1 Theoretische Grundlagen

1.1 Quantitative-Struktur-Wirkungs-Beziehungen

In der modernen Arzneistoffentwicklung werden u.a. computergestiitzte Verfahren fiir
das Wirkstoffdesign verwendet. Diese Verfahren werden auch als In-Silico-Techniken
bezeichnet. Hierzu gehort auch die Analyse von quantitativen Struktur-Aktivitats-
Beziehungen (engl.: Quantitative-Structure-Activity Relationships (QSAR)). QSAR Analy-
sen haben das Ziel entweder die biologische Aktivitat einer Substanz selbst oder be-
stimmte Faktoren, die die Aktivitdt bestimmen, vorherzusagen [1]. Hierbei wird die
Struktur-Aktivitats-Beziehung mit Hilfe einer mathematischen Funktion ausgedruckt.
Wenn eine solche Analyse durchgefiihrt werden soll, werden zunéachst die biologischen
Aktivitaten von verwandten Molekilen sowie deren chemische Struktur benétigt. Damit
die chemische Struktur der Analyse zuganglich gemacht werden kann, werden De-
skriptoren berechnet (siehe 2.2). Danach wird der funktionelle Zusammenhang zwi-

schen den Molektildeskriptoren und der biologischen Aktivitat modelliert.

Die QSAR Analyse nahm vermutlich ihre Anfange mit der Publikation zweier schotti-
scher Pharmakologen (Crum-Brown und Fraser), welche 1868 zu der Erkenntnis kamen,
dass die physiologische Aktivitit ¢ einer Substanz eine Funktion ihrer chemischen Kon-

stitution C sei.

¢ = f(0)

Im Jahre 1964 kniipften Hansch und Fujita [2] sowie Free und Wilson [3] an diese Idee
an, indem sie die biologische Aktivitat und die physikalisch-chemischen, sowie struktu-
rellen Eigenschaften von Molekiilen korrelierten. Heutzutage ist die QSAR Analyse eine
gut etablierte Methode, welche vielfaltig angewendet wird, nicht nur zur Vorhersage der
biologischen Aktivitdt, sondern auch zur Vorhersage anderer Molekiileigenschaften im
Rahmen quantitativer Struktur-Eigenschafts-Beziehungen (engl.: Quantitative Structure-
Property Relationships (QSPR)). Durch die Moglichkeit Eigenschaften von noch nicht
vorhandenen Molekiilen vorherzusagen, lasst sich gegebenenfalls der zeit- und kosten-
intensive Syntheseaufwand reduzieren bzw. effizienter in eine bestimmte Richtung len-

ken (Leitstrukturoptimierung) [4, 5,6].
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1.2 Molekiildeskriptoren

1.2.1 Einleitung

Die Analyse der strukturellen Information von Molekiilen ist mit der Hilfe von Molekiil-
deskriptoren moglich. Hierbei handelt es sich um eine numerische Reprasentation des
Molekiils. Deskriptoren konnen einerseits das Ergebnis standardisierter Experimente
umfassen, zum Beispiel physikochemische Eigenschaften reprasentieren oder sie sind
das Ergebnis eines standardisierten Algorithmus. Es gibt folglich sehr viele unterschied-
liche Molekiildeskriptoren, die fiir verschiedene Anwendungsgebiete mehr oder weniger
gut geeignet sind. Eine sehr ausfiihrliche und umfassende Ubersicht wurde von Tode-

schini verfasst [7].

Molekiildeskriptoren lassen sich nach ihrer Dimensionalitat in unterschiedliche Klassen
einteilen. 1D-Deskriptoren konnen beispielsweise einfache Eigenschaften wie das Mole-
kulargewicht oder aber auch die Anzahl bestimmter Atome oder Bindungen kodieren.
Die popularsten Deskriptoren sind die 2D-Deskriptoren und die 3D-Deskriptoren, wel-
che zusatzlich die Topologie bzw. die Konformation des Molekiils mit einbeziehen. Dar-

tiber hinaus gibt es auch 4D- und héher dimensionale Deskriptoren [5].
1.2.2 Fingerabdruck-Deskriptoren (engl.: Fingerprints)

Die 2D-Fingerabdruck-Deskriptoren gehoren zu den am weitesten verbreiteten De-
skriptoren. Es sind Vektoren [8, 3, 9-11], welche ein Molekiil beziiglich der An- oder
Abwesenheit und/oder der Frequenz bestimmter Substrukturen charakterisieren. So
kann beispielsweise die Anwesenheit einer Hydroxylgruppe mit 1 fiir anwesend oder 0

fiir abwesend gekennzeichnet werden (Abbildung 1).

