Einleitung

Als in den 70er-Jahren des vergangenen Jahrhunderts die ersten Personal Compu-
ter auf den Markt kamen, waren die meisten von ihnen mit einer einfachen Pro-
grammiersprache ausgestattet — gewohnlich mit einer BASIC-Variante —, die zur
Interaktion mit dem Computer erforderlich war. Fur die technisch Begabten war
der Ubergang von der einfachen Computernutzung zur Programmierung daher
ein natirlicher Schritt.

Die heutigen Computer, die um ein Mehrfaches leistungsfahiger und billiger
sind als die Modelle aus den 70er-Jahren, weisen Softwareschnittstellen auf, die
eine schicke, grafische Oberfliche haben und mit der Maus und nicht mehr mit
einer Sprache bedient werden. Dadurch sind Computer viel zugénglicher gewor-
den, was im Grofsen und Ganzen eine starke Verbesserung darstellt. Allerdings
hat sich dadurch auch eine Kluft zwischen Computerbenutzern und der Welt der
Programmierung aufgetan. Hobbyprogrammierer mussen erst einmal eine Pro-
grammierumgebung suchen, statt dass sie eine vorfinden, sobald sie den Compu-
ter einschalten.

Hinter den Kulissen werden unsere Computersysteme jedoch immer noch
von verschiedenen Programmiersprachen beherrscht. Die meisten dieser Spra-
chen sind viel anspruchsvoller als die BASIC-Dialekte der ersten Personal Com-
puter. Die Sprache JavaScript, um die es in diesem Buch geht, ist beispielsweise in
jedem handelsiiblichen Webbrowser vorhanden.



2 Einleitung

Programmierung

Ich werde nicht diejenigen erleuchten, die nicht begierig sind zu lernen, noch
werde ich diejenigen wachriitteln, die sich fiirchten, selbst eine Erkldrung zu
geben. Wenn ich eine Ecke eines Quadrats vorstelle und sie nicht in der Lage
sind, mir die drei anderen zu zeigen, werde ich die Erklarungen nicht noch
einmal durchgeben.

Konfuzius

In diesem Buch mochte ich Thnen nicht nur JavaScript erklaren, sondern Sie auch
in die Grundprinzipien der Programmierung einfithren. Die Programmierung, so
hat sich gezeigt, ist eine schwierige Aufgabe. Die Grundregeln sind gewohnlich
einfach und klar. Programme stiitzen sich zwar auf diese Grundregeln, neigen
aber dazu, durch die Einfithrung ihrer eigenen Regeln und Vielschichtigkeiten
sehr kompliziert zu werden. Daher ist Programmierung nur selten einfach und
vorhersagbar. Wie Donald Knuth, einer der Griinderviter auf diesem Gebiet,
sagte, ist sie eher eine Kunst als eine Wissenschaft.

Um aus diesem Buch etwas mitnehmen zu konnen, durfen Sie es nicht nur
passiv lesen. Bleiben Sie aufmerksam, versuchen Sie, den Beispielcode nachzu-
vollziehen, und lesen Sie nur dann weiter, wenn Sie den gerade behandelten Stoff
in ausreichendem MafSe verstanden haben.

Ein Computerprogrammierer ist der Schopfer eines Universums, fiir das er
allein verantwortlich zeichnet. In Form von Computerprogrammen kénnen
Universen mit unbeschrinkter Vielschichtigkeit erschaffen werden.

Joseph Weizenbaum, Die Macht der Computer und die Ohnmacht der Vernunft

Ein Programm ist vieles zugleich: Es ist ein Text, den ein Programmierer eingege-
ben hat, es ist die lenkende Kraft, die einen Computer dazu bringt, seine Aufga-
ben zu erfiillen, es ist eine Menge von Daten im Arbeitsspeicher des Computers,
die gleichzeitig die MafSnahmen steuern, die an diesem Arbeitsspeicher vorge-
nommen werden. Die Vergleiche, in denen Programme mit vertrauten Dingen
gleichgesetzt werden, hinken gewohnlich, aber ein zumindest oberflichlich pas-
sendes Bild ist das einer Maschine. Die Zahnrader einer mechanischen Uhr pas-
sen raffiniert zusammen, und wenn der Uhrmacher etwas taugt, zeigt sie Thnen
viele jahrelang die genaue Zeit an. Die Elemente eines Programms passen auf
dhnliche Weise zusammen, und wenn der Programmierer weif$, was er tut, lduft
sein Programm, ohne abzustiirzen.

