904

Die Evolution der erworbenen Immunantwort 905

- 16.8 Einige Wirbellose produzieren ein ausgesprochen vielfältiges Repertoire an Immunglobulingenen 906
- 16.9 Agnathen verfügen über ein erworbenes Immunsystem, das somatische Genumlagerung zur Erzeugung von Rezeptordiversität aus LRR-Domänen einsetzt 908
- 16.10 Die erworbene Immunität, die auf einem vielfältigen Repertoire von immunglobulinartigen Genen basiert, trat plötzlich bei den Knorpelfischen auf 910
- 16.11 Das Ziel des Transposons war wahrscheinlich ein Gen, das einen Zelloberflächenrezeptor mit einer Domäne, ähnlich der variablen Domäne eines Immunglobulins, codierte 912
- 16.12 Unterschiedliche Spezies schaffen Immunglobulinvielfalt auf unterschiedliche Weise 913
- 16.13 Knorpelfische haben α:β- und γ:δ-Rezeptoren 914

16.14 Auch MHC-Klasse-I und -Klasse-II-Moleküle treten erstmals in Knorpelfischen auf 915 Zusammenfassung 916

Zusammenfassung von Kapitel 16 917 Literatur 918

Anhang 922

Anhang I Die Werkzeuge des Immunologen 923

Immunisierung 923

- A.1 Haptene 925
- A.2 Verabreichungsformen bei der Immunisierung 926
- A.3 Auswirkungen der Antigendosis 927
- A.4 Adjuvanzien 927

Nachweis, Messung und Charakterisierung von Antikörpern und ihre Verwendung in der Forschung und bei der Diagnose 929

- A.5 Affinitätschromatographie 930
- A.6 Radioimmunassay (RIA), enzymgekoppelter Immunadsorptionstest (ELISA) und kompetitiver Bindungstest 931
- A.7 Hämagglutination und Blutgruppenbestimmung 934
- A.8 Präzipitinreaktion 935
- A.9 Gleichgewichtsdialyse zur Messung der Affinität und Avidität von Antikörpern 936
- A.10 Anti-Immunglobulin-Antikörper 938
- A.11 Die Coombs-Tests und der Nachweis der Rhesus-Inkompatibilität 940
- A.12 Monoklonale Antikörper 941
- A.13 Phagen-Display-Bibliotheken für die Erzeugung von Antikörper-V-Regionen 943
- A.14 Immunfluoreszenzmikroskopie 944
- A.15 Immunelektronenmikroskopie 946
- A.16 Immunhistochemie 946
- A.17 Immun- und Coimmunpräzipitation 946
- A.18 Western-Blot (Immunblot) 948
- A.19 Verwendung von Antikörpern zur Isolierung und Identifizierung von Genen und deren Produkten 949

Isolierung von Lymphocyten 951

A.20 Isolierung von Lymphocyten aus dem peripheren Blut mithilfe eines Ficoll-Hypaque-Gradienten 951

XXVI Inhaltsverzeichnis

A.21	Isolierung von Lymphocyten aus anderen	A.38	Tuberk	culintest 971	
	Geweben 952	A.39	Tests a	ouf allergische Reaktionen 971	
A.22	Durchflusscytometrie und FACS-Analyse 952	A.40	Messung der Immunantwort und der immuno-		
A.23	Isolierung von Lymphocyten mithilfe von antikör-		logisch	en Kompetenz beim Menschen 972	
	perbeschichteten magnetischen Partikeln 955	A.41	Arthus	-Reaktion 974	
A.24	Isolierung von homogenen T-Zell-Linien 955				
		Gezie	Ite Bee	influssung des Immunsystems 97	
Charakterisierung der Spezifität, Anzahl und		A.42	Adoptive Übertragung von Lymphocyten 974		
Funktion von Lymphocyten 957			Übertragung von hämatopoetischen		
A.25	Limitierende Verdünnungskultur 958		Stammzellen 975		
A.26	ELISPOT-Test 959	A.44	Vernichtung der T-Zellen in vivo 975		
A.27	ldentifizierung funktioneller Subpopulationen der	A.45	Vernic	htung der B-Zellen <i>in vivo</i> 976	
	T-Zellen durch Cytokinfärbung 960	A.46	Transg	ene Mäuse 976	
A.28	Identifizierung der Spezifität von T-Zell-Rezeptoren	A.47	Gen-Kr	nockout durch gezielte Unter-	
	mithilfe von Peptid:MHC-Tetrameren 961		brechu	ing 977	
A.29	Bestimmung der Vielfalt des T-Zell-Repertoires				
	durch "Spektrumtypisierung" 962	Anha	ng II	g II Die CD-Antigene 983	
A.30	Biosensortests für die Bestimmung der Assozia-				
	tions- und Dissoziationsgeschwindigkeit zwischen	Anha	ng III	Cytokine und ihre	
	Antigenrezeptoren und ihren Liganden 964			Rezeptoren 1007	
A.31	Polyklonale Mitogene oder spezifische Anti-				
	gene können Lymphocyten zum Wachstum	Anha	ng IV	-	
	anregen 965			Rezeptoren 1013	
A.32	Messungen der Apoptose mit dem TUNEL-				
	Test 966	Anha	ng V	Immunologische	
A.33	Tests für cytotoxische T-Zellen 966			Konstanten 1017	
A.34	Tests für CD4-T-Zellen 967				
A.35	DNA-Microarrays 968	Biogr	afien	1019	
Nachweis der Immunität in vivo 970		Gloss	ar 10)21	
A.36	A.36 Bestimmung der schützenden Immunität 970				
A.37	Übertragung der schützenden Immunität 970	Index 1065			