Contents

About the Editors, xiii List of Contributors, xv Preface, xxvii Series Preface, xxix

1 History of the Study of Burnt Remains, 1

Douglas H. Ubelaker and Austin A. Shamlou

- 1.1 Early Developments Prior to 1980, 1
- 1.2 Post-1980 Advanced Experimentation and Casework, 3
- 1.3 The 1990s: New Methods and Case Applications, 4
- 1.4 Summary and Conclusions, 6 References, 7

Part 1 Search and Recovery of Burnt Human Remains from the Fire Scene

2 Fire Environments and Characteristic Burn Patterns of Human Remains from Four Common Types of Fatal Fire Scenes, 13

Elayne Pope

- 2.1 Introduction, 13
- 2.2 Experimental Research of Fire and Human Bodies, 14
- 2.3 How the Human Body Burns, 14
- 2.4 Variables of Fire Environments, 17
- 2.5 Structure Fires, 18
- 2.6 Burning Directly on the Floor, 19
- 2.7 The Body on Furnishings: Couches and Chairs, 19
- 2.8 The Body on Furnishings: Bed, 21
- 2.9 Loss of the Floor, 22
- 2.10 Collapse into a Lower Level, 23
- 2.11 Vehicle Fires, 24
- 2.12 Driver and Passenger Space, 25
- 2.13 Rear Passenger Space with Bench Seats, 26
- 2.14 Trunk Environment, 26
- 2.15 Confined Space Fires, 28
- 2.16 Outdoor Space Fires, 29
- 2.17 Ignitable Liquids on Bodies, 29
- 2.18 Burning Outdoor Debris Piles, 30

- 2.19 Post-Fire Fragmentation of Burnt Bones, 31
- 2.20 Suppression, 32
- 2.21 Recovery and Transport from Fatal Fire Scenes, 33
- 2.22 Conclusions, 35 References, 35

3 Recovery and Interpretation of Human Remains from Fatal Fire Scenes, 37

Alexandra R. Klales; Allison Nesbitt; Dennis C. Dirkmaat and Luis L. Cabo

- 3.1 Introduction, 37
- 3.2 Summary of Fires in the USA, 39
- 3.3 Statement of the Problem, 39
- 3.4 Current Fatal Fire Victim Recovery Protocols, 42
- 3.5 NIJ Protocols, 43
- 3.6 Special Circumstances, 51
- 3.7 Conclusions, 55 References, 55

4 Considerations to Maximize Recovery of Post-mortem Dental Information to Facilitate Identification of Severely Incinerated Human Remains, 59

John Berketa and Denice Higgins

- 4.1 Introduction, 59
- 4.2 Identification, 59
- 4.3 Documentation, 60
- 4.4 Preparation, 61
- 4.5 Prepacked Scene Equipment, 61
- 4.6 Scene Arrival, 63
- 4.7 Safety Issues, 63
- 4.8 Overall Scene Evaluation, 65
- 4.9 Considerations Regarding DNA Evidence, 66
- 4.10 Considerations Regarding Dental Evidence, 67
- 4.11 Moving the Victim, 69
- 4.12 Conclusions, 71 References, 71

References, 71

Part 2 Examination and Identification of Burnt Human Remains

5 Methods for Analyzing Burnt Human Remains, 75

Amanda N. Williams

- 5.1 Anthropological Methods for Classifying Burnt Remains, 76
- 5.2 Medicolegal Classification Methods, 78
- 5.3 Need for New Model within the Forensic Sciences, 79
- 5.4 A New Classification System, 80
- 5.5 Best Practices in Applying this New Model, 83
- 5.6 Case Study #1, 83

- 5.7 Case Study #2, 86
- 5.8 Case Study #3, 88
- 5.9 Case Study #4, 90
- 5.10 Case Study #5, 92
- 5.11 Broader Implications, 95
- 5.12 Conclusions, 95 Acknowledgments, 96 References, 96

