
HANSER

Leseprobe

zu

Automotive High Speed Communication Technologies

von Kirsten Matheus und Michael Kaindl

Print-ISBN: 978-3-446-46918-1 E-Book-ISBN: 978-3-446-47042-2

Weitere Informationen und Bestellungen unter https://www.hanser-kundencenter.de/fachbuch/artikel/9783446469181 sowie im Buchhandel

© Carl Hanser Verlag, München

Contents

Pref	ace		XIII
Time	eline .		XVI
Abb	reviatio	ons and Glossary XX	(VIII
1	Intro	duction and Background	1
1.1	The D	istinctive Properties of High-Speed Sensor and Display Use Cases	3
1.2	Backg	ground to Automotive SerDes	6
	1.2.1	The Origin of "SerDes"	6
	1.2.2	Automotive SerDes Terminology	8
	1.2.3	The Status of Automotive SerDes	11
1.3	Backg	round to Automotive Ethernet	13
	1.3.1	The Origin of "Ethernet"	13
	1.3.2	Ethernet in the Automotive Industry	16
	1.3.3	Introduction to High-Speed (HS) Automotive Ethernet	17
1.4	Biblio	graphygraphy	19
2	The A	Automotive Use Cases	21
2.1	Displa	nys	21
	2.1.1	A Brief History of Displays in Cars	22
	2.1.2	Display Basics and Terminology	24
	2.1.3	Display Architectures	29
	2.1.4	Typical Communication Related Requirements of Displays	32
2.2	Came	ras	34
	2.2.1	A Brief History of Cameras in Cars	34
	2.2.2	Camera Basics and Terminology	35

	2.2.3	Camera Architectures	39
	2.2.4	Camera Software, Safety, and Security	41
		2.2.4.1 Software	41
		2.2.4.2 Safety	42
		2.2.4.3 Security	43
	2.2.5	Typical Communication Related Requirements for Cameras	45
2.3	Other	Sensors	46
	2.3.1	Relevant Sensor Types	47
		2.3.1.1 Sound Navigation and Ranging (Sonar)/Ultrasonic Sensors	48
		2.3.1.2 Radio Detection and Ranging (Radar)	50
		2.3.1.3 Light Detection and Ranging (Lidar)	52
		2.3.1.4 Time of Flight (ToF) Cameras	54
	2.3.2	Overall Comparison and Architecture Considerations for Sensors	55
2.4	Other	Use Cases	58
2.5	Biblio	graphy	59
3	The A	Automotive Environment	67
3.1	The A	utomotive Industry as such	67
	3.1.1	The Automotive Product	68
	3.1.2	The Automotive Development and Production	69
		3.1.2.1 Impact with Respect to the Supply Chain	69
		3.1.2.2 Impact with Respect to the Product Life Cycle (PLC)	73
3.2	Gener	al Automotive Requirements	75
	3.2.1	Use-related Requirements	76
	3.2.2	Regulatory Requirements	78
		3.2.2.1 Government Driven Requirements	78
		3.2.2.2 Insurance Driven Requirements	80
3.3	Auton	notive Semiconductors	81
	3.3.1	Semiconductor Quality	81
	3.3.2	Semiconductor Performance	83
	3.3.3	Semiconductor Supply	84
3.4	Riblio	granhy	85

4	The E	lectrom	agnetic Environment in Cars	89
4.1	Electr	oMagneti	c Compatibility (EMC)	89
	4.1.1	Basic Pr	rinciple of Electromagnetic Interference	91
	4.1.2	Relevan	t EMC Levels	92
	4.1.3	Overvie	w on EMC Test Methods	94
	4.1.4	Impact	of a Shield on EMC	99
		4.1.4.1	EMC for Shielded Cables	99
		4.1.4.2	Shield Connection at the Case	102
		4.1.4.3	Interrelation between Shield and Ground	103
4.2	Electr	oStatic Di	ischarge (ESD)	105
	4.2.1	Unpowe	ered ESD	106
		4.2.1.1	ESD Protection in the Production Process	106
		4.2.1.2	ESD Protection Tests	107
		4.2.1.3	Transmission Line Pulse Measurement (TLP)	109
	4.2.2	Powered	1 ESD	110
	4.2.3	How to .	Achieve ESD Protection	112
4.3	Biblio	graphy .		116
5	The A	lutomot	ive Channel	119
5.1			tion	120
5.2	Chanr		iption	122
	5.2.1	-	nce	123
	5.2.2		ng-Parameters	124
	5.2.3	Channe	l Parameters	126
		5.2.3.1	Transmission Related Impairments	126
		5.2.3.2	Self-noise Parameters that Distort the Signal	128
		5.2.3.3	EMC Related Channel Parameters and Other Noise	131
		5.2.3.4	Transmission Channel Interference Model	134
5.3	Cable	s and Cor	nnectors	137
	5.3.1	Cables		139
		5.3.1.1	Unshielded Twisted Pair (UTP) Cables	139
		5.3.1.2	Shielded Twisted Pair (STP) Cables	141
		5.3.1.3	STar-Quad (STQ) Cables	141
		5.3.1.4	Shielded Parallel Pair (SPP) Cables	142
		5.3.1.5	Coaxial Cables	143

		5.3.1.6	Other Multi-port Cables	145
		5.3.1.7	Aging and Mechanical Stress of Cables	148
	5.3.2	Connect	tors	150
		5.3.2.1	Connectors for UTP Cables	151
		5.3.2.2	Connectors for STQ Cables	152
		5.3.2.3	Connectors for SDP (STP and SPP) Cables	152
		5.3.2.4	Connectors for Coaxial Cables	152
	5.3.3	Quo Vad	lis?	155
5.4	Printe	d Circuit	Boards (PCBs)	156
5.5	Biblio	graphy .		159
6	Powe	er		164
6.1	Suppl	ying Powe	er with the Communication	165
	6.1.1	General	Considerations for Power-over	166
		6.1.1.1	The Bias-T	166
		6.1.1.2	Voltage Regulators	167
		6.1.1.3	Failure Detection and Protection	170
	6.1.2	Power o	ver Differential (PoD) Cables	171
	6.1.3	Power o	ver Coaxial Cables	173
		6.1.3.1	Required Inductive Elements	174
		6.1.3.2	Bias-T Example	178
		6.1.3.3	Power Limit	179
		6.1.3.4	PoC Stability	182
		6.1.3.5	PoC Compendium	186
6.2	Power	(Saving)	Modes	188
	6.2.1	Transiti	oning between (Power) Modes	190
	6.2.2	Low Pov	ver Modes	191
		6.2.2.1	Deep Sleep (and Wake-up)	192
		6.2.2.2	Light Sleep	194
6.3	Biblio	graphy .		196
7	Auto	motive S	GerDes Technologies	199
7.1	Analo	gue Trans	smission	200
7.2	Low V	oltage Di	fferential Signaling (LVDS)	201
7.3	Propri	ietary Au	tomotive SerDes Technologies	202
	731	TI's Flat	Panel Display (FPD) Link	203

	7.3.2	Analogue Device's Gigabit Multimedia Serial Link (GMSL)	207
	7.3.3	Inova's Automotive PIXel Link (APIX)	210
	7.3.4	Sony's Gigabit Video InterFace (GVIF)	212
7.4	MIPI A	A-PHY/IEEE 2977	214
	7.4.1	A-PHY Overview and Terminology	215
	7.4.2	A-PHY Channel	217
	7.4.3	A-PHY Physical Layer	220
	7.4.4	A-PHY Data Link and Higher Layers	230
7.5	ASA N	Motion Link (ASAML)	232
	7.5.1	ASAML Channel	234
	7.5.2	ASAML Physical Layer	236
	7.5.3	ASAML Data Link Layer	240
	7.5.4	ASAML Safety and Security	241
	7.5.5	ASAML Application Stream Encapsulation Protocols (ASEPs)	243
7.6	Biblio	graphy	245
8	High-	Speed (HS) Automotive Ethernet	251
8.1	Physic	cal (PHY) Layer Technologies	253
	8.1.1	IEEE 802.3ch for 2.5, 5, and 10 Gbps	253
		8.1.1.1 The IEEE 802.3ch Channel(s)	253
		8.1.1.2 Technical Description of IEEE 802.3ch	255
	8.1.2	IEEE 802.3cy for 25 Gbps	261
		8.1.2.1 The IEEE 802.3cy Channel	261
		8.1.2.2 Technical Description of IEEE 802.3cy	262
	8.1.3	IEEE 802.3cz for 2.5 to 50 Gbps over optical media	263
		8.1.3.1 The IEEE 802.3cz Channel	265
		8.1.3.2 Technical Description of IEEE 802.3cz	266
	8.1.4	Asymmetric Ethernet	268
8.2	Relate	ed Protocols	272
	8.2.1	Power Saving	272
		8.2.1.1 Energy Efficient Ethernet (EEE)	273
		8.2.1.2 Wake-up and Sleep	275
	8.2.2	Quality of Service (QoS) with Time Sensitive Networking (TSN)	276
		8.2.2.1 IEEE 1722	278
		8.2.2.2 Synchronization/Timing with IEEE 802.1AS	279
		8.2.2.3 Traffic Shaping with IEEE 802.1Qav and Qcr	281

		8.2.2.4 Ingress Policing and Filtering with IEEE 802.1Qci	282
		8.2.2.5 Other TSN Protocols	283
	8.2.3	Security	285
8.3	Autom	notive Ethernet versus Automotive SerDes	287
	8.3.1	Principle Comparison	288
	8.3.2	Specific Comparison	290
8.4	Bibliog	graphy	295
9	Relat	ed Standards and Protocols	302
9.1	Color	Formats	302
9.2	Video	Compression Formats	304
	9.2.1	(M)JPEG	305
	9.2.2	MPEG alias H.26x	307
		9.2.2.1 H.262, MPEG-2	308
		9.2.2.2 H.264, MPEG-4, AVC	310
		9.2.2.3 H.265, MPEG-H Part 2, HEVC	310
	9.2.3	VESA Display Compression Codecs	311
9.3	Conte	nt Protection	313
9.4	Audio	Interfaces	315
9.5	Contro	ol Interfaces	316
	9.5.1	General Purpose Input/Output (GPI/O)	317
	9.5.2	Serial Peripheral Interface (SPI)	317
	9.5.3	Inter-IC Bus (I2C)	320
		9.5.3.1 I2C Physical Layer	320
		9.5.3.2 I2C Channel Access	322
		9.5.3.3 I2C Extensions and Derivates	323
	9.5.4	MIPI Improved Inter-IC Bus (I3C)	324
	9.5.5	Using a Memory Map Instead	325
9.6	Camer	ra Protocols	329
	9.6.1	MIPI CSI-2	330
	9.6.2	MIPI D-PHY and C-PHY	331
	9.6.3	MIPI CCS and CSE	333
9.7	Displa	y Protocols	333
	9.7.1	Open LVDS Digital Interface (OpenLDI)	334
	9.7.2	Digital Visual Interface (DVI)	335
	9.7.3	High Definition Multimedia Interface (HDMI)	337

	9.7.4	MIPI Display Serial Interface (DSI-2)	340
	9.7.5	DisplayPort (DP) and Embedded DisplayPort (eDP)	341
	9.7.6	V-by-One	344
	9.7.7	Universal Serial Bus (USB) - C	346
	9.7.8	Overview and Comparison	346
9.8	Biblio	graphy	348
10	Test a	and Qualification	355
10.1	Develo	opment Methods and Testing	356
	10.1.1	Waterfall Model	356
	10.1.2	V-Model	357
	10.1.3	Agile Development	358
10.2	Design	ned for Testability	359
	10.2.1	Built-in Status Registers and Quality Indicators	360
	10.2.2	Accessibility of Information	361
	10.2.3	Scanlines for Testing	363
	10.2.4	Loopback Testing	364
	10.2.5	Built-In Self-Tests (BISTs)	365
10.3	Test C	haracteristics	365
	10.3.1	Test Metrics	366
	10.3.2	Devices Under Test (DUTs)	366
10.4	Test S	pecifications	367
	10.4.1	ISO 9646 Conformance Testing Methodology	368
	10.4.2	Test Specifications for Automotive Ethernet	370
	10.4.3	Test Specifications for Automotive SerDes	371
10.5	Tools		372
	10.5.1	Tools for Channel Tests	373
	10.5.2	Tools for Transmitter/Transceiver Tests	375
	10.5.3	Tools for Evaluating the Data Content	376
10.6	Exper	iences with Testing	378
	10.6.1	The Pitfall of Test Sequences	378
	10.6.2	Unexpected System Behavior	379
	10.6.3	"No Error Found"	380
10.7	Biblio	graphy	380
Inde	x		383

Preface

It is common knowledge that the amount of electronics and software in cars is continuously increasing. Not only are more and more mechanical functions replaced by electronics, but also more driving related functions typically performed by the drivers are substituted or supported by electronic systems, making room for more elaborate and connected infotainment offerings at the same time.

