
1

Einleitung

Als in den 70er-Jahren des vergangenen Jahrhunderts die ersten Personal Compu-
ter auf den Markt kamen, waren die meisten von ihnen mit einer einfachen Pro-
grammiersprache ausgestattet – gewöhnlich mit einer BASIC-Variante –, die zur
Interaktion mit dem Computer erforderlich war. Für die technisch Begabten war
der Übergang von der einfachen Computernutzung zur Programmierung daher
ein natürlicher Schritt.

Die heutigen Computer, die um ein Mehrfaches leistungsfähiger und billiger
sind als die Modelle aus den 70er-Jahren, weisen Softwareschnittstellen auf, die
eine schicke, grafische Oberfläche haben und mit der Maus und nicht mehr mit
einer Sprache bedient werden. Dadurch sind Computer viel zugänglicher gewor-
den, was im Großen und Ganzen eine starke Verbesserung darstellt. Allerdings
hat sich dadurch auch eine Kluft zwischen Computerbenutzern und der Welt der
Programmierung aufgetan. Hobbyprogrammierer müssen erst einmal eine Pro-
grammierumgebung suchen, statt dass sie eine vorfinden, sobald sie den Compu-
ter einschalten.

Hinter den Kulissen werden unsere Computersysteme jedoch immer noch
von verschiedenen Programmiersprachen beherrscht. Die meisten dieser Spra-
chen sind viel anspruchsvoller als die BASIC-Dialekte der ersten Personal Com-
puter. Die Sprache JavaScript, um die es in diesem Buch geht, ist beispielsweise in
jedem handelsüblichen Webbrowser vorhanden.

Einleitung2

Programmierung

Ich werde nicht diejenigen erleuchten, die nicht begierig sind zu lernen, noch
werde ich diejenigen wachrütteln, die sich fürchten, selbst eine Erklärung zu
geben. Wenn ich eine Ecke eines Quadrats vorstelle und sie nicht in der Lage
sind, mir die drei anderen zu zeigen, werde ich die Erklärungen nicht noch
einmal durchgehen.

Konfuzius

In diesem Buch möchte ich Ihnen nicht nur JavaScript erklären, sondern Sie auch
in die Grundprinzipien der Programmierung einführen. Die Programmierung, so
hat sich gezeigt, ist eine schwierige Aufgabe. Die Grundregeln sind gewöhnlich
einfach und klar. Programme stützen sich zwar auf diese Grundregeln, neigen
aber dazu, durch die Einführung ihrer eigenen Regeln und Vielschichtigkeiten
sehr kompliziert zu werden. Daher ist Programmierung nur selten einfach und
vorhersagbar. Wie Donald Knuth, einer der Gründerväter auf diesem Gebiet,
sagte, ist sie eher eine Kunst als eine Wissenschaft.

Um aus diesem Buch etwas mitnehmen zu können, dürfen Sie es nicht nur
passiv lesen. Bleiben Sie aufmerksam, versuchen Sie, den Beispielcode nachzu-
vollziehen, und lesen Sie nur dann weiter, wenn Sie den gerade behandelten Stoff
in ausreichendem Maße verstanden haben.

Ein Computerprogrammierer ist der Schöpfer eines Universums, für das er
allein verantwortlich zeichnet. In Form von Computerprogrammen können
Universen mit unbeschränkter Vielschichtigkeit erschaffen werden.

Joseph Weizenbaum, Die Macht der Computer und die Ohnmacht der Vernunft

Ein Programm ist vieles zugleich: Es ist ein Text, den ein Programmierer eingege-
ben hat, es ist die lenkende Kraft, die einen Computer dazu bringt, seine Aufga-
ben zu erfüllen, es ist eine Menge von Daten im Arbeitsspeicher des Computers,
die gleichzeitig die Maßnahmen steuern, die an diesem Arbeitsspeicher vorge-
nommen werden. Die Vergleiche, in denen Programme mit vertrauten Dingen
gleichgesetzt werden, hinken gewöhnlich, aber ein zumindest oberflächlich pas-
sendes Bild ist das einer Maschine. Die Zahnräder einer mechanischen Uhr pas-
sen raffiniert zusammen, und wenn der Uhrmacher etwas taugt, zeigt sie Ihnen
viele jahrelang die genaue Zeit an. Die Elemente eines Programms passen auf
ähnliche Weise zusammen, und wenn der Programmierer weiß, was er tut, läuft
sein Programm, ohne abzustürzen.