6 Burnt Human Remains and Forensic Medicine, 99

Sarah Ellingham; Joe Adserias-Garriga and Peter Ellis

- 6.1 Fire Death Statistics, 99
- 6.2 Statistics of Manner of Fire-Related Deaths, 100
 - 6.2.1 Prevalence of Self-Immolation, 100
 - 6.2.2 Prevalence of Criminal Immolation, 101
- 6.3 Fire Damage to the Body, 102
- 6.4 Classification of the Degree of Fire Damage, 103
- 6.5 Medicolegal Determination of Cause of Death, 105
- 6.6 Medicolegal Determination of Manner of Death, 106
- 6.7 The Use of Post-Mortem Imaging for the Analysis of Burn Victims, 108
- 6.8 Conclusion, 110
 Acknowledgments, 110
 References, 110

7 Skeletal Alteration of Burnt Remains through Fire Exposure, 113

Joe Adserias-Garriga

- 7.1 Assessment of the Severity of the Thermal Damage in the Forensic Context, 114
- 7.2 Soft Tissue Alterations by Fire Exposure, 115
- 7.3 Bone Alteration by Fire Exposure, 116
- 7.4 Teeth Alteration by Fire Exposure, 120
- 7.5 Signature Changes in Skeletal Elements after Cremation, 122
- 7.6 Conclusions, 129 References, 130

8 Challenges of Biological Profile Estimation from Burnt Remains, 133

Tim J.U. Thompson

- 8.1 Why Does Burning Affect Methods of Identification?, 134
- 8.2 How Does the Context of Burning Impede the Creation of Biological Profiles?, 135
- 8.3 Challenges of Biological Profile Estimation of Burnt Remains, 137
 - 8.3.1 Morphological Methods, 137
 - 8.3.2 Metric Methods, 139
 - 8.3.3 Other Approaches to Biological Profile Estimation, 140
- 8.4 Conclusions, 142 References, 142

9 Victim Identification: The Role of Incinerated Dental Materials, 147

Peter J. Bush; Mary A. Bush and Raymond Miller

- 9.1 Introduction, 147
- 9.2 Microstructural Changes in Teeth after Incineration, 148
- 9.3 Structural Changes Due to Restorative Procedures, 149
- 9.4 Case Reports, 151
 - 9.4.1 Case Report 1: Airline Crash, 151
 - 9.4.2 Case Report 2: Double Homicide, 161
- 9.5 Conclusions, 165 References, 166

10 Techniques for the Differentiation of Blunt Force, Sharp Force, and Gunshot Traumas from Heat Fractures in Burnt Remains, 167

Hanna Friedlander; Megan Moore and Pamela Mayne Correia

- 10.1 Introduction, 167
- 10.2 Bone Fracture Biomechanics: Fresh Bone, 168
- 10.3 Bone Fracture Biomechanics: Stages of Thermal Damage, 170
- 10.4 Heat Fractures, 171
- 10.5 Blunt Force Trauma in Burnt Remains, 172
- 10.6 Sharp Force Trauma in Burnt Remains, 175
- 10.7 Gunshot Trauma in Burnt Remains, 177
- 10.8 Case Study: 3D Modelling of Traumatic and Heat Fractures in Cranial and Irregular Bone, 179
- 10.9 Discussion, 182
- 10.10 Conclusions, 184

Acknowledgments, 185

Permissions, 185

References, 185

Part 3 Analytical Approaches to the Analysis of Burnt Bone

11 Biochemical Alterations of Bone Subjected to Fire, 193

Sarah Ellingham and Sara C. Zapico

- 11.1 The Biological and Chemical Makeup of Fresh Bone, 193
 - 11.1.1 Introduction, 193
- 11.2 Bone Transformation When Subjected to Heat, 195
- 11.3 Analytical Approaches to Observing Bone Transformation, 196
 - 11.3.1 Colorimetry, 196
 - 11.3.2 SEM-EDX, 196
 - 11.3.3 Fourier Transform Infrared-Spectroscopy, 198
 - 11.3.4 Raman Spectroscopy, 200
 - 11.3.5 X-Ray Diffraction, 201
 - 11.3.6 Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), 202
 - 11.3.7 Amino Acid Racemization, 202