From our perspective, one of the most important enabling infrastructure elements for all of this is the right set of powerful and robust, automotive suitable communication technologies, for which we are at the source. We, the authors of this book, both work at the central department within BMW that is responsible for the in-vehicle communication technologies.

The responsibilities of our department thereby entail it all: the early anticipation and identification of communication requirements, the development and standardization of suitable technologies, the validation and qualification of respective semiconductor products, the writing of requirement specifications on how to deploy the technologies in Electronic Control Units (ECUs) and within the Electric and Electronic (EE) architecture of the cars, ensuring that there are tools and test specifications available, problem solving in case of unexpected errors in the field, and more.

All major car manufacturers have similar departments with a similar set of tasks. Some car manufacturers, like BMW, get involved early. Others might get involved later. What they all have in common is the responsibility for the networking technologies that are used for the communication between many different ECUs, such as LIN, CAN, FlexRay (if used), and lately Automotive Ethernet (especially 100 Mbps). The result is a broad, public knowledge base for all these technologies in the industry and various standardization groups maintaining and advancing the knowhow.

For very application specific technologies, for communication links that are not part of the network (often called "private" communication links), or for communication functions bought in closed systems from Tier 1 suppliers, the situation is not quite as straight forward. These technologies are often not handled in the central departments but within the groups responsible for the application. For these technologies there is little (and practically no public) information available in form of technical descriptions and enabling specifications (EMC, channel, system functions, tests, ...). Industry consortia, driving the technologies forward with consolidated interests, are rare.

The high-speed communication technologies for connecting cameras and displays used to be such application specific technologies. Often seen as private Point-to-Point (P2P) links

with limited numbers per car that are/were supplied in closed systems using proprietary (if not analogue) communication technologies, there has been little incentive for communal efforts in the industry; up to now.

We see various reasons, why it is high time to take responsibility and to broaden the knowledge base in the industry.

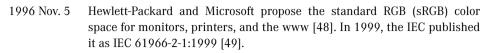
- 1. The number of cameras and displays inside cars is increasing, as is the number of communication links connecting them.
- 2. The importance and safety criticality of the camera and display applications is increasing. Reliability requirements are higher for a camera image used for an autonomous driving function than for one used during a low-speed parking maneuver. Digital instrument cluster or wing mirror replacement displays are more safety critical than a display showing comparably slow changing map data.
- 3. The increasing data rates for camera and display links mean increased technical challenges in form of lower Signal-to-Noise-Ratio (SNR) margins and higher sensitivity to link impairments. This requires more specific knowledge on how to make it work. Additionally, not only cameras and displays are aiming for higher resolutions. Higher data rates are also in discussion for various types of sensors.
- 4. Responsibilities are shifting. Car manufacturers are starting to buy cameras and displays from different Tier 1 suppliers. With that, the systems are no longer closed and the responsibility for the communication technology moves from the Tier 1s to the car manufacturers.
- 5. EE-architectures are changing. Car manufacturers are exploring zonal architectures, which of now, exclude camera and display data transmission for the lack of sufficient data rates supported by suitable communication technologies. New technical developments for Automotive SerDes and Ethernet allow for architecture options with fewer restrictions.
- 6. The boundaries between Automotive SerDes and Automotive Ethernet are blurring. For future architectures, both technologies support enough data rate. With the right IC product designs, future SerDes can integrate into an Ethernet network and Ethernet can address camera and display applications. How to efficiently explore this, when both technologies are handled in different departments?
- 7. Automotive SerDes is being standardized and now actually provides an official framework for the respective work in the industry.

These are good reasons, why some car manufacturers have already moved the responsibility for the camera and display links to the central in-vehicle communication technologies departments. In our case, for example, some of the responsibility for SerDes was moved to us, the authors of this book, as early as 2015. Since then, we have investigated, learned, driven, collected, and are now eager to share. This book is the result. It keeps it technical. We intend this book to support beginners as well as experts at all stages of the value chain in gaining a comprehensive overview on the High-Speed (HS) sensor and display communication technologies Automotive SerDes and HS Automotive Ethernet. We believe in sound technical reasoning and would like to support all interested parties in drawing their own conclusions.

This is the first edition of a new book with lots of new content. It would not have been possible to complete it in the same quality without the many colleagues who answered all the smaller or larger questions we had. We would like to thank (in alphabetical order) Heather Babcock (TI), Kristian Baumann (BMW), Bert Bergner (TE), Andreas Brösse (BMW), Vijay Ceekala (TI), Jim Conder (Socionext), Kamal Dalmia (Aviva Links), Mario Heid (Omnivision), Stefan Holzknecht (BMW), Kilian Jacob (BMW), Ariel Lasry (Qualcomm), Balagopal Mayampurath (ADI), Andy McLean (ADI), Chanakya Metha (TI), Thorsten Meyer (Valeo), Roland Neumann (Inova), Takashi Nishimura (SONY), Jochen Schyma (NXP), Anton Sifferlinger (BMW), Luisma Torres (KDPOF), Dirk Waldhauser (BMW), Rick Wietfeldt (Qualcomm), Conrad Zerna (Aviva Links), and George Zimmerman (CME Consulting).

A very special thanks goes to Daniel Hopf (Continental) who reviewed and annotated the complete book and who made it more consistent and precise with his effort.

We would also like to thank BMW for giving us the opportunity to make a difference.


June 2022, Michael Kaindl and Kirsten Matheus

Timeline

1886	Carl Benz is granted a patent on "Fahrzeug mit Gasmotorenbetrieb (engl.: gas powered vehicle)" [1] and starts building identical copies of cars. While several motor vehicles have been built prior to this and successful commercial exploitation still needs some years to come [2], 1886 can be seen as the starting year for commercial automobile production. Tachometers had been invented in 1817 and were first used in trains in 1840. It is unclear when they were first used in cars [3].
1892	First ever law on ElectroMagnetic Compatibility (EMC) is passed in Germany in the context of the upcoming telegraph and telephone business [4].
1902	German engineer Otto Schulze patents a technology using a magnet created eddy-current that translates the speed of rotation of the wheels to a dial. Until well into the 1980s, almost all speedometers in cars were based on this technology. Speedometers are standard equipment in cars by 1910 [5].
1904	First patent on radar technology is filed at the German patent office for "a method to notify of the presence of metallic objects with help of electromagnetic waves" which can determine the objects distance [6].
1908	The first car produced in a moving assembly line is the Ford Model T [7].
1917	Invention of the fuel gauge [8].
1927	Germany passes the first law on the use and installation of high frequency radio transmitters, which, with adaptations, is in place until 1995 [4].
1930	Sale start of first commercially successful in-car radio [9].
1931	The Commission Internationale de l'Éclairage (CIE) defines with the Red Green Blue (RGB) color space the first quantitative relationship between the distribution of wavelengths in the visible spectrum and perceived colors [10].
1933	Founding of the Comité International Spécial des Perturbations Radioélectriques (CISPR) in order to develop guidelines on EMC in Europe [4].
1952	First sale of commercial Frequency Modulation (FM) in-car radios. Amplitude Modulation (AM) is dominantly used in the market at the time [9].

1956	Advent of the first fully automated mobile telephone system, allowing making and receiving calls in cars using the public telephone network [11].	
1956 Jan.	First showcase of a backup camera is presented at the General Motors Motorama in a Buick Centurion concept car [12].	
1958 Dec.	Publication on laser marks its invention [13].	
1973	Year of the invention of Ethernet. Ethernet is demonstrated for the first time at Xerox PARC in order to enable the transmission of data between Xerox's personal computer workstations and laser printers [14] [15].	
1973	The International Electrotechnical Commission (IEC) creates a special technical committee to specify EMC for different fields of use [4].	
1974	First Charge-Coupled Device (CCD) image sensor goes into production [16].	
1974 Dec.	First release of the "Specification of Internet Transmission Control Protocol (TCP)" [17].	
1976 Sep. 9	The president of JVC presents the Video Home System (VHS) [18]. Other markets outside Japan receive the first products from 1977 on [19].	
1979	Aston Martin presents its Lagonda with an elaborate array of LED screens [20].	
1979 Jun.	The 7-layer Open Systems Interconnection (OSI) model is published at the International Organization for Standardization (ISO) [21]. The respective committee was formed in 1977 [22].	
1980 Dec.	The Institute of Electrical and Electronics Engineers (IEEE) starts the 802.3 working group dedicated to CSMA/CD (Ethernet) [23].	
1981	Release of the first commercially available in-car navigation system by Honda called "Electro Gyro-Cator" that provided guidance by tracking the distance and direction travelled from the start point [24].	
1982	Philips Semiconductors (now NXP Semiconductors) develops the Inter-IC bus (I2C) [25].	
1982 Jan. 26	As the first car manufacturer, Toyota offers a sonar-based backup parking system in a series production car [26].	
1982 Oct.	First commercial CD-player is sold in Japan (by Sony) [27].	
1983	Introduction of the analogue content protection technology from Macrovision for VHS video cassettes [28].	
1985	First factory-installed in-car CD player [9].	
1986	Kodak develops the first digital camera to record 1.4 MPixels. It uses a CCD imager [29].	
1986	The Buick Riviera is likely the first series production car with a touch screen [20].	
1986 Feb.	First release of the Philips Semiconductors' (now NXP Semiconductors') I2S audio bus interface specification [30].	