Computer sind Geräte, die als Wirte für diese immateriellen Maschinen fun-
gieren. Für sich allein können sie nur stumpfsinnig einfache Dinge tun. Ihre Nütz-
lichkeit besteht darin, dass sie diese Dinge mit unglaublicher hoher Geschwindig-
keit erledigen. Ein Programm kann auf raffinierte Weise eine enorme Anzahl
solcher einfachen Tätigkeiten kombinieren, um sehr komplizierte Aufgaben aus-
zuführen.

Von der Wichtigkeit der Sprache 3

Für einige ist das Schreiben von Computerprogrammen ein faszinierendes
Spiel: Ein Programm ist ein Gedankengebäude. Es lässt sich kostenlos bauen, hat
kein Gewicht und wächst rasch unter tippenden Fingern. Wenn wir nicht aufpas-
sen, können die Größe und Komplexität jedoch außer Kontrolle geraten, sodass
das Programm sogar seinen Autor verwirrt. Das ist das Hauptproblem bei der
Programmierung: Programme unter Kontrolle zu halten. Wenn ein Programm
funktioniert, ist das schön. Die Kunst der Programmierung besteht darin, seine
Vielschichtigkeit zu beherrschen. Ein gutes Programm ist gebändigt und trotz sei-
ner Komplexität einfach.

Viele Programmierer glauben heute, dass sich die Komplexität am besten
dadurch beherrschen lässt, dass man nur wenige gut verstandene Techniken in
seinen Programmen einsetzt. Sie haben strenge Regeln (»best practices«) darüber
aufgestellt, welche Form Programme haben sollen, und die besonders Eifrigen
unter ihnen erklären all diejenigen, die diese Regeln brechen, zu schlechten Pro-
grammierern.

Was für eine Feindseligkeit gegenüber den mannigfaltigen Möglichkeiten der
Programmierung! Dadurch versucht man, Programmierung zu einer linearen und
vorhersagbaren Aufgabe zu reduzieren und alle bizarren und schönen Pro-
gramme für tabu zu erklären. Die Palette der Programmiertechniken ist sehr
breit, faszinierend in ihrer Vielseitigkeit und zu einem großen Teil noch nicht
erforscht. Natürlich lauern überall Schlingen und Fallgruben, die unerfahrene
Programmierer zu allen Arten von schrecklichen Fehlern verleiten. Das heißt aber
nur, dass wir vorsichtig vorgehen und unseren Verstand gebrauchen müssen. Wie
Sie noch sehen werden, gibt es immer wieder neue Herausforderungen und neue
Gebiete zu erforschen. Programmierer, die kein Interesse mehr haben, weiterhin
zu forschen, werden sicherlich stagnieren, keine Freude mehr an ihrer Arbeit
haben und den Wunsch zu programmieren verlieren (und dann werden sie Mana-
ger).

Von der Wichtigkeit der Sprache

Zu Beginn der elektronischen Datenverarbeitung gab es noch keine Program-
miersprachen. Programme sahen wie folgt aus:

00110001 00000000 00000000
00110001 00000001 00000001
00110011 00000001 00000010
01010001 00001011 00000010
00100010 00000010 00001000
01000011 00000001 00000000
01000001 00000001 00000001
00010000 00000010 00000000
01100010 00000000 00000000

Einleitung4

Dieses Programm addiert die Zahlen von 1 bis 10 und gibt das Ergebnis aus
(1 + 2 + ... + 10 = 55). Es könnte auf einem sehr einfachen, hypothetischen Com-
puter laufen. Um die ersten Rechner zu programmieren, war es notwendig, lange
Reihen von Schaltern in die richtige Stellung zu kippen oder Löcher in Pappkar-
ten zu stanzen und diese in den Computer einzuspeisen. Sie können sich vorstel-
len, was für eine mühselige, fehleranfällige Arbeit das war. Selbst das Schreiben
eines einfachen Programms erforderte viel Klugheit und Disziplin, und
anspruchsvollere Programme waren praktisch unvorstellbar.

