Günther Leschhorn, Richard Young

Handbook of LED and SSL Metrology

With contributions from Richard Distl Prof. Dr. Thomas Nägele

Dr. Thomas Attenberger Dr. Đenan Konjhodžić

Dr. Matthias Höh

Published by Instrument Systems GmbH Munich, Germany

Library information of the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek listed this publication in the German National Bibliography. The detailed bibliography data can be found at http://dnb.d-nb.de

Instrument Systems GmbH (editor) Günther Leschhorn, Richard Young Handbook of LED and SSL Metrology

Berlin: Pro BUSINESS 2017

ISBN 978-3-86460-644-1

1. Auflage 2017

© 2017 by Pro BUSINESS GmbH
Schwedenstraße 14, 13357 Berlin
All rights reserved. No part of this book may be reproduced or transmitted in any form or any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the copyright owner. Requests should be made through Instrument Systems GmbH.

Produced and published by: Pro BUSINESS GmbH Printed on ageing resistant paper Printed in Germany www.book-on-demand.de

Cover design, Layout: abc cross media GmbH, Munich Cover image: ©tailex, fotolia.com

Also available:

Paperback: ISBN 978-3-86460-643-4 E-Book: ISBN 978-3-86460-917-6

Preface

The first edition of the Handbook of LED Metrology was published in 1999 and maintained its popularity over 16 years. We received extremely positive feedback from customers and people interested in the field of LED measurement. The handbook was considered as a helpful introduction to basic terms and definitions and served as a good guideline to test setups and methodology for accurate measurements on LEDs. Although only about 40 pages long, it covered the basic principles of optical characterization of LEDs. The content of this first edition was sufficient at this early stage of the first wave of the Solid-State Lighting (SSL) revolution.

As time moved on, the SSL revolution continued and demanded a more comprehensive view on the subject of SSL and LED measurement. This led to the decision to intensively review and extend the existing manuscript. The outcome is the work at hand entitled Handbook of LED and SSL Metrology. The content is a summary of knowledge gained by Instrument Systems over the last 30 years. A lot of technical advances in the field of SSL measurements made it into scientific papers or were selected as contributions to proceedings of international conferences and symposia. As a matter of fact, numerous people assisted in preparing the scientific content of this handbook.

We want to take the advantage to acknowledge a number of people who contributed in a special way to the preparation of the manuscript and the technical content.

Thomas Nägele was one of the authors of the first edition and left us an excellent basis for this updated second edition.

As an application engineer, Đenan Konjhodžić contributed with measurements and evaluations to numerous chapters. We are very thankful for his contributions.

Thanks also to Matthias Höh who was deeply involved in the preparation of the manuscript for chapter 9 on LED measurements in the production line.

We are further thankful to Thomas Attenberger for technical editing of the entire manuscript. His experience in the field of LED and SSL measurements was greatly acknowledged.

Thanks to Christine Costa, Melanie Maier and Bei-Bei Chuang from the marketing team. They did a fantastic job in preparing the figures and coordinating the layout and print of this handbook.

Last but not least, we are sincerely grateful to Richard Distl. He was not only one of the authors of the first edition, but inspired and launched the preparation of this second edition during his time as president and CEO of Instrument Systems.

The authors

Contents

PrefaceIII			
Conten	ıts	V	
1	Introduction	1	
2	Terms and Definitions in Photometry, Radiometry and Colorimetry	2	
2.1	Photometric and Radiometric Quantities		
2.1.1	Luminous Flux and Radiant Power		
2.1.2	Luminous Intensity and Radiant Intensity		
2.1.3	Illuminance and Irradiance		
2.1.4	Luminance and Radiance		
2.2	The Cosine Law		
2.3	Colorimetry		
2.3.1	Dominant Wavelength		
2.3.2	Purity		
2.3.3	Just Noticeable Differences and MacAdam Ellipses	11	
2.3.4	Correlated Color Temperature	12	
2.4	Color Rendering Index	13	
2.5	Wavelength and Spectrum		
2.5.1	Peak Wavelength λ_p	15	
2.5.2	Spectral Bandwidth (FWHM)		
	Center Wavelength $\lambda_{0.5m}$	16	
2.5.4	Centroid Wavelength λ_c	16	
3	Standards and Recommendations Applying to LEDs and		
	SSL Products		
3.1	CIE 127-2007		
3.2	IES LM-79-08		
3.3	CIE S025 and EN 13032-4		
3.4	IES LM-80-08 and TM-21-11		
3.5	ANSI_NEMA C78.377-2008 and Energy Star®IES TM-30-15		
3.6	Zhaga Books		
3.7 3.8	Laboratory Accreditation and Traceability		
J.0			
4	Basic Properties of LEDs		
4.1	Package Design		
4.2	Electrical Properties and Ambient Conditions	32	