1987	Toyota sells its Royal Crown model with a color display for its CD-based navigation system $[20]$.
1988	Establishment of the Moving Picture Experts Group (MPEG) for the development of standards for the coded representation of media data such as audio and video [31].
1988 Nov.	The Video Electronics Standards Association (today only using its abbreviation "VESA") is founded on the initiative of NEC in order to standardize video display interfaces [32]. The organization is incorporated in July 1989 [33].
1989 Oct.	The TCP/IP Internet Protocol Suite is being published as "Requirements for Internet Hosts – Communication Layers", RFC 1122 [34] and "Requirements for Internet Hosts – Application and Support", RFC 1123 [35].
1989/90	The World Wide Web (www) is invented at CERN [36].
1990	Development of the CMOS active pixel sensor [37].
1990	Mazda introduces its Eunos Cosmo with an in-dashboard color display as the first GPS-based navigation system [20].
1990 Sep.	IEEE 802.3 ratifies the Ethernet specification 10BASE-T [15], with which Ethernet allegedly won the battle over competing technologies [14].
1992	The first "smart" mobile phone with a touch screen, the IBM Simon, is commercially sold [38].
1992 Sep. 18	The International Telecommunication Union (ITU) releases the Recommendation T.81 for the Joint Photographic Expert Group (JPEG) compression format [39].
1994 Jun.	First release of the AEC-Q100 specification on automotive quality for integrated circuits at the Automotive Electronic Council (AEC) [40].
1994	National Semiconductor (now TI) introduces the Low Voltage Differential Signaling (LVDS) technology [41], which is subsequently published as ANSI/TIA/EIA-644-1995 [42] and as IEEE 1596.3 in July 1996 [43]. The data rate the standard originally supports is 655 Mbps.
1995	The ISO/IEC publishes a backwards compatible MPEG-2 Audio specification (MPEG-2 Part 3) – commonly referred to as MP3 – with additional bit and sample rates $[44]$.
1995 Dec. 8	Toshiba, Matsushita, Sony, Philips, Time Warner, Pioneer, JVC, Hitachi, and Mitsubishi Electric announce their agreement on a unified DVD format [45].
1996	The ISO/IEC publishes the MPEG-2 video (MPEG-2 Part 2) specification, which is used among other, for the DVD standard. The ITU publishes it as $\rm H.262~[46]$.
1996	National Semiconductor (now TI) develops the first FPD-link specification, which it publishes in order to achieve a large market acceptance [47].

Publication of IEEE 802.3x, which supports full-duplex operation for Ethernet [50].

1998 First Publication of IEEE 802.1Q, which adds – among other functions – the option of eight priority queues and Virtual LANs (VLANs) to Ethernet communication [51].

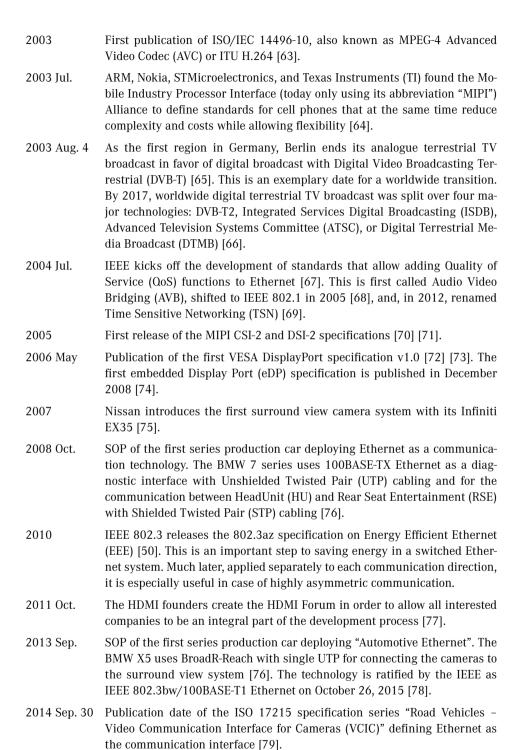
Daimler introduces the first radar based adaptive speed driver assist system into the market [52].

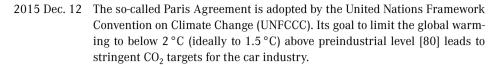
1998 Oct. 28 U.S. president Bill Clinton signs the Digital Millennium Copyright Act (DMCA), which provides the basis for the prosecution of copyright infringements on the Internet. It is subsequently adopted similarly in other countries and regions [53].

1999 May Napster launches its "share it with all for free" platform. This is possible because of the combination of Internet and audio compression standards. It irreversibly changed the media industry and media consumption. It lasted until February 2001 [54].

1999 May The first phone with an integrated camera, the Kyocera VP-210, is commercially sold to the general public [55].

1999 Apr. 2 Release of the Digital Visual Interface (DVI) by the Digital Display Working Group (DDWG), which focusses on providing a standardized connection between a computer and a displaying device [56].


1999 May 13 National Semiconductor (now TI) releases the Open LVDS Display Interface (OpenLDI) Specification v. 0.95 as an open standard to complete the digital connection between video sources and displaying devices [57] as initiated with the LVDS technology.


The Nissan Infinity Q45 is offering a series production rear view/backup camera. This is said to have initiated the backup camera market [12].

2000 Feb. 17 Intel releases version 1.0 of the High-bandwidth Digital Content Protection (HDCP) specification, which targets at preventing the recording and distribution of HD video content [58]. In the coming years, its support is mandated by many content providers.

2001 Nov. Start of Production (SOP) of the BMW 7 series using a central, dashboard-mounted display for user information and interaction (plus "iDrive") [59]. Often, credit is given to BMW for initiating that such a screen as a central hub for car interaction has become a standard feature [60]. The same car is also the first with a digital video link to connect a display: The FPD-link is used for connecting the Rear Seat Entertainment (RSE) display.

2002 Dec. 9 Announcement of the HDMI 1.0 connectivity standard by the seven founding members Hitachi, Matsushita, Philips, Silicon Image, Sony, Thomson, and Toshiba [61] (now Lattice, Maxell, Panasonic, Philips, Sony, Technicolor, and Toshiba [62]).

- 2016 Nov. 10 Call For Interest (CFI) is presented and approved that initiates the efforts to standardize what later becomes MultiGBASE-T1 Ethernet for 2.5, 5, and 10 Gbps data rate in automotive environments at IEEE 802.3 [81].
- 2016 Dec. IEEE 802.3 releases the IEEE 802.3bu specification on Power over Data Line (PoDL) [50]. While this specification targets the single pair 100 Mbps and 1 Gbps Automotive Ethernet technologies, it set an important starting point for higher data rates.
- 2017 Jan. The MIPI Alliance concludes its I3C specification v1.0. A public version is released in December of the same year [82].
- The Audi A8 is the first series production car with a Lidar [83]. However, after having subsequently removed it [84], the XPeng P5 might have rightly claimed to be once more the first in December 2021 [85].
- 2018 Aug. 2 The MIPI Alliance announces the standardization of their A-PHY [86].
- 2019 May Founding of the Automotive SerDes Alliance (ASA) [87].
- 2019 July CFI for an automotive suitable multi-Gbps optical Ethernet PHY technology is presented and accepted at IEEE 802.3 [88].
- 2020 Jun IEEE 802.3 releases the IEEE 802.3ch/MultiGBASE-T1 specification for 2.5, 5, and 10 Gbps transmission over a single twisted pair in an automotive environment [50]. While the specification allows for symmetric data rates only, the EEE function may be activated individually per direction.
- 2020 Jun. 24 The "Greater than 10 Gb/s Electrical Automotive Ethernet PHYs Task Force (TF)" holds its first meeting at IEEE 802.3 [89]. Being able to use the technology asymmetrically is one of the properties discussed but adhered to only by applying EEE asymmetrically.
- 2020 Jul. 14 The Multi-Gigabit Optical Automotive Ethernet TF holds its first TF meeting at IEEE 802.3 [90].
- 2020 Sep. 15 MIPI announces the release of their MIPI A-PHY specification 1.0 [91].
- 2020 Oct. 13 The Automotive SerDes Alliance announces the finalization of their ASA Motion Link specification 1.01 [87].

Bibliography

- [1] C. Benz, "Fahrzeug mit Gasmotorenbetrieb". Mannheim Patent 37435, 19 January 1886.
- [2] Daimler, "1886–1920. Anfänge des Automobils," not known. [Online]. Available: https://www.daimler.com/konzern/tradition/geschichte/1886-1920.html. [Accessed 26 January 2021].
- [3] P. Fears, "The History of the Tachometer," Cearbont Automotive Instruments, 17 February 2017. [Online]. Available: https://www.caigauge.com/blog/the-history-of-the-tachometer. [Accessed 12 March 2021].
- [4] D.E. Möhr, "Was ist eigentlich EMV? Eine Definition," not known. [Online]. Available: http://www.emtest.de/de/what is/emv-emc-basics.php (no longer available). [Accessed 6 May 2020].
- [5] N. Berg, "Great Inventions: The Speedometer," Hagerty, 6 July 2020. [Online]. Available: https://www.hagerty.com/media/automotive-history/great-inventions-the-speedometer/. [Accessed 2 April 2021].
- [6] W. Holpp, "Geschichte des Radars," 2004. [Online]. Available: https://www.100-jahre-radar.fraun hofer.de/index.html?/content_gdr1.html. [Accessed 2 February 2022].
- [7] History.com, "Model T," 2 May 2019. [Online]. Available: https://www.history.com/topics/inventions/model-t. [Accessed 7 February 2021].
- [8] K. Kupchik, "10 Inventions That Changed Cars Forever," 2 July 2014. [Online]. Available: https://www.zaloomsautorepair.com/blog/10-inventions-that-changed-cars-forever. [Accessed 3 April 2021].
- [9] J. Berkowitz, "The History of Car Radios," Car And Driver, 25 October 2010. [Online]. Available: https://www.caranddriver.com/features/a15128476/the-history-of-car-radios/. [Accessed 7 February 2021].
- [10] T. Smith and J. Guild, "The C.I.E Colorimetric Standards and their Use," Transactions of the Optical Society, vol. 33, no. 3, pp. 73-134, 1931.
- [11] Not known, "Facts about the Mobile. A Journey through Time.," about 2007. [Online]. Available: https://web.archive.org/web/20100813122017/; http://www.mobilen50ar.se/eng/FaktabladENGFinal.pdf. [Accessed 7 February 2021].
- [12] N. Andreev, "A Brief History of Car Parking Technology," Confused.com, 13 June 2018. [Online]. Available: https://www.confused.com/on-the-road/gadgets-tech/parking-technology-brief-history# (no longer available). [Accessed 13 March 2021].
- [13] A. Chodos and J. Ouellette, "December 1958: Invention of the Laser," December 2003. [Online]. Available: https://www.aps.org/publications/apsnews/200312/history.cfm. [Accessed 3 February 2022].
- [14] R.M. Metcalfe, "The History of Ethernet," 14 December 2006. [Online]. Available: https://www.youtube.com/watch?v=g5MezxMcRmk. [Accessed 6 May 2020].
- [15] C.E. Surgeon, Ethernet: The Definite Guide, Sebastopol, CA: O'Reilly, 2000, February.
- [16] Wikipedia, "Charge-Coupled Device," 9 August 2021. [Online]. Available: https://en.wikipedia. org/wiki/Charge-coupled_device. [Accessed 22 October 2021].
- [17] Wikipedia, "Internet Protocol Suite," 30 June 2013. [Online]. Available: http://en.wikipedia.org/wiki/Internet_protocol_suite. [Accessed 5 July 2013].
- [18] Museum of Arts and Design, "Film Series/VHS," 2012. [Online]. Available: https://www.mad museum.org/series/vhs. [Accessed 15 March 2022].
- [19] total rewind, "JVC HR-3300," 1978. [Online]. Available: https://www.totalrewind.org/vhs/H_3300. htm. [Accessed 15 March 2022].