Molekiil R

!

Vektor ..00100010010111

Abbildung 1: Ausschnitt der Erzeugung eines Vektors. Dieser Vektor wird auch als molekularer Fingerab-
druck bezeichnet. Die chemischen Eigenschaften des Molekiils werden numerisch reprasentiert, in diesem
Beispiel wird die Anwesenheit der Hydroxylgruppe durch eine 1 im Vektor gekennzeichnet.
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1.2.3 Topologische Deskriptoren

Die topologischen Deskriptoren gehdren ebenfalls zu den 2D-Deskriptoren. Sie sind weit
verbreitet und werden vielfaltig angewendet. Topologische Deskriptoren kodieren che-
mische Verkniipfungsinformationen von Molekiilen. Diese Verkniipfungsinformationen,
wie zum Beispiel die Verkniipfungsart (auch Konnektivitat genannt) oder die Grofie ei-

nes Rings, lassen sich aus der Strukturformel ableiten [12, 7, 13, 14].

Da 2D-Deskriptoren keine Informationen tliber die genaue rdaumliche Anordnung der
Molekiile (die sog. Konformation) bendtigen, sind sie oftmals beliebter als 3D-
Deskriptoren. In vielen Fallen ist die Konformation der aktiven Verbindung unbekannt
und somit ist eine Vielzahl an vorbereitenden und z.T. rechenintensiven Schritten not-

wendig, bevor mit diesen 3D-Deskriptoren gearbeitet werden kann [4].

1.3 Einfithrung in die Multivariate Datenanalyse
1.3.1 Einleitung

Im letzten Kapitel (1.2) wurde die Funktion von Deskriptoren beschrieben. Hierauf wird
nun aufgebaut. Es wird beispielhaft angenommen, dass die Bioaktivitat von verschiede-
nen Molekiilen an einer bestimmten Zielstruktur gemessen wurde und zu jedem Mole-
kil jeweils Deskriptoren berechnet wurden. Nun wird die Frage gestellt, wodurch die
Bioaktivitat beeinflusst wird und ob diese gegebenenfalls modelliert werden kann, um
die Bioaktivitat fiir ein unbekanntes Molekiil vorhersagen zu kénnen. Es gibt verschie-
dene Parameter von denen die Bioaktivitit abhdngen kann, beispielsweise die Mole-
kiilgrofde oder die An- oder Abwesenheit bestimmter funktioneller Gruppen (alle Spal-
teneintrage des Deskriptors). In diesem Beispiel wird die Bioaktivitat als abhangige oder
beobachtete Variable y bezeichnet und die Spaltennamen des Deskriptors als unabhan-
gige Variable x oder unabhidngige Variablen X. Fiir p verschiedene unabhiangige Variab-

len gilt: X = (xq, X3 ... x,). Wenn nun angenommen wird, dass y und X voneinander ab-

hangen, kann dies folgendermafden ausgedriickt werden:

y=fX)+ e.
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Bei f handelt es sich um eine unbekannte Funktion von X, bei e um einen zufélligen Feh-
lerterm. Dieser Fehlerterm ist unabhingig von X und hat einen Mittelwert von Null. Die
Funktion f kann auch mehr als nur einen Parameter miteinbeziehen. Das Ziel ist es f zu
schatzen. In dieser Arbeit werden Vektoren mit einem kleinen, fetten, kursiven Buchsta-
ben, Matrizen mit einem grofden, kursiven Buchstaben und Skalare mit einem kleinen,

kursiven Buchstaben gekennzeichnet.