- 11.4 DNA, 204
- 11.5 Changes to the Bone at Different Temperatures, 205
 - 11.5.1 100°C Exposure, 205
 - 11.5.2 200°C Exposure, 206
 - 11.5.3 300°C Exposure, 206
 - 11.5.4 400°C Exposure, 207
 - 11.5.5 500°C Exposure, 207
 - 11.5.6 600°C Exposure, 207
 - 11.5.7 700°C Exposure, 207
 - 11.5.8 800°C Exposure, 208
 - 11.5.9 900°C Exposure, 208
 - 11.5.10 1000°C Exposure, 208
- 11.6 Conclusion, 208

Acknowledgment, 209

References, 209

12 DNA Profiling from Burnt Remains, 213

Sara C. Zapico and Rebecca Stone-Gordon

- 12.1 Introduction, 213
- 12.2 Research Studies on Burnt Remains, 214
- 12.3 Forensic Cases, 218
- 12.4 Alternative Approaches and New Technologies, 221
 - 12.4.1 Assessment of DNA Damage, 221
 - 12.4.2 Alternatives for DNA Extraction, 222
 - 12.4.3 New Technologies, 223
- 12.5 Conclusions, 225

References, 226

13 Applying Colorimetry to the Study of Low Temperature Thermal Changes in Bone, 229

Christopher W. Schmidt and Alexandria McDaniel

- 13.1 Introduction, 229
- 13.2 Colorimetry, 230
- 13.3 Challenges of Colorimetry, 232
- 13.4 Case Study, 233
- 13.5 Conclusion, 236

References, 236

14 The Use of Histology to Distinguish Animal from Human Burnt Bone with Reference to Some Limitations, 241

Pamela Mayne Correia; Kalyna Horocholyn and Kassandra Pointer

- 14.1 Introduction, 241
- 14.2 Bone Tissue, 242
 - 14.2.1 Primary Bone Tissue, 243
 - 14.2.2 Secondary Bone, 252
- 14.3 Vertebrate Histology, 254

- 14.4 Burnt Bone Histology, 256
- 14.5 Case Study for Comparison of Histology of Cremated Bone, 25914.5.1 Qualitative and Quantitative Analysis for Case Study, 259
- 14.6 Discussion, 264
- 14.7 Conclusion, 266

References, 267

15 Isotope Analysis from Cremated Remains, 273

Christophe Snoeck

- 15.1 Introduction, 273
- 15.2 Infrared Analyses, 274
- 15.3 Radiocarbon Dating, 276
- 15.4 Isotope Analyses, 277
 - 15.4.1 Carbon and Oxygen Isotope Ratios, 277
 - 15.4.2 Strontium Isotope Ratios and Concentrations, 281
- 15.5 Archaeological Case Studies, 282
 - 15.5.1 Stonehenge, 282
 - 15.5.2 Meuse Basin, Belgium and the Netherlands, 283
- 15.6 Conclusions, 285

Acknowledgments, 285

References, 285

16 The Application of Imaging to Heat-Induced Bone, 291

Rachael M. Carew and David Errickson

- 16.1 Introduction, 291
- 16.2 Technological Progression, 292
- 16.3 The Current Technology, 294
 - 16.3.1 Two-Dimensional Imaging, 294
 - 16.3.2 Three-Dimensional Imaging, 295
- 16.4 The Application of Imaging to Heat-Induced and Burnt Bodies, 299
 - 16.4.1 Locating and Identifying Burnt Bone, 299
 - 16.4.2 Visual Capture and Documentation for Recording and Archiving, 300
 - 16.4.3 Quantifying and Analyzing Burnt Remains, 301
 - 16.4.4 Reconstruction, 302
 - 16.4.5 Ethical and Legal Considerations within the Forensic Context, 305
- 16.5 Discussion and Conclusion, 306References, 308

17 The First Reference Collection for the Research of Burnt Human Skeletal Remains Stemming from the 21st Century Identified Skeletal Collection (Portugal), 313