- [20] M. Bubbers, "Shift From Huge In-car Screens May be Under Way but First They'll get Bigger," The Globe and Mail, 2 May 2018. [Online]. Available: https://www.theglobeandmail.com/drive/culture/article-shift-from-huge-in-car-screens-may-be-under-way-but-first-theyll/. [Accessed 12 March 2021].
- [21] W. Stallings, "The Origin of OSI," 1998. [Online]. Available: http://williamstallings.com/Extras/ OSI.html. [Accessed 6 May 2020].
- [22] A. L. Russel, "OSI: The Internet That Wasn't," 30 July 2013. [Online]. Available: http://spectrum.ieee.org/computing/networks/osi-the-internet-that-wasnt. [Accessed 6 May 2020].
- [23] U. v. Burg and M. Kenny, "Sponsors, Communities, and Standards: Ethernet vs. Token Ring in the Local Area Networking Business," Industry and Innovation, vol. 10, no. 4, pp. 351–375, December 2003.
- [24] CNN, "Japanese Inventions that Changed the Way we Live," 30 June 2017. [Online]. Available: https://edition.cnn.com/2017/06/13/world/gallery/japanese-inventions-changed-how-we-live/index.html. [Accessed 13 March 2021].
- [25] Arrow, "What is I2C? How Inter-Integrated Circuits Work," 4 February 2019. [Online]. Available: https://www.arrow.com/en/research-and-events/articles/what-is-i2c-how-inter-integrated-circuits-work. [Accessed 15 May 2022].
- [26] Toyota, "Toyota Corona Undergoes full Model Change," 26 January 1982. [Online]. Available: https://global.toyota/en/detail/7675511. [Accessed 1 February 2022].
- [27] Sony, "Product & Technology Milestones, Home Audio," 2022, continuously updated. [Online]. Available: https://www.sony.com/en/SonyInfo/CorporateInfo/History/sonyhistory-a.html. [Accessed 15 March 2022].
- [28] Wikipedia, "Macrovision," 17 Oktober 2019. [Online]. Available: https://de.wikipedia.org/wiki/ Macrovision. [Accessed 2 November 2021].
- [29] M. Bellis, "The History of the Digital Camera," ThoughtCo, 29 March 2020. [Online]. Available: https://www.thoughtco.com/history-of-the-digital-camera-4070938. [Accessed 14 March 2021].
- [30] Philips Semiconductors, "I2S specification," 5 June 1996. [Online]. Available: https://web.archive. org/web/20070102004400/http://www.nxp.com/acrobat_download/various/I2SBUS.pdf. [Accessed 18 April 2022].
- [31] MPEG, "MPEG," 2022, continuously updated. [Online]. Available: https://www.mpeg.org/. [Accessed 16 March 2022].
- [32] M. Brownstein, "NEC forms Video Standards Group," 14 November 1988. [Online]. Available: https://books.google.de/books?id=wTsEAAAAMBAJ&pg=PT2. [Accessed 20 March 2022].
- [33] Wikipedia, "Video Electronics Standards Association," 29 April 2022. [Online]. Available: https://en.wikipedia.org/wiki/Video_Electronics_Standards_Association. [Accessed 30 April 2022].
- [34] R. Braden, "RFC 1122," October 1989. [Online]. Available: http://tools.ietf.org/pdf/rfc1122.pdf. [Accessed 23 June 2013].
- [35] R. Braden, "RFC 1123," October 1989. [Online]. Available: tools.ietf.org/pdf/rfc1123.pdf. [Accessed 26 June 2013].
- [36] P. Barford, "The World Wide Web," University of Wisconsin, 11 September 2008. [Online]. Available: https://pages.cs.wisc.edu/~pb/640/web.ppt. [Accessed 6 May 2020].
- [37] Wikipedia, "Active Pixel Sensor," 22 September 2021. [Online]. Available: https://de.wikipedia.org/wiki/Active_Pixel_Sensor. [Accessed 17 October 2021].

- [38] Georgia Southern University, Colleague of Arts and Humanities, "Future Phonics, History of Phones," (not known). [Online]. Available: https://georgiasouthern.libguides.com/c.php?g=612229&p=4545365. [Accessed 16 April 2022].
- [39] Joint Photographic Experts Group, "Information technology Digital Compression and Coding of Continuous-tone Still Images Requirements and Guidelines," International Telecommunication Union, Geneva, 1992.
- [40] Automotive Electronics Council, "AEC History," not known. [Online]. Available: http://www.ae council.com/AECHistory.html. [Accessed 6 May 2020].
- [41] M. Defossez, "Xilinx D-PHY Solutions," 1 February 2021. [Online]. Available: https://docs.xilinx.com/v/u/en-US/xapp894-d-phy-solutions. [Accessed 2022 18 April].
- [42] L. Davis, "RS-644 Bus," 1998. [Online]. Available: http://www.interfacebus.com/Design_Connec tor RS644.html. [Accessed 30 December 2021].
- [43] IEEE, "1596.3-1996 IEEE Standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface (SCI)," IEEE, New York, 1996.
- [44] ISO, "ISO 13818-3:1995 Information Technology Generic Coding of Moving Pictures and Associated Audio Information Part 3: Audio," ISO, Geneva, 1995.
- [45] Toshiba, "DVD Format Unification," 8 December 1995. [Online]. Available: https://web.archive. org/web/19970501192002/http://www.toshiba.co.jp/about/press/1995_12/pr0802.htm. [Accessed 15 March 2022].
- [46] Wikipedia, "MPEG-2," 17 February 2022. [Online]. Available: https://en.wikipedia.org/wiki/ MPEG-2. [Accessed 15 March 2022].
- [47] Wikipedia, "FPD-Link," 9 December 2020. [Online]. Available: https://en.wikipedia.org/wiki/FPD-Link. [Accessed 27 March 2021].
- [48] M. Stokes, M. Anderson, S. Chandrasekar and R. Motta, "A Standard Default Color Space for the Internet - sRGB," 5 November 1996. [Online]. Available: https://www.w3.org/Graphics/Color/ sRGB.html. [Accessed 13 March 2022].
- [49] International Electrotechnical Commission, "IEC 61966-2-1:1999 Multimedia Systems and Equipment Colour Measurement and Management Part 2-1: Colour Management Default RGB Colour Space sRGB," International Electrotechnical Commission, Geneva, 1999.
- [50] Wikipedia, "IEEE 802.3," 29 December 2020. [Online]. Available: https://en.wikipedia.org/wiki/ IEEE_802.3. [Accessed 7 February 2021].
- [51] IEEE 802.1, "802.1Q- IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged Local Area Networks," IEEE Communication Society, New York, 1998.
- [52] H.H. Meinel, "Evolving Automotive Radar from the very Beginnings into the Future," in: The 8th European Conference on Antennas and Propagation, The Hague, 2014.
- [53] Wikipedia, "Digital Millenium Copyright Act," 28 March 2022. [Online]. Available: https://en.wikipedia.org/wiki/Digital_Millennium_Copyright_Act. [Accessed 26 June 2022].
- [54] T. Lamont, "Napster: the Day the Music Was Set Free," 24 February 2013. [Online]. Available: https://www.theguardian.com/music/2013/feb/24/napster-music-free-file-sharing. [Accessed 6 May 2020].
- [55] J. Callaham, "The First Camera Phone was Sold 21 Years Ago, and it's not What You Might Expect," Android Authority, 1 June 2021. [Online]. Available: https://www.androidauthority.com/first-camera-phone-anniversary-993492/. [Accessed 14 March 2021].

- [56] Digital Display Working Group, "Digital Visual Interface DVI," 2 April 1999. [Online]. Available: https://web.archive.org/web/20120813201146/http://www.ddwg.org/lib/dvi_10.pdf. [Accessed 20 April 2022].
- [57] National Semiconductors, "Open LVDS Display Interface (OpenLDI) specification v0.95," 13 May 1999. [Online]. Available: https://glenwing.github.io/docs/OpenLDI-0.95.pdf. [Accessed 16 April 2021].
- [58] Wikipedia, "High-bandwidth Digital Content Protection," 12 June 2022. [Online]. Available: https://en.wikipedia.org/wiki/High-bandwidth_Digital_Content_Protection. [Accessed 27 June 2022].
- [59] 7-forum.com, "Das iDrive System im neuen 7er," 7 March 2008. [Online]. Available: https://www. 7-forum.com/modelle/e65/idrive.php. [Accessed 12 March 2021].
- [60] D. Homer, "The First Car With a Touchscreen Came Out in the '80s," MotorBiscuit, 1 January 2021. [Online]. Available: https://www.motorbiscuit.com/the-first-car-with-a-touchscreen-came-outin-the-80s/. [Accessed 12 March 2021].
- [61] R.L. Maestra, "HDMI A Digital Interface Solution," 26 July 2006. [Online]. Available: https://web.archive.org/web/20160530220657/http://www.hdtvmagazine.com/articles/2006/07/hdmi_part_1_-a.php. [Accessed 27 December 2021].
- [62] HDMI, "HDMI Founders," 2021. [Online]. Available: https://www.hdmi.org/adopter/founders. [Accessed 27 December 2021].
- [63] ISO/IEC, "ISO/IEC 14496-10:2004 Information Technology Coding of Audio Visual Objects -Part 10: Advanced Video Coding," 2004. [Online]. Available: https://www.iso.org/standard/40890. html. [Accessed 18 March 2022].
- [64] R. Merritt, "Mobile Chip Interface Gets Real," 13 February 2006. [Online]. Available: https://www.eetimes.com/mobile-chip-interface-gets-real/. [Accessed 28 November 2021].
- [65] N. Jurran, "Berlin: Die Antenne ist tot, es lebe die Antenne!," 4 August 2003. [Online]. Available: https://www.heise.de/newsticker/meldung/Berlin-Die-Antenne-ist-tot-es-lebe-die-Antenne-82989. html. [Accessed 1 January 2022].
- [66] R. A. Trappe, "DTV Status," 26 June 2017. [Online]. Available: http://es.dtvstatus.net/. [Accessed 04 January 2022].
- [67] R. Brand, S. Carlson, J. Gildred, S. Lim, D. Cavendish and O. Haran, "Residential Ethernet, IEEE 802.3 Call for Interest," July 2004. [Online]. Available: https://grouper.ieee.org/groups/802/3/ re_study/public/200407/cfi_0704_1.pdf. [Accessed 6 May 2020].
- [68] IEEE 802.3, "IEEE 802.3 Residential Ethernet Study Group Homepage," 10 January 2006. [Online]. Available: https://grouper.ieee.org/groups/802/3/re_study/. [Accessed 6 May 2020].
- [69] IEEE 802.1, "802.1 Plenary -11/2012 San Antonio Closing," November 2012. [Online]. Available: https://www.ieee802.org/1/files/public/minutes/2012-11-closing-plenary-slides.pdf. [Accessed 6 May 2020].
- [70] Wikipedia, "Camera Serial Interface," 8 December 2021. [Online]. Available: https://en.wiki-pedia.org/wiki/Camera_Serial_Interface. [Accessed 14 April 2022].
- [71] MIPI Alliance, "An Overview of MIPI's Standardized In-vehicle Connectivity Framework for High-Performance Sensors and Displays," August 2021. [Online]. Available: https://www.mipi. org/mipi-white-paper-introductory-guide-mipi-automotive-serdes-solutions-mass. [Accessed 14 April 2022].
- [72] Hewlett Packard, "An Overview of Current Display Interfaces," March 2011. [Online]. Available: http://h10032.www1.hp.com/ctg/Manual/c01285675. [Accessed 28 December 2021].