Wenn beispielsweise nur X bekannt ist und y unbekannt ist und die Annahmen fiir den

Fehlerterm (zufallig, unabhangig von X, Mittelwert ist Null) zutreffen, kann y durch:
y=100

vorhergesagt werden. f reprisentiert die Schatzfunktion fiir £ und 9 reprisentiert die
Vorhersage fiir y. Die Richtigkeit der Vorhersage von y hangt wesentlich von zwei Gro-
3en ab. Diese werden als reduzierbarer Fehler und nicht-reduzierbarer Fehler bezeich-
net. Im Allgemeinen wird f keine perfekte Schitzfunktion fiir f sein. Dieser Fehler ist
reduzierbar, weil die Richtigkeit von f potentiell durch unterschiedliche Techniken ver-
bessert werden kann. Aber auch wenn f perfekt geschatzt werden wiirde, waren noch
nicht alle Fehler beseitigt. Deshalb ist y auch eine Funktion von e, welche per Definition
nicht durch X vorhergesagt werden kann. Variabilitat assoziiert mit e beeintrachtigt die
Prazision der Vorhersage. Dieser Fehler wird auch nicht-reduzierbarer Fehler genannt.
Die Grofde e kann auch unbestimmte oder ungemessene, abhangige Variablen enthalten,
welche niitzlich waren um y zu bestimmen. Wiirden diese bekannt oder messbar sein,

konnte der Fehler reduziert werden [15, 16].
E(y=9)* = E[f(X) +e—f(X)]?
= [fO) - fXO)F  + Var(e)
reduzierbar nicht-reduzierbar

Der nicht-reduzierbare Fehler wird immer eine obere Grenze fur die Prazision von Vor-

hersagen vorgeben, welche in der Praxis fast immer unbekannt ist.

Es ist allerdings nicht immer das Ziel Vorhersagen fiir y zu tatigen, in manchen Fallen

soll auch die Beziehung zwischen X und y untersucht werden, um zu verstehen, wie sich

4

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den personlichen Gebrauch.



Theoretische Grundlagen

y als Funktion von x¢, x5 ...x,, verdndert. Es kann beispielsweise auch von Interesse

p

sein lediglich einige wichtige Variablen zu identifizieren.

An dieser Stelle stellt sich natiirlich die Frage, wie die unbekannte Funktion f geschatzt
werden kann. Hierflr gibt es unterschiedliche lineare und nicht-lineare Ansatze. Gene-
rell haben diese Methoden bestimmte Charakteristiken, nach welchen sie unterschieden
werden. Die meisten Methoden lassen sich entweder in die Gruppe der parametrischen

oder in die Gruppe der nicht-parametrischen Methoden einteilen [15, 16].
1.3.2 Datenvorbehandlung

Haufig sind unterschiedliche Variablen nicht miteinander vergleichbar, da sie auf ver-
schiedenen Skalen gemessen wurden. Mathematische Funktionen kénnen aber sensibel

fiir solche Unterschiede sein und diese mit modellieren.

Die Datenmatrix der unabhangigen Variablen X wird als zentriert bezeichnet, wenn von
jedem Variablenvektor x der Mittelwert berechnet wird und der Mittelwertvektor
schliefdlich von der Rohmatrix subtrahiert wird. Folglich wird von jedem Element von X

sein entsprechender Spaltenmittelwert abgezogen.

Die Datenmatrix X wird als autoskaliert bezeichnet, wenn von jedem Variablenvektor x
die Standardabweichung berechnet wird und jede Variable der zentrierten Matrix durch
die zugehorige Standardabweichung geteilt wird. Wenn anstelle der zentrierten Matrix

die Rohmatrix verwendet wird, so wird die Datenmatrix als skaliert bezeichnet.

Wenn die Datenmatrix sowohl zentriert als auch skaliert wurde, wird sie als autoskaliert

oder z-transformiert bezeichnet.
1.3.3 Parametrische Methoden

Bei den parametrischen Methoden wird als erstes eine Annahme tiiber die Gestalt von

f gemacht. Beispielsweise ware eine einfache Annahme, dass f linear in X ist.
f(X) = bo + b1x1 + bzXz + -+ bpxp

Das Schatzproblem wurde durch die Annahme vereinfacht und somit miissen nur die

Koeffizienten (auch Parameter genannt) p + 1: by, by, b, ... b, geschitzt werden. Nun
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werden Trainingsdaten/Molekiile benotigt um das Modell zu trainieren. Es miissen

by, by ... b, geschitzt werden, wobei Werte gefunden werden sollen, sodass:
Yy =~ by + bixq + byxy + -+ by X,