4.3	Thermal Properties of High Power LEDs	. 34
4.3.1	Thermal Modeling	. 34
4.3.2	Active Cooling	. 36
4.3.3	Testing Methods for HP LEDs	. 37
4.4	Characteristics of White LEDs	. 39
4.4.1	Phosphor-Converted White LEDs	. 39
4.4.2	3-Chip and 4-Chip White LEDs	. 40
4.4.3	Color Rendering and Efficacy of White LEDs	. 41
4.5	Basic Properties of OLEDs	. 42
5	Optical Measuring Instruments	. 44
5.1	Photometer Design	. 44
5.2	Comparison of Photometers and Spectroradiometers	. 47
5.3	Requirements for a Spectroradiometer	. 48
5.3.1	Scanning Spectroradiometer	. 49
5.3.2	Array Spectroradiometer	. 50
5.3.3	Selection Criteria	. 52
5.4	Stray Light Correction of Array Spectroradiometers	. 53
5.5	Calibration of Spectroradiometers	. 56
5.5.1	Wavelength Calibration	. 56
5.5.2	Spectral Calibration	. 57
5.5.3	Absolute Calibration and Verification	. 57
5.6	Imaging Photometers and Colorimeters	. 58
6	Basic Properties of Integrating Spheres and Goniometers	. 62
6.1	Integrating Spheres	. 62
6.1.1	Integrating Sphere Design	. 63
6.1.2	Integrating Sphere Theory	. 64
6.1.3	Coatings	. 65
6.1.4	Sphere Directional Response	. 67
6.2	Goniometers	. 68
6.2.1	Coordinate Systems	. 69
6.2.2	Goniometer Types	. 69
6.2.3	Burning Position Correction	.72
7	Optical Characteristics of LEDs, Modules, SSL Lamps	
	and Luminaires	
7.1	Luminous Flux and Radiant Power	. 76
7.1.1	The Integrating Sphere Method	
7.1.2	The Goniophotometer Method	
7.2	Luminous Intensity and Radiant Intensity	. 82
7.3	The "Averaged LED Intensity" Concept	. 83
7 /	The "Partial I ED Flux" Concept	Ω1

7.5	Spatial Radiation Characteristics	85
7.6	Uniformity and Glare	90
8	Discussion of Sample Measurements with Error A	nalvsis 92
8.1	Effects of the Dynamic Measuring Range	
8.2	Influence of Stray Light on White LEDs	
8.3	Influence of Bandpass	
8.4	Performance Indices	
8.5	External Influences	
8.5.1	Accuracy and Stability of the Current Source	
8.5.2	Quality of LED Test Sockets	
8.5.3	Precision of Mechanical Setup	
8.5.4	Temperature Stabilization Time	
9	LED Measurements in the Production Line	105
9.1	Conditions and Requirements in Production Testing	105
9.2	Process Integration	106
9.3	Reproducibility and Accuracy	108
9.3.1	Correction Factors	108
9.3.2	Reproducibility	109
9.3.3	Accuracy	109
9.4	Field Installation of Measurement Equipment	111
9.4.1	Wafer Level Testing	111
9.4.2	Die Level Testing	114
9.4.3	Package Level Testing	115
9.4.4	Module Level Testing	116
9.4.5	OLED Testing	117
List of	Figures	118
List of	Tables	126
Refere	nces	127
About I	nstrument Systems	130
Τhe Διι	thors	131

1 Introduction

Rapid developments in LEDs over the past decade have created a major growth market with completely new applications. Full color displays for large areas only became possible with the introduction of high-intensity blue LEDs, while High Power white LEDs are now widely used in general lighting and the automotive industry. These applications have placed increasingly stringent demands on the optical characterization of LEDs, and Solid-State Lighting (SSL) lamps, modules and luminaires, which serves as the benchmark for product quality.