- [73] Wikipedia, "DisplayPort," 12 March 2022. [Online]. Available: https://en.wikipedia.org/wiki/ DisplayPort#Display_Stream_Compression. [Accessed 20 March 2022].
- [74] C. Wiley, "eDP Embedded DisplayPort The New Generation Digital Display Interface for Embedded Applications," 6 December 2010. [Online]. Available: https://www.vesa.org/wp-content/uploads/2010/12/DisplayPort-DevCon-Presentation-eDP-Dec-2010-v3.pdf. [Accessed 7 June 2022].
- [75] M. Jerome, "Nissan to Bring Around-View Monitor to Infiniti EX35," Wired, 16 October 2007.
 [Online]. Available: https://www.wired.com/2007/10/nissan-to-bring/. [Accessed 3 April 2021].
- [76] K. Matheus and T. Königseder, Automotive Ethernet, Third Edition, Cambridge: Cambidge University Press, 2021.
- [77] HDMI Forum, "Questions about the HDMI Forum: Why Create an Open Organization Now," 2021.
 [Online]. Available: https://hdmiforum.org/about/faq/. [Accessed 27 December 2021].
- [78] IEEE Computer Society, "802.3bw-2015 IEEE Standard for Ethernet Amendment 1 Physical Layer Specifications and Management Parameters for 100 Mb/s Operation over a Single Balanced Twisted Pair Cable (100BASE-T1)," IEEE-SA, New York, 2015.
- [79] ISO, "ISO 17215-(1-4):2014 Road Vehicles Video Communication Interface for Cameras (VCIC) Part 1-4," ISO, Geneva, 2014.
- [80] Wikipedia, "Paris Agreement," 30 April 2020. [Online]. Available: https://en.wikipedia.org/wiki/ Paris_Agreement. [Accessed 9 May 2020].
- [81] S. Carlson, H. Zinner, K. Matheus, N. Wienckowski and T. Hogenmüller, "CFI Multi-Gig Automotive Ethernet PHY," 9 November 2016. [Online]. Available: https://www.ieee802.org/3/ad_hoc/ngrates/public/16_11/20161108_CFI.pdf. [Accessed 6 May 2020].
- [82] R. Wilson, "MIPI Makes Market Push for I3C Sensor Interface," Electronics Weekly, 14 December 2017. [Online]. Available: https://www.electronicsweekly.com/news/mipi-makes-market-push-i3csensor-interface-2017-12/. [Accessed 15 May 2022].
- [83] P.E. Ross, "The Audi A8: the World's First Production Car to Achieve Level 3 Autonomy," IEEE Spectrum, 11 July 2017. [Online]. Available: https://spectrum.ieee.org/the-audi-a8-the-worlds-first-production-car-to-achieve-level-3-autonomy. [Accessed 7 June 2022].
- [84] F. Greis, "1000 Meilen wenig Säulen, Lidar wird nicht mehr benötigt," golem.de, 5 September 2019. [Online]. Available: https://www.golem.de/news/langstreckentest-im-audi-e-tron-1-000-meilen -wenig-saeulen-1909-143640-5.html. [Accessed 25 March 2022].
- [85] Pandaily, "XPeng P5, the World's First Production Lidar Car, Rolls off Assembly Line," 20 October 2021. [Online]. Available: https://pandaily.com/xpeng-p5-the-worlds-first-production-lidar-car-rolls-off-assembly-line/. [Accessed 3 February 2022].
- [86] MIPI Alliance, "MIPI Alliance to Advance Autonomous Driving, other Automotive Applications with New Data Interface Specifications at 12-24 Gbps and Beyond," 2 August 2018. [Online]. Available: https://www.mipi.org/mipi-to-advance-autonomous-driving-other-automotive-applications. [Accessed 29 March 2021].
- [87] S. Brunner, "Automotive SerDes Alliance (ASA) Completes the First Automotive SerDes Standard with Integrated Security," Automotive SerDes Alliance, 13 October 2020. [Online]. Available: https://auto-serdes.org/news/automotive-serdes-alliance-asa-completes-the-first-automotive-serdes-standard-with-integrated-security-325/. [Accessed 28 March 2021].
- [88] C. Pardo, H. Goto, T. Nomura and B. Grow, "Automotive Optical Multi Gig Call For Interest Consensus Presentation," July 2019. [Online]. Available: https://www.ieee802.org/3/cfi/0719_1/CFI_01_0719.pdf. [Accessed 29 March 2021].

- [89] IEEE 802.3, "Homepage of the IEEE 802.3 Greater than 10 Gb/s Electrical Automotive Ethernet PHYs Task Force," 2020, continuously updated. [Online]. Available: https://www.ieee802.org/3/cy/public/jun20/index.html. [Accessed 7 September 2020].
- [90] IEEE 802.3, "Homepage of the IEEE 802.3 Multi-Gigabit Optical Automotive Ethernet Task Force," 2020, continuously updated. [Online]. Available: https://www.ieee802.org/3/cz/public/index. html. [Accessed 6 September 2020].
- [91] MIPI Alliance, "MIPI Alliance Releases A-PHY SerDes Interface for Automotive," 15 September 2020. [Online]. Available: https://www.mipi.org/MIPI-Alliance-Releases-A-PHY-SerDes-Interfacefor-Automotive. [Accessed 28 March 2021].

Abbreviations and Glossary

	Abbreviation	Explanation
1PPODL	One Pair Power Over Data Line	Study group name for IEEE 802.3bu
2D	2-Dimensional	
3D	3-Dimensional	
4PPoE	Four Pair Power over Ethernet	IEEE 802.3bt 2018, for cables consisting of four twisted pairs
8P8C	8 Positions 8 Contacts	Modular connector specified in IEC 60603-7
μ	micro	
μC	MicroController	
Α	Ampere	
A2B	Automotive Audio Bus	Communication interface from ADI
AC	Alternating Current	
ACC	Adaptive Cruise Control	
ACK	ACKnowledge	
ACMD	A-PHY Control and Management Database	
ACMP	A-PHY Control and Management Protocol	
AD	Autonomous Driving	
ADAS	Advanced Driver ASsist or Advanced Driver Assistance System	
ADC	Analogue to Digital Converter or Conversion	
ADI	Analog Devices	
AEB	Automated Emergency Braking	
AEC	Automotive Electronic Council	Standardization organization focusing on electronic part qualification for the automotive industry
AFDX	Avionics Full-Duplex Switched Ethernet	Ethernet protocol used in the aerospace industry

	Abbreviation	Explanation
AGC	Adaptive Gain Control	
AIAG	Automotive Industry Action Group	
ALEI	Adaptation Layer Extended Information	Part of the IEEE 2977 DLL packet
ALSE	Absorber-Lined Shielded Enclosure	Described in ISO 11452-2
AM	Amplitude Modulation	Used for the reception of analogue radio in the short, medium and long wave bands
AMEC	Automatable Module Ethernet Connector	
AML	ASA Motion Link	Also ASAML
AMP	Amplifier	
ANSI	American National Standards Institute	US SSO based in Washington D.C.
AOSC	Always-On Sentinel Conduit	Part of CSI-2 v4.0
APD	Avalanche Photo Diode	
API	Application Programming Interface	
APIX	Automotive PIXel link	Inova's name for their proprietary SerDes technology
APPI	A-PHY Protocol Interface	
ARQ	Automatic Retransmission/Repeat reQuest	
ASA	Automotive SerDes Alliance	Alliance for Automotive SerDes connectivity, home of the ASA Motion Link
ASAML	ASA Motion Link	Also AML
ASE	Application Stream Encapsulator	Part of the ASAML
ASEP	Application Stream Encapsulation Protocol	Protocol adaptation for the ASA Motion Link
A-shell	Automotive shell	Unified communication interface for the side-channel of APIX
ASIC	Application-Specific Integrated Circuit	
ASIL	Automotive Safety Integrity Level	Classification methodology for functional safety
ASP	Abstract Service Primitive	
ATCA	Advanced TeleComputing Architecture	I2C derivate
ATS	Asynchronous Traffic Shaping	Defined in IEEE 802.1Qcr-2020
ATSC	Advanced Television Systems Committee	US American set of digital television standards
AUTOSAR	AUTomotive Open System ARchitecture	
AUTOSAR	AUTOSAR SECure Onboard	
SecOC	Communication	

	Abbreviation	Explanation
AVB	Audio Video Bridging	
AVC	Advanced Video Coding	
AVP	Autonomous Valet Parking	
AWG	Arbitrary Waveform Generator or American Wire Gauge	
AWGN	Additive White Gaussian Noise	
B2B	Business-to-Business	
BCI	Bulk Current Injection	
BER	Bit Error Rate	
B-frame	Bi-directional predictive coded picture or frame	Part of MPEG encoding
BGA	Ball Grid Array	Package type for semiconductors
BIST	Built-In Self-Test	
ВК	Binding Key	Part of the ASA security concept
BMCA	Best Master Clock Algorithm	Part of IEEE 802.1AS-2011
BNC	Bayonet Neill Concelman	Connector used also for CBVS video, named after their inventors
BOM	Bill of Material	
bpp	bits per pixel	
bps	bits per second	
BSD	Blind Spot Detection	
BTA	Bus TurnAround	Part of MIPI C- and D-PHY
B/W	Black & White	
CAD	Command-Address-Data	Part of the ASAML OAM
CAN	Controller Area Network	
CAN FD	CAN Flexible Data rate	
CAT	CATegory	Used for data center cable standards
CBS	Credit Based Shaper	Used with IEEE 802.1Qav 2009
CCC	Capacitive Coupling Clamp method	For testing resistance to fast transient pulses
CCD	Charge-Coupled Device	Imager technology
CCS	Camera Command Set	Part of the MIPI CSI-2 interface building blocks
CD	Compact Disc or Collision/Contention Detection	
CDE	Cable Discharge Event	Type of ESD test
CDM	Charged Device Model	Type of ESD test
CE	Consumer Electronics	
CEC	Consumer Electronics Control	Part of HDMI supporting remote control of HDMI connected display devices

	Abbreviation	Explanation
CERN	Conseil Européen pour la Recherche	Explanation
	Nucléaire (European Council for Nuclear Research)	
CFA	Color Filter Array	
CFI	Call For Interest	Project initiation item at IEEE 802.3
CFS	Clock Forwarding Service	Part of IEEE 2977
CiA	CAN in Automation	Organization that drives the CAN specification development for the automotive industry
CIA	Confidentiality, Integrity, and Availability	
CIE	Commission Internationale de l'Éclairage (engl. International Commission on Illumination)	International authority on light, illumination, color, and color spaces seated in Vienna
CIS	CMOS Image Sensor	
CISPR	Comité International Spécial des Perturbations Radioélectriques	Sets standards for EMC in cars, now part of IEC
CLK	CLocK	
CTL	ConTroL	
CTLE	Continuous-Time Linear Equalizer	
CMC	Common Mode Choke	
CMD	Command	
CML	Current Mode Logic or Channel Monitor Loop	
CMOS	Complementary Metal-Oxide Semiconductor	
СМҮК	Cyan Magenta Yellow blacK	Subtractive color format used for printing
CO ₂	Carbon DiOxide	
con.	connector	
CPU	Central Processing Unit	
CRC	Cyclic Redundancy Check	
CRT	Cathode-Ray Tube	
CS	Chip Select	
CSE	Camera Service Extensions	MIPI protocol
CSI	Camera Serial Interface	MIPI protocol
CSMA/CD	Carrier Sense Multiple Access with Collision Detection	
CTS	Conformance Test Specifications	General term but specifically used in MIPI
CuMg	Copper-Magnesium	
CuSn	Copper-Tin	