Die manuelle Eingabe eines geheimnisvollen Musters aus Bits (wie die zuvor
gezeigten Einsen und Nullen allgemein genannt werden) gab den Programmie-
rern natürlich das Gefühl, mächtige Zauberer zu sein, was wohl einen wichtigen
Beitrag zur Zufriedenheit mit dem Job geleistet hat.

Jede Zeile des Programms enthält eine einzelne Anweisung. Auf Deutsch ließe
sich das etwa wie folgt ausdrücken:

1. Speichere die Zahl 0 an Speicherposition 0.
2. Speichere die Zahl 1 in Speicherposition 1.
3. Speichere den Wert von Speicherposition 1 an Speicherposition 2.
4. Subtrahiere die Zahl 11 von dem Wert in Speicherposition 2.
5. Wenn der Wert in Speicherposition 2 die Zahl ist, fahre mit Anweisung 9 fort.
6. Addiere den Wert von Speicherposition 1 zu Speicherposition 0.
7. Addiere die Zahl 1 zum Wert von Speicherposition 1.
8. Fahre mit Anweisung 3 fort.
9. Gib den Wert an Speicherposition 0 aus.

Das ist zwar schon besser lesbar als der Binärbrei, aber immer noch ziemlich
unschön. Die Verwendung von Namen statt Zahlen für die Anweisungen und
Speicherpositionen schafft bereits ein bisschen Abhilfe:

 Set 'total' to 0
 Set 'count' to 1
[loop]
 Set 'compare' to 'count'
 Subtract 11 from 'compare'
 If 'compare' is zero, continue at [end]
 Add 'count' to 'total'
 Add 1 to 'count'
 Continue at [loop]
[end]
 Output 'total'

In dieser Form ist nicht mehr so schwer zu erkennen, wie das Programm funktio-
niert. Können Sie es nachvollziehen? Die ersten beiden Zeilen weisen zwei Spei-
cherpositionen ihre Startwerte zu: total wird verwendet, um das Ergebnis der
Berechnung aufzubauen, während count die Zahl festhält, die wir uns gerade

Von der Wichtigkeit der Sprache 5

ansehen. Die Zeilen, in denen compare verwendet wird, sind wahrscheinlich die
sonderbarsten. Das Programm muss herausfinden, ob count gleich 11 ist, um zu
entscheiden, ob die Berechnung abgeschlossen ist. Da der Computer sehr primitiv
ist, kann er nur prüfen, ob eine Zahl gleich null ist, und aufgrund dieses Ver-
gleichs eine Entscheidung (Verzweigung) fällen. Daher verwendet er die Speicher-
position compare, um den Wert von count - 11 zu berechnen, und trifft seine Ent-
scheidung aufgrund dieses Werts. Jedes Mal, wenn das Programm festgestellt hat,
dass es noch nicht bei 11 angelangt ist, addiert es in den nächsten beiden Zeilen
den Wert von count zum Ergebnis und erhöht count um 1.

In JavaScript sieht dieses Programm folgendermaßen aus:

var total = 0, count = 1;
while (count <= 10) {
 total += count;
 count += 1;
}
print(total);

Hier sehen wir einige weitere Verbesserungen. Vor allem müssen wir nicht mehr
ausdrücklich angeben, in welcher Weise das Programm vor- und zurückspringen
soll, denn darum kümmert sich jetzt das Zauberwort while. Es führt die Zeilen
darunter aus, solange die angegebene Bedingung count <= 10 wahr ist, die bedeu-
tet: »count ist kleiner oder gleich 10.« Wir müssen also keinen temporären Wert
mehr erstellen und mit null vergleichen. Das war eine uninteressante Einzelheit,
und die Stärke von Programmiersprachen liegt darin, dass sie sich an unserer
Stelle um solche uninteressanten Details kümmern.

Wenn uns praktische Funktionen wie range und sum zur Verfügung stehen, die
alle Zahlen eines Bereichs erfassen bzw. die Summe aus einer Menge von Zahlen
bilden, sieht das Programm wie folgt aus:

print(sum(range(1, 10)));

Die Moral von der Geschicht’ lautet, dass ein Programm sowohl lang als auch
kurz, sowohl unverständlich als auch lesbar ausgedrückt werden kann. Die erste
Version des Programms war völlig rätselhaft, während die letzte fast wie Alltags-
englisch gelesen werden kann: »print the sum of the range of numbers from 1 to
10«, also »Drucke die Summe des Bereichs der Zahlen von 1 bis 10.« (Wie Sie so
etwas wie sum und range selbst erstellen können, erfahren Sie in einem der späteren
Kapitel.)