Computer sind Gerite, die als Wirte fur diese immateriellen Maschinen fun-
gieren. Fiir sich allein konnen sie nur stumpfsinnig einfache Dinge tun. Thre Nutz-
lichkeit besteht darin, dass sie diese Dinge mit unglaublicher hoher Geschwindig-
keit erledigen. Ein Programm kann auf raffinierte Weise eine enorme Anzahl
solcher einfachen Tatigkeiten kombinieren, um sehr komplizierte Aufgaben aus-
zufithren.



Von der Wichtigkeit der Sprache 3

Fiir einige ist das Schreiben von Computerprogrammen ein faszinierendes
Spiel: Ein Programm ist ein Gedankengebdude. Es lisst sich kostenlos bauen, hat
kein Gewicht und wichst rasch unter tippenden Fingern. Wenn wir nicht aufpas-
sen, konnen die GrofSe und Komplexitit jedoch aufler Kontrolle geraten, sodass
das Programm sogar seinen Autor verwirrt. Das ist das Hauptproblem bei der
Programmierung: Programme unter Kontrolle zu halten. Wenn ein Programm
funktioniert, ist das schon. Die Kunst der Programmierung besteht darin, seine
Vielschichtigkeit zu beherrschen. Ein gutes Programm ist gebandigt und trotz sei-
ner Komplexitit einfach.

Viele Programmierer glauben heute, dass sich die Komplexitit am besten
dadurch beherrschen lasst, dass man nur wenige gut verstandene Techniken in
seinen Programmen einsetzt. Sie haben strenge Regeln (»best practices«) dariiber
aufgestellt, welche Form Programme haben sollen, und die besonders Eifrigen
unter ihnen erkliren all diejenigen, die diese Regeln brechen, zu schlechten Pro-
grammierern.

Wias fiir eine Feindseligkeit gegeniiber den mannigfaltigen Moglichkeiten der
Programmierung! Dadurch versucht man, Programmierung zu einer linearen und
vorhersagbaren Aufgabe zu reduzieren und alle bizarren und schonen Pro-
gramme fiur tabu zu erkldren. Die Palette der Programmiertechniken ist sehr
breit, faszinierend in ihrer Vielseitigkeit und zu einem groffen Teil noch nicht
erforscht. Natirlich lauern tiberall Schlingen und Fallgruben, die unerfahrene
Programmierer zu allen Arten von schrecklichen Fehlern verleiten. Das heifst aber
nur, dass wir vorsichtig vorgehen und unseren Verstand gebrauchen miissen. Wie
Sie noch sehen werden, gibt es immer wieder neue Herausforderungen und neue
Gebiete zu erforschen. Programmierer, die kein Interesse mehr haben, weiterhin
zu forschen, werden sicherlich stagnieren, keine Freude mehr an ihrer Arbeit
haben und den Wunsch zu programmieren verlieren (und dann werden sie Mana-
ger).

Von der Wichtigkeit der Sprache

Zu Beginn der elektronischen Datenverarbeitung gab es noch keine Program-
miersprachen. Programme sahen wie folgt aus:

00110001 00000000 00000000
00110001 00000001 00000001
00110011 00000001 00000010
01010001 00001011 00000010
00100010 00000010 00001000
01000011 00000001 00000000
01000001 00000001 00000001
00010000 00000010 00000000
01100010 00000000 00000000




4 Einleitung

Dieses Programm addiert die Zahlen von 1 bis 10 und gibt das Ergebnis aus
(1+2+...+10=55). Es konnte auf einem sehr einfachen, hypothetischen Com-
puter laufen. Um die ersten Rechner zu programmieren, war es notwendig, lange
Reihen von Schaltern in die richtige Stellung zu kippen oder Locher in Pappkar-
ten zu stanzen und diese in den Computer einzuspeisen. Sie konnen sich vorstel-
len, was fur eine miihselige, fehleranfillige Arbeit das war. Selbst das Schreiben
eines einfachen Programms erforderte viel Klugheit und Disziplin, und
anspruchsvollere Programme waren praktisch unvorstellbar.