	Abbreviation	Explanation
CVBS		•
CVDS	Color, Video, Blanking, and Synchronization	Analogue signal for color TV
CW	Continuous Wave	
D ² B	Domestic Digital Bus	
DAC	Digital to Analogue Converter/ Conversion	
DC	Direct Current	
DCC	Direct Capacitive Coupling method	For testing resistance to fast and slow transient pulses
DCP	Digital Content Protection LLC	Organization that licenses HDCP
DCS	Display Command Set	MIPI specification
DCT	Discrete Cosine Transformation	
DDC	Display Data Channel	VESA specification
DDWG	Digital Display Working Group	Organization responsible for DVI
DEC	Digital Equipment Corporation	
DES	DESerializer	
DFE	Decision Feedback Equalizer	
DFP	Digital Flat Panel	Early VESA specification
DIN	Deutsches Institut für Normung	German SSO based in Berlin
DK	Device Key	Part of the ASAML security concept
DL	DownLink	Transmission direction with the higher data rate in an asymmetric communication system. Often synonymously used with DS.
DLL	Data Link Layer	Layer 2 of the ISO/OSI layering model
DM	Dieselhorst-Martin	Type of cable stranding
DMA	Direct Memory Access	
DMCA	Digital Millennium Copyright Act	
DoS	Denial of Service	Security attack that floods a node's resources with so much data that it starts denying additional communication requests
DP	DisplayPort	Interface for display connectivity from VESA
DPCP	DisplayPort Content Protection	
DPI	Dots Per Inch or Direct Power Injection	Like PPI or type of EMC measurement
DS	DownStream	Transmission direction with the higher data rate in an asymmetric communication system. Often synonymously used with DL.
DSC	Display Stream Compression	Video compression format standardized by VESA

	Abbreviation	Explanation
DSE	Display Service Extensions	MIPI specification
DSI(-2)	Display Serial Interface	Protocol defined by the MIPI Alliance
DSI3	Distributed Systems Interface 3	Sensor interface of the DSI consortium
DSNU	Dark Signal Non-Uniformities	
DSP	Digital Signal Processor	
DTLS	Datagram TLS	UDP variant of TLS
DTMB	Digital Terrestrial Multimedia Broadcast	Standard for digital television transmission used in China
DUT	Device Under Test	
DVB(-T)	Digital Video Broadcasting (for Terrestrial)	Standard for digital television trans- mission, which originated in Europe
DVD	Digital Video/Versatile Disc	
DVI	Digital Visual Interface	
E	Electric (field)	
ECIA	Electronic Components Industry Association	US-based SSO
ECU	Electronic Control Unit	Name for physical units containing electronics inside cars
EDID	Extended Display Identification Data	Display mode information format of VESA used in the DDS
eDP	embedded DisplayPort	Interface for display connectivity from VESA
EE	Electrics and Electronics	
EEE	Energy Efficient Ethernet	Specified in IEEE 802.3az
EFM	Ethernet in the First Mile	Specified in IEEE 802.3ah
EIA	Electronics Industry Alliance	US- based SSO dissolved in 2011, now ECIA
ELFEXT	Equal Level Far End CrossTalk	
EMC	ElectroMagnetic Compatibility	
EME	ElectroMagnetic Emissions	
EMI	ElectroMagnetic Immunity	sometimes, not in this book though, also used for ElectroMagnetic Interference
ENIS	End-Node-Interconnect-Structure	MDI network in the A-PHY specification
EOP	End Of Production	
EPON	Ethernet Passive Optical Networks	
EPROM	Erasable Programmable Read-Only Memory	
ESD	ElectroStatic Discharge	
ESR	Equivalent Series Resistance	DC resistance of capacitors
ETSC	European Transport Safety Council	

	Abbreviation	Explanation
EU	European Union	
EuroNCAP	European New Car Assessment Program	
F	Farad	Unit for capacitances
FAKRA	FAchausschuss KRAftfahrzeuge	Subgroup in DIN, often synonymously used for a specific coaxial connector
FB	Ferrite Bead	
FBAS	Farb-Bild-Austast-Synchron-Signal	German for CVBS signal, colloquially "Farbfernsehsignal"
FCC	Federal Communications Commission	US government agency that regulates, among other, radio frequency use
FCS	Frame Check Sequence	
FCW	Forward Collision Warning	
FDD	Frequency Division Duplex	Method to separate two data streams (in the same or opposite directions) on one channel
FEC	Forward Error Correction	
FEXT	Far-End CrossTalk	
FFE	Feed Forward Equalizer	
FFT	Fast Fourier Transformation	
FHD	Full High Definition	
FM	Frequency Modulation	Used for the reception of analogue radio in the ultra short wave band
FMCW	Frequency Modulated Continuous Wave	
FMVSS	Federal Motor Vehicle Safety Standards	
FoFa	Forwarding Fabric	Part of the ASAML
FOT	Fiber Optical Transmitter	
FPD	Flat Panel Display	SerDes technology
fps	frames per second	
FR	Flame Retardant	PCB material type
FRC	Frame Rate Control	Method to emulate a high color resolution on a display than available
FRR	Front Range Radar	See LRR
FSED	Frame Service Extension Data	Part of MIPI CSE and DSE
G	Gear or Giga	Name of different data rate classes for the MIPI A-PHY or 109
Gbps	Gigabits per second	
GI-POF	Graded Index POF	
GMSL	Gigabit Multimedia Serial Link	Trade name for the proprietary SerDes technology of Maxim Integrated (now ADI)

	Abbreviation	Explanation
GND	Ground	
GOF	Glass Optical Fiber	
GoP	Group of Pictures	Part of video compression
GPIO or GPI/O	General Purpose Input/Output	
Gpps	GigaPixels Per Second	
GPS	Global Positioning System	
gPTP	Generalized Precision Time Protocol	Protocol specified in IEEE 802.1AS-2011
GPU	Graphics Processing Unit	
GUI	Graphical User Interface	
GVIF	Gigabit Video InterFace	Trade name for the proprietary SerDes technology of SONY
Н	Henry	Physical unit for magnetic (field) strength
HBM	Human Body Model	Type of ESD test
HBR	High Bit Rate	Data rate class for DP
HD	High Definition	
HDCP	High-bandwidth Digital Content Protection	
HDMI	High Definition Multimedia Interface	
HDR	High Dynamic Range or High(er) Data Rate	The latter is an I3C terminology
HDTV	High-Definition TeleVision	
HEIF	High Efficiency Image File format	New format for digital images
HEVC	High Efficiency Video Coding	Also known as H.265/MPEG-H Part 2
HF	High Frequency	
HFM	High-speed FAKRA Mini	Connector type for coaxial cables
HMI	Human Machine Interface	
H-MTD	High-speed Modular Twisted-pair Data	Connector type for STP cables
HQ	HeadQuarter	
Hres	Horizontal RESolution	
HS	High Speed	
HSB	Hue Saturation Brightness	Color format derived from RGB
HSD	High-Speed Data	Connector type for STQ cables
HSI	Hue Saturation Intensity	Color format derived from RGB
HSL	Hue Saturation Lightness	Color format derived from RGB
HSV	Hue Saturation Value	Color format derived from RGB
HSVL	High Speed Video Link	Early name for Automotive SerDes
Hsync	Horizontal SYNChronization	Related to horizontal blanking

	Abbreviation	Explanation
HU	Head Unit	Main ECU for infotainment functions inside cars
HW	HardWare	
I2C	Inter-IC, also I ² C or IIC	Serial communication bus invented by Philips in 1982
128	Inter-IC Sound, also I ² S	Audio bus invented by Philips in 1986
I3C	Improved Inter-IC bus	MIPI protocol
IATF	International Automotive Task Force	Defines an automotive quality management system
IBG	InterBurst Gap	Part of the ASAML TDD scheme
IC	Integrated Circuit	
ICC	Inductive Coupling Clamp method	For testing immunity against slow transients
ICMP	Internet Control Message Protocol	
ICT	In-Circuit Testing	
ICV	Integrity Check Value	Essential part of security mechanisms for authentication
IEC	International Electrotechnical Commission	SSO situated in Geneva, Switzerland
IEEE	Institute of Electrical and Electronics Engineers	"The world's largest technical pro- fessional organization for the advance- ment of technology (ieee.org)". Among other, standardizes Ethernet.
IET	Interspersing Express Traffic	IEEE 802.3br-2016
IETF	Internet Engineering Task Force	US-based SSO seated in Wilmington, DE
I-frame	Intra frame or picture	Still image representation of MPEG
IF	InterFace	
IL	Insertion Loss	
Infotainment	Information and Entertainment	
InGaAs	Indium Gallium Arsenide	Alloy used for IR image sensors
InSb	Indium Antimonide	Compound used for photovoltaic sensors reacting to IR light
INTB	Interrupt pin	As used for TI SerDes chips
1/0	Input/Output	
IoT	Internet of Things	
IP	Internet Protocol	
IP Code	Ingress Protection Code or Inter- national Protection Code	IEC (= EN) 60529 defines classes for mechanical protection for components in cars
IPMI	Intelligent Platform Management Interface	I2C derivate

	Abbreviation	Explanation
IPsec	Internet Protocol SECurity	
IR	InfraRed	Frequency spectrum just below the visible light
ISDB	Integrated Services Digital Broadcasting	Digital television standard that originated in Japan
ISI	Inter Symbol Interference	
ISM	Industrial, Science, Medical	Identification of "open" frequency bands that may be used for these purposes
ISO	International Organization for Standardization	SSO seated in Geneva, Switzerland
ISP	Image Signal Processor	
IT	Information Technology	
ITU	International Telecommunication Union	SSO seated in Geneva, Switzerland
IUT	Implementation Under Test	
IVC	In-Vehicle Communication	
IVI	In-Vehicle Infotainment	
IVN	In-Vehicle Network(ing)	Physical communication network in cars, typically comprising several IVC technologies
JAE	Japan Aviation Electronics industry Ltd.	
JEIDA	Japan Electronic Industry Development Association	Japanese SSO, now JEITA
JEITA	Japan Electronics and Information Technology industries Association	Japanese SSO
JITC	Just-In-Time-Canceller	Retrain possibility of the A-PHY 1.0
JPEG	Joint Photographic Experts Group	
JTAG	Joint Test Action Group	
JVC	Japan Victor Company	Originator of VHS
k	kilo	10 ³
LAN	Local Area Network	
Laser	Light Amplification by Stimulated Emission of Radiation	
LCA	Lane Center Assist	
LCD	Liquid Crystal Display	
LCL	Longitudinal Conversion Loss	
LDF	LIN Description File	
LED	Light Emitting Diode	
LFLT	Line FauLT	Pin at GSML deserializer
Lidar	Light Detection And Ranging	Sensor type
LIN	Local Interconnect Network	