Eine gute Programmiersprache hilft dem Programmierer dadurch, dass sie
ihm abstraktere Ausdrucksmöglichkeiten an die Hand gibt. Sie verbirgt die unin-
teressanten Einzelheiten, stellt praktische Bausteine bereit (wie das Konstrukt
while) und erlaubt dem Programmierer meistens auch, neue Bausteine hinzuzufü-
gen (wie die Operationen sum und range).

Einleitung6

Was ist JavaScript?

JavaScript ist die zurzeit am häufigsten verwendete Sprache, um alle möglichen
intelligenten (und manchmal nervtötenden) Dinge mit den Seiten im World Wide
Web anzustellen. In den letzten Jahren wurde die Sprache auch in anderen
Zusammenhängen verwendet. So hat beispielsweise das Framework node.js, mit
dem sich schnelle serverseitige Programme in JavaScript schreiben lassen, sehr
viel Aufmerksamkeit erregt. Wenn Sie sich für Programmierung interessieren, ist
JavaScript sicherlich eine der Sprachen, die zu lernen sich lohnt. Selbst wenn Sie
nicht viel Webprogrammierung machen, so werden doch einige der Programme,
die ich Ihnen in diesem Buch vorführe, in Ihrem Gedächtnis haften bleiben, Sie
verfolgen und Einfluss darauf nehmen, wie Sie Programme in anderen Sprachen
schreiben.

Bestimmt werden Sie viele schreckliche Dinge über JavaScript hören. Viele
davon sind wahr. Als ich zum ersten Mal etwas in JavaScript schreiben musste,
begann ich die Sprache schnell zu verachten: Sie akzeptierte fast alles, was ich ein-
gab, interpretierte es aber völlig anders, als ich es beabsichtigt hatte. Das lag, wie
ich gestehen muss, vor allem daran, dass ich keine Ahnung hatte, was ich eigent-
lich tat, aber es gibt auch tatsächlich ein Problem: JavaScript entscheidet mit gro-
tesker Freizügigkeit, was zulässig ist und was nicht. Dahinter steckt der Gedanke,
die Programmierung in JavaScript für Anfänger so einfach wie möglich zu
machen. In Wirklichkeit sorgt es aber vor allem dafür, dass es schwieriger wird,
Fehler in Programmen zu finden, da das System nicht mit dem Finger darauf
zeigt.

Die Flexibilität dieser Sprache ist jedoch auch ein Vorteil. Sie lässt Raum für
viele Techniken, die in strengeren Sprachen unmöglich wären, und wie wir in spä-
teren Kapiteln noch sehen werden, ermöglicht sie es auch, einige ihrer Unzuläng-
lichkeiten auszugleichen. Nachdem ich JavaScript richtig gelernt und eine Weile
damit gearbeitet hatte, begann ich die Sprache wirklich zu schätzen.

Trotz des Namens hat JavaScript nur sehr wenig mit der Programmiersprache
Java zu tun. Die Bezeichnung wurde weniger aufgrund tiefsinniger Überlegungen,
sondern eher aus Vermarktungsgründen gewählt. Als Netscape im Jahre 1995
JavaScript vorstellte, wurde die Sprache Java stark angepriesen und nahm an
Beliebtheit zu. Offensichtlich hatte damals jemand einen Einfall, um auf dieser
Erfolgswelle mitzuschwimmen. Und jetzt müssen wir mit diesem Namen leben.

Eng im Zusammenhang mit JavaScript steht das sogenannte ECMAScript.
Als auch andere Browser als der von Netscape begannen, JavaScript oder etwas
Ähnliches zu unterstützen, wurde ein Dokument abgefasst, das genau festlegte,
wie ein JavaScript-System zu funktionieren hat. Die in diesem Dokument
beschriebene Sprache wurde nach der Organisation, die die Standardisierung
vorgenommen hat, ECMAScript genannt. ECMAScript beschreibt eine All-
zweck-Programmiersprache und sagt nichts über die Verknüpfung dieser Sprache
mit einem Webbrowser aus.