Specific expertise is needed in order to achieve precise and reproducible results. This handbook discusses the special characteristics of LEDs and emerging OLEDs. It provides an overview of state-of-the-art measurement equipment and gives recommendations for obtaining accurate measurement results. The main goal of this handbook is to give readers who are new to this subject an introduction into LED metrology. However, it also provides a useful reference work for more experienced readers.

As an introduction, basic terms and definitions used in photometry, radiometry and colorimetry are described. This develops into definitions of quantities and details such as the physical properties specific to LEDs and SSL products. Later sections describe the test setups and methodology required for accurate measurements. Possible sources of error arising from interactions between LEDs and measuring instruments are also discussed. The handbook concludes with a section devoted to the unique requirements of LED testing in a production environment.

Readers who are short of time can selectively read individual sections. However, it is recommended to read the entire handbook to obtain an in-depth understanding of this discipline.

1 Introduction 1

2 Terms and Definitions in Photometry, Radiometry and Colorimetry

2.1 Photometric and Radiometric Quantities

This section provides a brief overview of important terms and definitions that are essential for an in-depth understanding and therefore correct use of measuring instruments. A distinction is drawn between radiometric quantities describing physical optical radiation properties, photometric quantities describing the perception of optical radiation by the human eye and colorimetry relating to the visual perception of color by human beings.

The relevant quantities reflect different conditions that are important to people in their everyday lives. For example, a distant traffic light will appear to get brighter as you approach it, until you see it as a circular disc rather than a point source. Then as you start to get closer it still seems to be getting bigger but not brighter. While the traffic light appears to be like a point source, luminous intensity is the relevant quantity, but at a shorter distance the luminance of the source is more appropriate. Other quantities of interest are illuminance (e.g. light falling onto the skin or illuminating an object) and total luminous flux (the entire light emitted in all directions).

Table 1: Important radiometric and photometric quantities.

Radiometry	Symbol	Unit
Radiant power	Φ_e	W
Radiant intensity	I_e	W sr ⁻¹
Irradiance	E_e	W m ⁻²
Radiance	L_e	W m ⁻² sr ⁻¹
Photometry	Symbol	Unit
Luminous flux	$ \Phi_v $	lumen (lm)
Luminous intensity	I_{ν}	Im sr ⁻¹ = candela (cd)
Illuminance	E_{ν}	$Im m^{-2} = lux (lx)$
Luminance	L_{ν}	cd m ⁻²

Table 1 shows similarities between the units of radiometric quantities and photopic quantities (see the "W" in radiometric quantities and "Im" in photometric quantities). Each photometric quantity has its corresponding radiometric quantity, where the suffix "e" in the symbols represents the radiometric quantity and "v" the photometric equivalent.

One watt of light at 555 nm corresponds to 683 lumens, fixing the relationship between the quantities radiant power and luminous flux. This factor varies with wavelength and the variation is defined by the Commission Internationale de l'Éclairage (CIE), also referred to by the translation

"International Commission on Illumination", as the $V(\lambda)$ function (see Figure 1). The $V(\lambda)$ curve describes the spectral response function of the human eye in the wavelength range from 360 nm to 830 nm¹ normalized to 1. This curve is used to weight the radiometric quantity that is a function of wavelength λ in order to obtain its corresponding photometric quantity. If $Q_e(\lambda)$ is a spectral radiant quantity, the value of the corresponding photometric quantity Q_v is derived by integration of $Q_e(\lambda)$ as follows:

$$Q_{v} = K_{m} \int_{360nm}^{830nm} Q_{e}(\lambda) \cdot V(\lambda) \cdot d\lambda$$

The constant $K_m = 683$ lm W⁻¹ refers to the (physical) radiometric unit of the watt and the (physiological) photometric unit of the lumen.

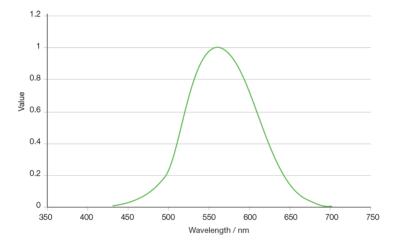


Figure 1: Diagram showing the $V(\lambda)$ curve (human eye response function).

There are four basic radiometric and photometric quantities which are described in the following sub-chapters.

¹ The full range is 360 nm to 830 nm but values are very small at the extremes and it is often limited for practical purposes to the useful range of 380 nm to 780 nm.