Die manuelle Eingabe eines geheimnisvollen Musters aus Bits (wie die zuvor
gezeigten Einsen und Nullen allgemein genannt werden) gab den Programmie-
rern natiirlich das Gefiihl, machtige Zauberer zu sein, was wohl einen wichtigen
Beitrag zur Zufriedenheit mit dem Job geleistet hat.

Jede Zeile des Programms enthilt eine einzelne Anweisung. Auf Deutsch liefle
sich das etwa wie folgt ausdriicken:

Speichere die Zahl 0 an Speicherposition 0.

Speichere die Zahl 1 in Speicherposition 1.

Speichere den Wert von Speicherposition 1 an Speicherposition 2.
Subtrahiere die Zahl 11 von dem Wert in Speicherposition 2.

Wenn der Wert in Speicherposition 2 die Zahl ist, fahre mit Anweisung 9 fort.
Addiere den Wert von Speicherposition 1 zu Speicherposition 0.

Addiere die Zahl 1 zum Wert von Speicherposition 1.

Fahre mit Anweisung 3 fort.

Gib den Wert an Speicherposition 0 aus.

O X NN R W=

Das ist zwar schon besser lesbar als der Bindrbrei, aber immer noch ziemlich
unschon. Die Verwendung von Namen statt Zahlen fiir die Anweisungen und
Speicherpositionen schafft bereits ein bisschen Abhilfe:

Set 'total' to 0

Set 'count' to 1

[Toop]

Set 'compare' to 'count'
Subtract 11 from 'compare'
If 'compare' is zero, continue at [end]
Add 'count' to 'total'

Add 1 to 'count'

Continue at [loop]

[end]

Qutput 'total'

In dieser Form ist nicht mehr so schwer zu erkennen, wie das Programm funktio-
niert. Konnen Sie es nachvollziehen? Die ersten beiden Zeilen weisen zwei Spei-
cherpositionen ihre Startwerte zu: total wird verwendet, um das Ergebnis der
Berechnung aufzubauen, wihrend count die Zahl festhilt, die wir uns gerade



Von der Wichtigkeit der Sprache 5

ansehen. Die Zeilen, in denen compare verwendet wird, sind wahrscheinlich die
sonderbarsten. Das Programm muss herausfinden, ob count gleich 11 ist, um zu
entscheiden, ob die Berechnung abgeschlossen ist. Da der Computer sehr primitiv
ist, kann er nur priifen, ob eine Zahl gleich null ist, und aufgrund dieses Ver-
gleichs eine Entscheidung (Verzweigung) fillen. Daher verwendet er die Speicher-
position compare, um den Wert von count - 11 zu berechnen, und trifft seine Ent-
scheidung aufgrund dieses Werts. Jedes Mal, wenn das Programm festgestellt hat,
dass es noch nicht bei 11 angelangt ist, addiert es in den nichsten beiden Zeilen
den Wert von count zum Ergebnis und erh6ht count um 1.

In JavaScript sieht dieses Programm folgendermaflen aus:

var total = 0, count = 1;
while (count <= 10) {
total += count;
count += 1;
}
print(total);

Hier sehen wir einige weitere Verbesserungen. Vor allem miissen wir nicht mehr
ausdriicklich angeben, in welcher Weise das Programm vor- und zuriickspringen
soll, denn darum kiimmert sich jetzt das Zauberwort while. Es fithrt die Zeilen
darunter aus, solange die angegebene Bedingung count <= 10 wahr ist, die bedeu-
tet: »count ist kleiner oder gleich 10.« Wir mussen also keinen temporiren Wert
mehr erstellen und mit null vergleichen. Das war eine uninteressante Einzelheit,
und die Starke von Programmiersprachen liegt darin, dass sie sich an unserer
Stelle um solche uninteressanten Details kiimmern.

Wenn uns praktische Funktionen wie range und sum zur Verfiigung stehen, die
alle Zahlen eines Bereichs erfassen bzw. die Summe aus einer Menge von Zahlen
bilden, sieht das Programm wie folgt aus:

print(sum(range(1, 10)));

Die Moral von der Geschicht’ lautet, dass ein Programm sowohl lang als auch
kurz, sowohl unverstandlich als auch lesbar ausgedriickt werden kann. Die erste
Version des Programms war vollig ratselhaft, wahrend die letzte fast wie Alltags-
englisch gelesen werden kann: »print the sum of the range of numbers from 1 to
10«, also » Drucke die Summe des Bereichs der Zahlen von 1 bis 10.« (Wie Sie so
etwas wie sum und range selbst erstellen konnen, erfahren Sie in einem der spiteren
Kapitel.)