	Abbreviation	Explanation
LISN	Line Impedance Stabilization Network	
LK	Link Key	Part of the ASA security concept
LLC	Limited Liability Company	
LNB	Low Noise Block (converter)	Part of satellite antenna systems to enable a low noise reception
LOMMF	Laser Optimized MMF	
LP	Low Power	
LPI	Low Power Idle	Part of EEE
LRR	Long Range Radar	
LSB	Least Significant Bit	
LSFR	Linear Shift Feedback Register	
LT	Lower Tester	
LTE	Long Term Evolution	4G mobile phone standard
LVCMOS	Low Voltage CMOS	
LVDS	Low Voltage Differential Signaling	Early principle behind serialization
m	mandatory	
M	Mega	10 ⁶
M2M	Machine to Machine	
MAC	Medium or Media Access Control	Part of ISO/OSI DDL layer for Ethernet
MASS	MIPI Automotive SerDes Solutions	
MC	Message Counter, MultiCast, or Mode Conversion	
MCM	MultiChip Modules	
MCS	Manufacturer Command Set	Part of MIPI DSI
MDC	Management Data Clock	Used with Ethernet PHY management
MDI	Media Dependent Interface	Part of Ethernet physical layer definition
MDIO	Management Data Input/Output	
MEMS	Micro Electro-Mechanical System (module)	
(x)MII	Any type of Media Independent Interface	Interface used between Ethernet PHYs and MAC
MIMO	Multiple Input Multiple Output	
MIPI	Original meaning: Mobile Industry Processor Interface, however, this meaning is no longer used.	Alliance developing technical specifi- cations in the mobile eco-system (and also the MIPI A-PHY)
MJPEG	Motion Joint Photographic Experts Group	Video and audio compression formats
MM	Machine Model	Type of ESD test
MMF	MultiMode Fiber	Type of GOF

	Abbreviation	Explanation
MMIC	Monolithic Microwave Integrated	ICs optimized for processes running
IVIIVIIO	Circuits	between 300 MHz and 300 GHz
MOST	Media Oriented Systems Transport	Automotive communication system (being phased out)
MP3	MPEG-2 Part 3	Audio compression format
MPAA	Motion Picture Association of America	
MPEG	Moving Pictures Experts Group	Important group for video compression algorithms
MPEG-LA	MPEG Licensing Administration	
MQS	Micro Quadlock System	Connector type for UTP cables
MRR	Mid-Range Radar	
MSB	Most Significant Bit	
MSE	Mean Square Error	
MST	Multi-STream	DP terminology
MTD	Modular Twisted-pair Data	Connector type for UTP cables
MTP	Multi-stream Transport Packet	Part of MST/DP
NACK or nACK	Not ACKnowledged	
NBI	Narrow Band Interference	
NCAP	New Car Assessment Program	
NCF	Node Capability File	Part of LIN
NEXT	Near-End CrossTalk	
NFC	Near Field Communication	
NHTSA	National Highway Traffic Safety Administration	US administration body for safety of road vehicles
nMQS	Nano MQS	Connector type for UTP cables
NRZ	Non-Return to Zero	Modulation scheme with two voltage levels
nt	thermal noise	
NTSC	National Television System Committee	Analogue television standard used especially in North America and Japan
NVM	Non-Volatile Memory	
NZ	Neutral Zone	Area in which electromagnetic interference is neutralized
0	optional	
OAM	Operation, Administration, Management channel	Side channel available with, for example, the ASAML and IEEE 802.3ch 2020 Ethernet
ОВ	Odd Bytes	Part of MIPI A-PHY/IEEE 2977
OFDM	Orthogonal Frequency Division Multiplexing	

	Abbreviation	Explanation
OLED	Organic Light-Emitting Diode	
OPEN	One Pair EtherNet (Alliance)	Alliance developing the enabling specifications for Automotive Ethernet
OpenLDI	Open LVDS Display Interface	
OSI	Open System Interconnection	
OTA	Over The Air (Updates)	
OTP	One-Time Programmable memory	
Р	Profile or Power	MIPI A-PHY terminology
P1/P2	Profile 1/Profile 2	Part of MIPI A-PHY
P2P	Point-to-Point	Communication that starts and ends within one physical link.
PA	Parking Assist	
PAEB	Pedestrian AEB	
PAL	Phase Alternation Line or Protocol Adaptation Layer	Analogue television standard used especially in Europe and China
		Connect between native protocols and the MIPI A-PHY
PAM	Pulse Amplitude Modulation	
PCB	Printed Circuit Board	
PCIe	Peripheral Component Interconnect express	High-speed serial computer expansion bus
PCLK	Pixel CLocK	Important in image sensors
PCM	Pulse Code Modulation	
PCO	Point of Control and Observation	Part of ISO 9646
PCS	Physical Coding Sublayer	Part of the physical layer
PD	Powered Device	Device that receives power over the communication line
P&D	Plug & Display	First VESA display connectivity standard
PDU	Protocol Data Unit	
PER	Packet Error Rate	
PE-X	PolyEthylene (also XPE)	
PFC	Priority-based Flow Control	Part of IEEE 802.1Qbb 2011
P-frame	Predictive coded Frame or picture	Part of MPEG encoding
PHD	PHY Header Data	Part of the IEEE 802.3cz PCS
PHY	PHYsical Layer	Lowest layer (layer 1) of the ISO/OSI layering model
PICS	Protocol Implementation Conformance Statements	
PIN	P-type - Intrinsic region - N-type	Diode type with larger intrinsic region

	Abbreviation	Explanation
PLC	Product Life Cycle or Power Line Communication	
PLL	Phase Lock Loop	
PLS	Physical Layer Signaling (service interface)	Communication between reconciliation and MAC layer in IEEE 802.3 specifications
PMA	Physical Medium Attachment	Part of the physical layer
PMBus	Power Management Bus	I2C derivate
PMD	Physical Medium Dependent	Part of the physical layer (used in A-PHY or IEEE 802.3 optical Ethernet transmission technologies)
PoC	Power Over Coaxial	
PoD	Power Over Differential cables	
PoDL	Power Over Data Line	Specified in IEEE 802.3bu 2016 for single pair (T1) Ethernet
PoE	Power Over Ethernet	Specified in IEEE 802.3af 2003 for two pair Ethernet versions
POF	Polymer/Plastic Optical Fiber	
PP	PolyPropylene	
р-р	Peak-to-Peak	
PPI	Pixels Per Inch or PHY Protocol Interface	PHY Protocol Interface is part of the MIPI C-PHY
PPM	Parts Per Million	
pps	Pixels Per Second	
PRBS	Pseudo-Random Bit Sequence	
Prio	Priority	
Pro-AV	Professional Audio and Video	
Prot.	Protocol	
PS	PolyStyrene	Insulation material
PSAACRF	Power Sum Alien Attenuation to Crosstalk Ratio Far-end	
PSANEXT	Power Sum Alien Near-End crossTalk	
PSD	Power Spectral Density	
PSE	Power Supply/Sourcing Equipment	Part that supplies the power in case power is supplied over the data line
PSI5	Peripheral Sensor Interface Five	Low speed sensor bus
PSNR	Peak Signal-to-Noise-Ratio	
PSR	Panel Self Refresh	Part of DP/eDP
PTB	Precision Time Base	Part of the ASAML technology
PVC	PolyVinyl Chloride	

	Abbreviation	Explanation
PWM	Pulse-Width Modulation	Physical principle for simple data transmission
QAM	Quadrature Amplitude Modulation	
QFN	Quad Flat No leads	Type of semiconductor housing
QM	Quality Management	Lowest functional safety level in ISO 26262
QoS	Quality of Service	
R/W	Read/Write	
Radar	RAdio Detection And Ranging	
RAM	Random Access Memory	
RBP	Reverse Battery Protection	
RBR	Reduced Bit Rate	Data rate class for DP
RCA	Radio Corporation of America or Reverse Channel Audio	Connector used for CVBS video or part of the HDMI interface
RCCB	Red Clear Clear Blue	Alternative CFA for imagers
RCTA	Rear Cross Traffic Alert	
RCW	Rear Collision Warning	
RD	Running Disparity	Part of the 8B10B encoding scheme
RF	Radio Frequency	
RFC	Request For Comments	Name for standard documents created by the IETF
RFFE	Radio Frequency Front End	
RG	Radio Guide	Old nomenclature for cables
RGB	Red Green Blue	
RGGB	Red Green Green Blue	Name sometimes used for Bayer CFA
RJ	Registered Jack	
RL	Return Loss	
RMII	Reduced MII	
ROM	Read Only Memory	
RQ	ReQuest	
RS-FEC	Reed Solomon FEC	Type of FEC
RSE	Rear Seat Entertainment	
RTP	Real-time Transport Protocol	
RTS	ReTranSmission	
RX or Rx	Receiver/receive	
SA	Shield/Screening Attenuation	
SAE	Society of Automotive Engineers	US-based SSO
SATA	Serial Advanced Technology Attachment	Computer bus interface connecting computing with storage