David Gonçalves; Calil Makhoul; Maria Teresa Ferreira and Eugénia Cunha 17.1 Introduction, 313

17.1.1 The Challenge Posed by Burnt Skeletal Remains, 313

- 17.1.2 Changing the Paradigm, 315
- 17.1.3 The 21st Century Identified Skeletal Collection, 320
- 17.1.4 Preparing the Skeletons, 321
- 17.1.5 Composition of the Collection, 323
- 17.2 Research Potential, 324
- 17.3 Final Comments, 327

Acknowledgments, 328

References, 328

Part 4 Case Studies

18 Analysis of Burnt Human Remains: Statistical Perspectives from Casework in Forensic Anthropology, 337

Douglas H. Ubelaker; Cassandra M. DeGaglia and Haley Khosrowshahi

- 18.1 Introduction, 337
- 18.2 Materials and Methods, 337
- 18.3 Results, 339
- 18.4 Discussion, 342
- 18.5 Conclusions, 344 Literature Cited, 344

19 The Challenge of Burnt Remains from the Brazilian "Microwave Oven", 345

Melina Calmon Silva; Eugénia Cunha and Yara Vieira Lemos

- 19.1 Introduction, 345
- 19.2 Brazilian Homicide Rates, 346
- 19.3 The Relationship between Homicide and Drugs, 347
- 19.4 The "Microwave Oven" Modality of Death / Disposability of Human Remains, 348
- 19.4 Phases of Rubber Tire Combustion, 350
- 19.5 The Challenges of Investigating "Microwave Oven" Deaths, 351
- 19.6 The Role of Forensic Anthropology, 353

19.6.1 Case Study 1, 354

19.6.2 Case Study 2, 359

19.7 Conclusion, 365

Conflicts of Interest, 366

Ethical Approval, 366

Acknowledgments, 366

References, 367

20 Recovery and Identification of Fatal Fire Victims from the 2018 Northern California Camp Fire Disaster, 371

Colleen Milligan; Alison Galloway; Ashley Kendell; Lauren Zephro; P. Willey and Eric Bartelink

20.1 Overview of the Camp Fire, 371

- 20.2 Wildfire Burn Environments and Condition of Remains, 374
- 20.3 Field to Morgue: What's Important for Identification Efforts?, 375
- 20.4 Morgue Identification, 379
- 20.5 Conclusions, 381 References, 381

21 Recovery and Identification of Burnt Remains in a Military Theatre of Operations: The Warrior Six, 383

Julie Roberts

- 21.1 Introduction, 383
 - 21.1.1 Improvised Explosive Devices and Blast Injuries, 384
 - 21.1.2 The Effects of Heat on Bone, 384
- 21.2 Background to the Case, 385
- 21.3 Assessment of the Vehicle and Recovered Remains, 387
- 21.4 Excavation Strategy and Methodology, 390
- 21.5 Examination of the Remains in the Temporary Mortuary, 394
- 21.6 Examinations in the Role 3 Hospital, 398
 - 21.6.1 Soldier A, 398
 - 21.6.2 Soldier B, 398
 - 21.6.3 Soldier C, 399
 - 21.6.4 Soldier D, 399
 - 21.6.5 Soldier E, 400
 - 21.6.6 Soldier F, 400
- 21.7 Post-mortem Examinations and Positive Identification in the UK, 401
- 21.8 Conclusions, 403

Acknowledgments, 403

References, 403

22 Volcanoes, Bones, and Heat: The Case of the AD 79 Victims of Vesuvius, 407

Pier paolo Petrone

- 22.1 Introduction, 407
- 22.2 The AD 79 Eruption of Vesuvius, 408
- 22.3 The Date of the Eruption, 410
- 22.4 Historical and Archaeological Context of the Discovery, 411
- 22.5 Bioarchaeological and Taphonomic Study, 413
- 22.6 The Causes of Death, 418
- 22.7 The Most Recent Studies, 420
- 22.8 An Exceptional Discovery, 427
- 22.9 Conclusions, 430 References, 431

Index, 437