Eine gute Programmiersprache hilft dem Programmierer dadurch, dass sie
ihm abstraktere Ausdrucksmoglichkeiten an die Hand gibt. Sie verbirgt die unin-
teressanten Einzelheiten, stellt praktische Bausteine bereit (wie das Konstrukt
while) und erlaubt dem Programmierer meistens auch, neue Bausteine hinzuzufi-
gen (wie die Operationen sum und range).



6 Einleitung

Was ist JavaScript?

JavaScript ist die zurzeit am haufigsten verwendete Sprache, um alle moglichen
intelligenten (und manchmal nervtotenden) Dinge mit den Seiten im World Wide
Web anzustellen. In den letzten Jahren wurde die Sprache auch in anderen
Zusammenhingen verwendet. So hat beispielsweise das Framework node.js, mit
dem sich schnelle serverseitige Programme in JavaScript schreiben lassen, sehr
viel Aufmerksamkeit erregt. Wenn Sie sich fur Programmierung interessieren, ist
JavaScript sicherlich eine der Sprachen, die zu lernen sich lohnt. Selbst wenn Sie
nicht viel Webprogrammierung machen, so werden doch einige der Programme,
die ich Thnen in diesem Buch vorfiihre, in Threm Gedichtnis haften bleiben, Sie
verfolgen und Einfluss darauf nehmen, wie Sie Programme in anderen Sprachen
schreiben.

Bestimmt werden Sie viele schreckliche Dinge tiber JavaScript horen. Viele
davon sind wahr. Als ich zum ersten Mal etwas in JavaScript schreiben musste,
begann ich die Sprache schnell zu verachten: Sie akzeptierte fast alles, was ich ein-
gab, interpretierte es aber vollig anders, als ich es beabsichtigt hatte. Das lag, wie
ich gestehen muss, vor allem daran, dass ich keine Ahnung hatte, was ich eigent-
lich tat, aber es gibt auch tatsdchlich ein Problem: JavaScript entscheidet mit gro-
tesker Freiziigigkeit, was zulassig ist und was nicht. Dahinter steckt der Gedanke,
die Programmierung in JavaScript fiir Anfinger so einfach wie moglich zu
machen. In Wirklichkeit sorgt es aber vor allem dafiir, dass es schwieriger wird,
Fehler in Programmen zu finden, da das System nicht mit dem Finger darauf
zeigt.

Die Flexibilitdt dieser Sprache ist jedoch auch ein Vorteil. Sie lisst Raum fir
viele Techniken, die in strengeren Sprachen unméglich wiren, und wie wir in spi-
teren Kapiteln noch sehen werden, ermoglicht sie es auch, einige ihrer Unzulang-
lichkeiten auszugleichen. Nachdem ich JavaScript richtig gelernt und eine Weile
damit gearbeitet hatte, begann ich die Sprache wirklich zu schitzen.

Trotz des Namens hat JavaScript nur sehr wenig mit der Programmiersprache
Java zu tun. Die Bezeichnung wurde weniger aufgrund tiefsinniger Uberlegungen,
sondern eher aus Vermarktungsgriinden gewahlt. Als Netscape im Jahre 1995
JavaScript vorstellte, wurde die Sprache Java stark angepriesen und nahm an
Beliebtheit zu. Offensichtlich hatte damals jemand einen Einfall, um auf dieser
Erfolgswelle mitzuschwimmen. Und jetzt miissen wir mit diesem Namen leben.

Eng im Zusammenhang mit JavaScript steht das sogenannte ECMAScript.
Als auch andere Browser als der von Netscape begannen, JavaScript oder etwas
Ahnliches zu unterstiitzen, wurde ein Dokument abgefasst, das genau festlegte,
wie ein JavaScript-System zu funktionieren hat. Die in diesem Dokument
beschriebene Sprache wurde nach der Organisation, die die Standardisierung
vorgenommen hat, ECMAScript genannt. ECMAScript beschreibt eine All-
zweck-Programmiersprache und sagt nichts tiber die Verkniipfung dieser Sprache
mit einem Webbrowser aus.