Die Programme ausprobieren 7

Es gibt verschiedene »Versionen« von JavaScript. In diesem Buch beschreibe ich
ECMAScript 3, die erste Version, die weitgehend von verschiedenen Browsern
unterstützt wurde. In den letzten Jahren hat es verschiedene Initiativen gegeben,
um die Sprache weiterzuentwickeln, aber zumindest für die Webprogrammierung
sind solche Erweiterungen nur dann sinnvoll, wenn sie von Browsern allgemein
unterstützt werden, wobei die Browserhersteller den Entwicklungen jedoch hin-
terherhinken. Glücklicherweise sind die neueren Versionen von JavaScript meis-
tens nur Erweiterungen von EMCAScript 3, weshalb all das, was Sie in diesem
Buch lesen, auch in Zukunft noch Gültigkeit haben wird.

Die Programme ausprobieren

Wenn Sie den Code in diesem Buch ausführen und mit ihm herumspielen möch-
ten, können Sie http://eloquentjavascript.net/ aufsuchen und die dort bereitge-
stellte Onlineumgebung nutzen.

Stattdessen können Sie jedoch auch einfach eine HTML-Datei erstellen, die
das Programm enthält, und in Ihren Browser laden. Beispielsweise können Sie
eine Datei namens test.html mit dem folgenden Inhalt anlegen:

<html><body><script type="text/javascript">

var total = 0, count = 1;
while (count <= 10) {
 total += count;
 count += 1;
}
document.write(total);

</script></body></html>

In den späteren Kapiteln erfahren Sie mehr über HTML und die Art und Weise,
wie Browser HTML-Code interpretieren. Beachten Sie, dass die Operation print
aus dem Beispiel durch document.write ersetzt wurde. Wie Sie die Funktion print
schreiben können, erfahren Sie in Kapitel 10.

Das Buch im Überblick

Die ersten drei Kapitel geben Ihnen eine Einführung in die Sprache JavaScript
und zeigen Ihnen, wie Sie grammatikalisch korrekte JavaScript-Programme
schreiben. Hier lernen Sie Steuerstrukturen (wie das Wort while, das Sie in dieser
Einleitung schon gesehen haben), Funktionen (selbst geschriebene Operationen)
und Datenstrukturen kennen. Das reicht aus, um einfache Programme zu schrei-
ben.

Einleitung8

Die nächsten vier Kapitel bauen auf diesen Grundlagen auf und erläutern
fortgeschrittene Techniken, mit denen Sie anspruchsvollere Programme schreiben
können, ohne dass dabei ein unverständliches Durcheinander herauskommt. Als
Erstes geht es in Kapitel 4 um den Umgang mit Fehlern und unerwarteten Situa-
tionen. In den Kapiteln 5 und 6 werden zwei wichtige Vorgehensweisen zur Abs-
traktion vorgestellt, nämlich die funktionale und die objektorientierte Program-
mierung. Kapitel 7 zeigt, wie Sie Ihre Programme gliedern können.

Der Schwerpunkt der restlichen Kapitel liegt weniger auf der Theorie, als
vielmehr mehr auf den Möglichkeiten, die die JavaScript-Umgebung bietet. In
Kapitel 8 wird eine Art »Unter-«Sprache für die Textverarbeitung eingeführt, und
die Kapitel 9 bis 12 beschreiben, welche Einrichtungen einem Programm zur Ver-
fügung stehen, wenn es in einem Browser ausgeführt wird. Hier lernen Sie, wie
Sie Webseiten bearbeiten, auf Benutzeraktionen reagieren und mit einem Webser-
ver kommunizieren.

Schreibweisen

In diesem Buch steht Text in nicht proportionaler Schrift für Programmelemente.
Manchmal handelt es sich dabei um eigenständige Fragmente, manchmal aber
auch um einzelne Bestandteile eines im Kontext beschriebenen Programms. Pro-
gramme (von denen Sie jetzt schon einige gesehen haben) werden wie folgt darge-
stellt:

function fac(n) {
 return n == 0 ? 1 : n * fac(n - 1);
}

Wenn ich vorführen möchte, was bei der Auswertung einzelner Ausdrücke
geschieht, steht der Ausdruck in Fettdruck und das Ergebnis, eingeleitet durch
einen Pfeil, darunter:

1 + 1
➝ 2