Die gelaufigste Methode um das Modell anzupassen wird als “Methode der kleinsten
Quadrate” bezeichnet. Dieser Ansatz reduziert das Problem f zu schatzen darauf eine
Reihe von Parametern zu schatzen. Die moglichen Nachteile sind, dass das Modell wel-
ches gewahlt wird, normalerweise nicht das wahre f sein wird und je weiter es davon
entfernt liegt, desto diirftiger wird die Schatzung. Eine Losung hierfiir ware es flexiblere
Modelle zu wahlen, welche sich verschiedenen, moglichen Formen von f anpassen kon-
nen, allerdings missten hierfiir mehr Parameter geschitzt werden. Ein komplexeres
Modell neigt leichter zu einer ,,Uberanpassung“. Dieses Phdnomen wird spater noch

einmal detaillierter betrachtet [15, 16].
1.3.4 Nichtparametrische Methoden

Nichtparametrische Methoden machen keine ausdriicklichen Annahmen tiber die Form
von f. Stattdessen streben sie eine Schatzung von f an, welche die Abweichung der
Schatzwerte und der Trainingsdaten minimiert. Dieser Ansatz hat einen groféen Vorteil
gegeniiber den parametrischen Methoden. Dadurch, dass Annahmen iiber die Form von
f vermieden werden, kdnnen nichtparametrische Methoden, durch eine grofiere Spanne
an moglichen Formen, potentiell eine genauere Anpassung an f ermoglichen. Ein grofder
Nachteil jedoch ist, dass, solange das Problem f zu schatzen nicht auf eine kleine Anzahl
Parameter reduziert werden kann, eine grofiere Anzahl an Daten/Molekiilen benotigt

wird um f genau zu schatzen [15, 16].
1.3.5 Das Dilemma zwischen Vorhersagegenauigkeit und Interpretierbarkeit

Allgemein lasst sich sagen, dass bei Erhohung der Flexibilitdt eines Modells, sich die In-
terpretierbarkeit erniedrigt. In einigen Fallen wiirde ein unflexibles Modell bevorzugt
werden. Wenn beispielsweise Interesse am Zusammenhang zwischen y und X besteht,
ist es vorteilhafter ein leicht zu interpretierendes Modell (z.B. lineares Modell mit wenig
Parametern) vorliegen zu haben. Im Gegensatz dazu waren flexible Ansiatze weniger
geeignet, da in diesem Fall Zusammenhédnge mit einzelnen Variablen und y nur schwer

zu erkennen sind. Auch wenn ausschliefdlich Interesse an der Vorhersage besteht, ware
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es trotzdem nicht immer sinnvoll die flexibelste Methode zu wahlen aufgrund der Prob-

lematik der Uberanpassung [15, 16].

1.4 Regression
1.4.1 Einfache Lineare Regression

Die Einfache Lineare Regression modelliert die abhdngige Variable y mit nur einer ein-
zigen unabhangigen Variablen x. Hierbei wird angenommen, dass ein linearer Zusam-

menhang zwischen x und y besteht.
y=by+bix+e

Bei byund b;handelt es sich um die Koeffizienten und bei e handelt es sich um den Ge-
samtfehler des Modells. Nun wird ein Teil der Molekiile des Datensatzes, die sogenannte
Trainingsdatenpartition, benutzt um die Koeffizienten b zu schitzen. Danach kann eine

Vorhersage fiir ein zukiinftiges ungesehenes Molekiil x, gemacht werden.

—

Yo = bg + byx,

Das Ziel ist es, die Koeffizienten so zu schatzen, dass die resultierende Gerade moglichst
nah an den vorhandenen Punkten verlauft. Es gibt unterschiedliche Verfahren um zu
messen, was denn eigentlich nah ist. Die wohl geldufigste Methode ist die bereits er-
wahnte ,Methode der kleinsten Quadrate“. Bei dieser Methode werden zunachst die Re-
siduen berechnet (y — ¥) und danach werden diese quadriert und aufsummiert. Schlief3-
lich werden die Koeffizienten b so ausgewahlt, dass die Summe der quadrierten Residu-

en (engl. Residual Sum of Squares (RSS)) minimiert wird.
1.4.2 Modellvalidierung

Im Rahmen der Regression wird meist der Mittlere Quadratische Fehler (engl.: Mean
Squarred Error (MSE)) verwendet um die Leistungsfahigkeit einer Methode zu beurtei-

len.