Die Programme ausprobieren 7

Es gibt verschiedene »Versionen« von JavaScript. In diesem Buch beschreibe ich
ECMAScript 3, die erste Version, die weitgehend von verschiedenen Browsern
unterstiitzt wurde. In den letzten Jahren hat es verschiedene Initiativen gegeben,
um die Sprache weiterzuentwickeln, aber zumindest fiir die Webprogrammierung
sind solche Erweiterungen nur dann sinnvoll, wenn sie von Browsern allgemein
unterstiitzt werden, wobei die Browserhersteller den Entwicklungen jedoch hin-
terherhinken. Gliicklicherweise sind die neueren Versionen von JavaScript meis-
tens nur Erweiterungen von EMCAScript 3, weshalb all das, was Sie in diesem
Buch lesen, auch in Zukunft noch Giiltigkeit haben wird.

Die Programme ausprobieren

Wenn Sie den Code in diesem Buch ausfithren und mit ihm herumspielen moch-
ten, konnen Sie htip:/leloquentjavascript.net/ aufsuchen und die dort bereitge-
stellte Onlineumgebung nutzen.

Stattdessen konnen Sie jedoch auch einfach eine HTML-Datei erstellen, die
das Programm enthilt, und in Thren Browser laden. Beispielsweise konnen Sie
eine Datei namens test.html mit dem folgenden Inhalt anlegen:

<html><body><script type="text/javascript">

var total = 0, count = 1;
while (count <= 10) {
total += count;
count += 1;
}

document.write(total);

</script></body></htmi>

In den spiteren Kapiteln erfahren Sie mehr iber HTML und die Art und Weise,
wie Browser HTML-Code interpretieren. Beachten Sie, dass die Operation print
aus dem Beispiel durch document.write ersetzt wurde. Wie Sie die Funktion print
schreiben konnen, erfahren Sie in Kapitel 10.

Das Buch im Uberblick

Die ersten drei Kapitel geben Thnen eine Einfithrung in die Sprache JavaScript
und zeigen Thnen, wie Sie grammatikalisch korrekte JavaScript-Programme
schreiben. Hier lernen Sie Steuerstrukturen (wie das Wort while, das Sie in dieser
Einleitung schon gesehen haben), Funktionen (selbst geschriebene Operationen)
und Datenstrukturen kennen. Das reicht aus, um einfache Programme zu schrei-
ben.



8 Einleitung

Die nichsten vier Kapitel bauen auf diesen Grundlagen auf und erliutern
fortgeschrittene Techniken, mit denen Sie anspruchsvollere Programme schreiben
konnen, ohne dass dabei ein unverstiandliches Durcheinander herauskommt. Als
Erstes geht es in Kapitel 4 um den Umgang mit Fehlern und unerwarteten Situa-
tionen. In den Kapiteln 5 und 6 werden zwei wichtige Vorgehensweisen zur Abs-
traktion vorgestellt, nimlich die funktionale und die objektorientierte Program-
mierung. Kapitel 7 zeigt, wie Sie Thre Programme gliedern kénnen.

Der Schwerpunkt der restlichen Kapitel liegt weniger auf der Theorie, als
vielmehr mehr auf den Moglichkeiten, die die JavaScript-Umgebung bietet. In
Kapitel 8 wird eine Art »Unter-«Sprache fiir die Textverarbeitung eingefiihrt, und
die Kapitel 9 bis 12 beschreiben, welche Einrichtungen einem Programm zur Ver-
fiigung stehen, wenn es in einem Browser ausgefuhrt wird. Hier lernen Sie, wie
Sie Webseiten bearbeiten, auf Benutzeraktionen reagieren und mit einem Webser-
ver kommunizieren.

Schreibweisen

In diesem Buch steht Text in nicht proportionaler Schrift fiir Programmelemente.
Manchmal handelt es sich dabei um eigenstindige Fragmente, manchmal aber
auch um einzelne Bestandteile eines im Kontext beschriebenen Programms. Pro-
gramme (von denen Sie jetzt schon einige gesehen haben) werden wie folgt darge-
stellt:

function fac(n)
return n ==

}

{
?21:n*fac(n - 1);

Wenn ich vorfithren mochte, was bei der Auswertung einzelner Ausdriicke
geschieht, steht der Ausdruck in Fettdruck und das Ergebnis, eingeleitet durch
einen Pfeil, darunter:

1+1

-2