1% .
MSE =2 ) 0= f0?
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Falls der vorhergesagte Vektor y = (f()) nah an den experimentell ermittelten Vektor

y ist, wird der MSE Kklein. Nachdem der MSE fiir das betrachtete Modell berechnet wur-
de, stellt sich die Frage, wie gut dieses Modell fiir zukiinftige Daten/Molekiilen geeignet
ist, welche bisher nicht bei der Modellbildung zum Einsatz gekommen sind. In der Regel
werden Modelle nicht nur erstellt um einen Zusammenhang zwischen den unabhéangi-
gen und abhdngigen Variablen herzustellen, sondern auch um mit ihnen Eigenschaften
(z.B. Bioaktivitat) zukiinftiger bisher nicht vorhandener Molekiile vorhersagen zu kon-
nen. Um die Modellgiite testen zu konnen, wird der verwendete Datensatz in eine Trai-
ningsdatenpartition und eine Testdatenpartition unterteilt. Mit den Trainingsdaten
{(x1,¥1), ., (Xn, yn)} wird die Schitzfunktion f erhalten, dieser Prozess wird auch als
,Modelltraining“ bezeichnet. AnschlieBend konnen f(x;),f(xy), ..., f(x,) berechnet
werden. Wenn diese Werte ungefahr gleich y;, y,, ...y, sind, dann ist der MSEtrain (MSE
der Trainingsdaten) klein. Wie bereits erwdhnt, ist es zusatzlich interessant, nicht nur
den MSErrin zu berechnen, sondern zu wissen, ob f(x,) ungefihr gleich y, ist. Bei x,
handelt es sich um ein bisher ungesehenes Testdatum, welches bisher nicht als Trai-
ningsdatum benutzt wurde. Am vielversprechendsten ist die Methode, welche den nied-
rigsten MSEtest (MSE der Testdaten) aufweist. Denn wenn neue Molekiile hinzukommen,
von denen beispielsweise der jeweilige experimentelle Wert fiir y, nicht bekannt ist, so

kann davon ausgegangen werden, dass der MSE vergleichbar ist mit dem MSErest.

Wenn eine Methode einen niedrigen MSErrin aber einen hohen MSEres: aufweist, ist dies
ein Anzeichen fiir eine Uberanpassung. Dies passiert, weil die Methode nicht nur die un-
bekannte Funktion modelliert, sondern auch den Zufallsfehler. Unabhédngig von der
Uberanpassung wird immer ein héherer MSEtest als MSETrain erwartet, da die meisten
Methoden direkt oder indirekt versuchen den MSEtrain Zu minimieren. Weniger flexible
Methoden neigen weniger zur Uberanpassung. Es ist oftmals deutlich schwieriger auf-
grund geringer Datenlage den MSEtest zu bestimmen und somit das Modell mit dem
niedrigsten MSErest zu finden. Eine wichtige Methode, welche effizient die vorhandenen
Daten ausschopft um aus den Trainingsdaten den MSEres: zu bestimmen, ist die

Kreuzvalidierung. [15, 16].

Der MSErTes: ist ein Qualitatsmaf$ flir die Vorhersagekraft von QSAR Modellen. Es gibt
dartiiber hinaus noch weitere Qualitatsmafde. Auf eines von diesen wird im nachsten Ab-

schnitt kurz eingegangen. Neben dieser Funktion dient der MSEtest auch zur Auswahl
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von Modellparametern p. Modelle werden beispielsweise fiir verschiedene Parameter p

erstellt und untereinander verglichen. Anschlief3end wird dann das Modell mit dem ent-
sprechenden Parameter p ausgewahlt, welches die beste Vorhersagekraft mit sich
bringt. Dieser Prozess wird auch als interne Validierung bezeichnet, da alle Molekiile
(inklusive der Testmolekiile) die Modellauswahl beeinflussen und somit der MSEtest

moglicherweise verzerrt geschatzt wird [15].

Ein weiteres Qualititsmafd ist der quadrierte Korrelationskoeffizient R?, welcher
auch als Bestimmtheitsmaf$ bezeichnet wird. Er beschreibt zu welchem Anteil das gebil-
dete Modell die Varianz der abhingigen Variable erkliren kann. Der R? nimmt Werte

zwischen 0 und 1 an.

ey = 9)°
2 (i — y)?

R*?=1-

Das eigentliche Qualititsmaf? ist analog zum MSEres: der R%,,, welcher mit bisher unge-
sehenen, von der Modellbildung unabhangigen, Molekiilen berechnet wird. Bei ¥ handelt
es sich um den Mittelwert der Trainingsdaten. Eine wichtige Methode, welche effizient
die Trainingsdaten nutzt um den RZ,., zu berechnen, ist genau wie beim MSEres, die

Kreuzvalidierung, welche im Folgenden noch naher erldutert wird [15].
1.4.2.1 Das Dilemma zwischen Bias (systematischer Fehler) und Varianz

Der erwartete MSEres: fiir ein ungesehenes Molekiil x, kann zerlegt werden in die Sum-
me aus der Varianz von f(x,), dem quadrierten Bias von f(x,) und der Varianz des Feh-

lerterms e.

E(o = f(x0))* = Var(f(x0)) + [Bias(f(x))]* + Var(e)

E(y, — f(x0))? definieren den erwarteten MSEres: und beziehen sich auf den gemittelten
MSErest Uiber alle Objekte x, aus dem Testdatensatz. Um den zu erwartenden Testfehler
zu minimieren wird eine Methode bendotigt, welche zugleich eine niedrige Varianz und
einen niedrigen Bias erreicht. Der Bias eines Schatzers ist definiert als Differenz zwi-
schen seinem Erwartungswert und der zu schatzenden Grofie. Die Varianz und der qua-
drierte Bias sind positiv. Somit lasst sich erkennen, dass der zu erwartende MSErtes: nie-

mals kleiner sein kann als die Varianz von e, dem nicht reduzierbaren Fehler. Die
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Var(f(xy)) bezieht sich auf den Grad der Anderung von f, wenn zur Schitzung ver-
schiedene Trainingsdatensatzpartitionen benutzt werden. Aus unterschiedlichen Trai-
ningsdatensatzpartitionen resultieren unterschiedliche fs. Im Idealfall sollten die Un-
terschiede nicht zu grofd sein. Falls eine Methode eine hohe Varianz aufweist, kdnnen
kleine Unterschiede in den Trainingsdaten grofe Unterschiede in f hervorrufen. Allge-
mein weisen flexiblere Methoden eine hohere Varianz auf. Der Bias bezieht sich auf den
Fehler, der gemacht wird, wenn ein komplexes Problem auf ein viel einfacheres Modell
reduziert wird. Flexiblere Methoden weisen in der Regel einen geringeren Bias auf, aber
eine hohere Varianz. Das Verhaltnis in dem sich diese beiden Gréfien verandern ent-
scheidet dariiber, ob der MSE steigt oder sinkt. Wenn die Flexibilitdt von einer Methode
erhoht wird, dann neigt der Bias dazu starker zu sinken als die Varianz steigt und der
MSE verringert sich. Ab einem bestimmten Punkt jedoch hat eine Steigerung der Flexibi-
litdt keinen grof3en Einfluss mehr auf den Bias aber die Varianz steigt signifikant, folglich
vergrofdert sich der MSErest. Das Ziel ist es, eine Methode zu finden, welche eine niedrige
Varianz und einen niedrigen Bias aufweist. Angenommen das wahre f ist linear, dann
wiirde die lineare Regression keinen Bias haben und flexiblere Methoden hatten
Schwierigkeiten mitzuhalten. Wenn aber das wahre f hochgradig nicht-linear ist, funk-

tionieren flexiblere Methoden vermutlich besser [15-18].
1.4.2.2 Kreuzvalidierung (engl.: Cross-Validation (CV))

Prinzipiell werden bei der Kreuzvalidierung der gesamte zur Verfiigung stehende Da-
tensatz in einen Konstruktionsdatensatz und einen Validierdatensatz aufgeteilt. Mit den
Konstruktionsdaten wird ein Modell gebildet. Daraufhin werden die Eigenschaften der
Validierdaten mit dem erstellten Modell vorhergesagt und ein Giitekriterium, wie bei-
spielsweise der MSE, wird berechnet. Dieser Prozess wird mehrfach wiederholt, aller-
dings werden unterschiedliche Konstruktions- bzw. Validierdatenpartitionen gebildet. Je
nach Vorgehensweise und Aufbau werden unterschiedliche Varianten der Kreuzvalidie-

rung unterschieden.

Die ,Lass-ein-Objekt-heraus-Kreuzvalidierung“ (engl.: Leave-One-Out-Cross-
Validation (LOO-CV)) ist eine Variante der Kreuzvalidierung, bei der einem Datensatz
bestehend aus n Molekiilen immer ein Molekiil entzogen wird. Mit den restlichen n — 1

Molekiilen wird das Modell gebildet und das separierte Molekiil wird anschliefend vor-

10

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den personlichen Gebrauch.