SCART Syndicat desConstructeurs d'Appareils Radiorécepteurs et Téléviseurs SCCP Serial Communication Classification Protocol Standard IEEE802.3bu 2016 SCI Sub Constellation Index or Scalable Coherent Interface Header field of the A-PHY or part of the LVDS standard IEEE802.3bu 2016 SCI Sub Constellation Index or Scalable Header field of the A-PHY or part of the LVDS standard SCL Serial CLock Used for the I2C clock SDA Serial Data In SPI terminology SDL Specification and Description Language SDO Serial Data Out SPI terminology SDP Shielded Differential Pair Comprises all shielded differential communication cables, STP and SPP SDR Standard Data Rate I3C terminology SDP Single Edge Nibble Transmission Low speed sensor bus SEOC Secure Onboard Communication Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SEOOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter SER SERializer SECW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SOC System On Chip SOME/IP Scalable service-Oriented Middleware Middleware used with Automotive cover IP SOME/IP Scalable service-Oriented Middleware Middleware used with Automotive cover IP SOME System Operational Vector Space SPAD Single-Photon Avalanche Diode SPAD Single-Photon Avalanche Diode SPAD Single-Pipheral Interface SPP Shielded Parallel Pair cable		Abbreviation	Explanation	
Protocol ScI Sub Constellation Index or Scalable Coherent Interface SCL Serial CLock Used for the I2C clock SDA Serial DAta Used for the I2C data SDI Serial Data In SPI terminology SDL Specification and Description Language SDO Serial Data Out SPI terminology SDP Shielded Differential Pair Comprises all shielded differential communication cables, STP and SPP SDR Standard Data Rate I3C terminology SENT Single Edge Nibble Transmission Low speed sensor bus SEOC Safety Element out of Context Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SEOC Safety Element out of Context Part of Hor	SCART	Syndicat desConstructeurs d'Appareils		
Coherent Interface the LVDS standard SCL Serial CLock Used for the I2C clock SDA Serial DAta Used for the I2C data SDI Serial Data In SPI terminology SDL Specification and Description Language SDO Serial Data Out SPI terminology SDP Shielded Differential Pair Comprises all shielded differential communication cables, STP and SPP SDR Standard Data Rate I3C terminology SECOC Secure Onboard Communication Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SECOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter SER SERializer SEROBES SERializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SOC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP SCALA Single-Photon Avalanche Diode S-parameters SPI Serial Peripheral Interface SPI Serial Peripheral Interface SPI Serial Peripheral Interface	SCCP		· ·	
SDA Serial DAta Used for the I2C data SDI Serial Data In SPI terminology SDL Specification and Description Language SDO Serial Data Out SPI terminology SDP Shielded Differential Pair Comprises all shielded differential communication cables, STP and SPP SDR Standard Data Rate I3C terminology SECOC Secure Onboard Communication Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SEOOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter SER SERializer SEROS SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SOC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP SONS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters SPI Serial Peripheral Interface	SCI		·	
SDI Serial Data In SPI terminology SDL Specification and Description Language SDO Serial Data Out SPI terminology SDP Shielded Differential Pair Comprises all shielded differential communication cables, STP and SPP SDR Standard Data Rate I3C terminology SecOC Secure Onboard Communication Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SEOOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter SER SERializer SerDes SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SOC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP SCAL Single-Photon Avalanche Diode S-parameters SPI Serial Peripheral Interface	SCL	Serial CLock	Used for the I2C clock	
SDL Specification and Description Language SDO Serial Data Out SPI terminology SDP Shielded Differential Pair Comprises all shielded differential communication cables, STP and SPP SDR Standard Data Rate I3C terminology SecOC Secure Onboard Communication Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SEOOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter SER SERializer SerDes SERializer SerDes SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SOC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP SCALABLE SERVICE SERV	SDA	Serial DAta	Used for the I2C data	
SDO Serial Data Out SPI terminology SDP Shielded Differential Pair Comprises all shielded differential communication cables, STP and SPP SDR Standard Data Rate I3C terminology SecOC Secure Onboard Communication Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SEooC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter SER SERializer SerDes SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters SPI Serial Peripheral Interface	SDI	Serial Data In	SPI terminology	
SDP Shielded Differential Pair Comprises all shielded differential communication cables, STP and SPP SDR Standard Data Rate I3C terminology SecOC Secure Onboard Communication Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SEOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter SER SERializer SerDes SERializer Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters SPI Serial Peripheral Interface	SDL	Specification and Description Language		
SDR Standard Data Rate I3C terminology SecOC Secure Onboard Communication Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SEOOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter SER SERializer SerDes SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SOC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SPAD Single-Photon Avalanche Diode S-parameters SPI Serial Peripheral Interface	SDO	Serial Data Out	SPI terminology	
SecOC Secure Onboard Communication Part of AUTOSAR SENT Single Edge Nibble Transmission Low speed sensor bus SEOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter Type of DC-DC converter SER SERializer SERializer SerDes SERializer/DESerializer SerDes Grade SFCW Stepped Frequency Continuous Wave Seg SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio Scalable service-Oriented MiddlewarE over IP SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication SOP Start Of Production Other name for ultrasonic sensors SOP Start Of Production System One Calculation SOVS System One Calculation And Ranging Other name for ultrasonic	SDP	Shielded Differential Pair	•	
SENT Single Edge Nibble Transmission Low speed sensor bus SEOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Type of DC-DC converter SER SERializer SER SERializer SerDes SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters SPI Serial Peripheral Interface	SDR	Standard Data Rate	I3C terminology	
SEOOC Safety Element out of Context Part of ISO 26262 SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter Type of DC-DC converter SER SERializer SerDes SERializer/DESerializer SerDes Stepled Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio Soc System On Chip Middleware used with Automotive Ethernet communication SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SecOC	Secure Onboard Communication	Part of AUTOSAR	
SEP Service Extensions Packet Part of the MIPI CSE protocol SEPIC Single-Ended Primary-Inductor Converter SER SERializer SerDes SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP SONA Signal to Noise Ratio Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters SPI Serial Peripheral Interface	SENT	Single Edge Nibble Transmission	Low speed sensor bus	
SEPIC Single-Ended Primary-Inductor Converter SER SERializer SerDes SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters SPI Serial Peripheral Interface	SEooC	Safety Element out of Context	Part of ISO 26262	
Converter SER SERializer SerDes SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SEP	Service Extensions Packet	Part of the MIPI CSE protocol	
SerDes SERializer/DESerializer SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SEPIC	-	Type of DC-DC converter	
SFCW Stepped Frequency Continuous Wave SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SER	SERializer		
SG Speed Grade Name of different data rate classes in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SerDes	SERializer/DESerializer		
in ASA SI-POF Step Index POF SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SFCW	Stepped Frequency Continuous Wave		
SMA SubMiniature version A Type of (none-automotive) coaxial connector SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SG	Speed Grade		
SMBus System Management Bus I2C derivate SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SI-POF	Step Index POF		
SNR Signal to Noise Ratio SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SMA	SubMiniature version A		
SoC System On Chip SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SMBus	System Management Bus	I2C derivate	
SOME/IP Scalable service-Oriented MiddlewarE over IP Middleware used with Automotive Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SNR	Signal to Noise Ratio		
over IP Ethernet communication Sonar SOund Navigation And Ranging Other name for ultrasonic sensors SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SoC	System On Chip		
SOP Start Of Production SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SOME/IP			
SOVS System Operational Vector Space SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	Sonar	SOund Navigation And Ranging	Other name for ultrasonic sensors	
SPAD Single-Photon Avalanche Diode S-parameters Scattering parameters SPI Serial Peripheral Interface	SOP	Start Of Production		
S-parameters Scattering parameters SPI Serial Peripheral Interface	SOVS	System Operational Vector Space		
SPI Serial Peripheral Interface	SPAD	Single-Photon Avalanche Diode		
	S-parameters	Scattering parameters		
SPP Shielded Parallel Pair cable	SPI	Serial Peripheral Interface		
	SPP	Shielded Parallel Pair cable		

SQI Signal Quality Indicator SRGB Standard RGB SROI Smart Region of Interest Part of MIPI CSI-2 v3.0 SRP Stream Reservation Protocol SRR Short Range Radar SSL Secure Sockets Layer Predecessor of TLS SSO Standard Setting Organization STP Shielded Twisted Pair (cables) STQ STar-Quad/Shielded Twisted Quad (cables) StVZO STraßenVerkehrs-Zulassungs-Ordnung Name of road traffic licensing regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
SRGB Standard RGB SROI Smart Region of Interest Part of MIPI CSI-2 v3.0 SRP Stream Reservation Protocol SRR Short Range Radar SSL Secure Sockets Layer Predecessor of TLS SSO Standard Setting Organization STP Shielded Twisted Pair (cables) STQ STar-Quad/Shielded Twisted Quad (cables) StVZO STraßenVerkehrs-Zulassungs-Ordnung Name of road traffic licensing regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
SRP Stream Reservation Protocol SRR Short Range Radar SSL Secure Sockets Layer Predecessor of TLS SSO Standard Setting Organization STP Shielded Twisted Pair (cables) STQ STar-Quad/Shielded Twisted Quad (cables) StVZO STraßenVerkehrs-Zulassungs-Ordnung Name of road traffic licensing regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
SRP Stream Reservation Protocol SRR Short Range Radar SSL Secure Sockets Layer Predecessor of TLS SSO Standard Setting Organization STP Shielded Twisted Pair (cables) STQ STar-Quad/Shielded Twisted Quad (cables) StVZO STraßenVerkehrs-Zulassungs-Ordnung Name of road traffic licensing regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
SSL Secure Sockets Layer Predecessor of TLS SSO Standard Setting Organization STP Shielded Twisted Pair (cables) STQ STar-Quad/Shielded Twisted Quad (cables) StVZO STraßenVerkehrs-Zulassungs-Ordnung Name of road traffic licensing regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
SSL Secure Sockets Layer Predecessor of TLS SSO Standard Setting Organization STP Shielded Twisted Pair (cables) STQ STar-Quad/Shielded Twisted Quad (cables) StVZO STraßenVerkehrs-Zulassungs-Ordnung Name of road traffic licensing regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
STP Shielded Twisted Pair (cables) STQ STar-Quad/Shielded Twisted Quad (cables) StVZO STraßenVerkehrs-Zulassungs-Ordnung Name of road traffic licensing regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
STP Shielded Twisted Pair (cables) STQ STar-Quad/Shielded Twisted Quad (cables) StVZO STraßenVerkehrs-Zulassungs-Ordnung Name of road traffic licensing regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
(cables) StVZO STraßenVerkehrs-Zulassungs-Ordnung Name of road traffic licensing regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
regulations in Germany SUV Service or Sports Utility Vehicle SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
SVCD Super Video Compact Disc SVS Surround View System SW SoftWare sync SYNChronization	
SVS Surround View System SW SoftWare sync SYNChronization	
SW SoftWare sync SYNChronization	
sync SYNChronization	
3,	
TAS Time Aware Shaper IEEE 802.1Qbv 2015	
TC Technical Committee	
TCL Transverse Conversion Loss	
TCP/IP Transmission Control Protocol/Internet Protocol suite often used in conjution with Ethernet, comprises also UDP and many other protocols	
TCON Timing CONtroller Used in displays	
TDD Time Division Duplex or Test-Driven Development (in the same or opposite direction on one channel or a type of agile development methodology	
TDR Time Domain Reflectometry	
TEM Transversal ElectroMagnetic	
TF Task Force Nomenclature of the IEEE 802.1 a IEEE 802.3 groups developing the specifications	nd
TFT Thin Film Transistor Type of LCD technology	
TI Texas Instruments	
TIA Telecommunications Industry US-based SSO in Arlington, VA Association	
TLIS Transmission-Line-Interconnect- Link segment in A-PHY Structure	
TLP Transmission-Line Pulse measurement	
TLS Transport Layer Security Security protocol for TCP	

	Abbreviation	Cymlenetica
TMDC		Explanation
TMDS	Transition-Minimized Differential Signaling	
ToF	Time Of Flight	Camera type useable to create a 3D image
TP	Test Point	
TRC	Three Repetition Code	
TSN	Time Sensitive Networking	Various IEEE 802.1 standards supporting QoS over Ethernet.
TTL	Transistor-Transistor Logic	
TV	TeleVision	
TVS	Transient Voltage Suppression	Type of ESD protection
TX or Tx	Transmitter/transmit	
UART	Universal Asynchronous Receiver – Transmitter	Serial interface
UDP	User Datagram Protocol	Transport protocol used in conjunction with Ethernet
UHBR	Ultra-High Bit Rate	Bit rate class for DP
UHD	Ultra-High Definition	
UL	UpLink	Transmission direction with the lower data rate in an asymmetric communication system. Often synonymously used with US.
UML	Unified Modelling Language	
UNECE	United Nations Economic Commission for Europe	
UNFCCC	United Nations Framework Convention on Climate Change	
URL	Uniform Resource Locator	
US	UpStream	Transmission direction with the lower data rate in an asymmetric communication system. Often synonymously used with UL.
USB	Universal Serial Bus	
USD	United States Dollars	
USGMII	Universal Serial Gigabit Media Independent Interface	
USL	Unified Serial Link	Part of CSI-2 v3.0
USRR	Ultra Short Range Radar	
USXGMII	Universal Serial 10 Gbps Ethernet Media Independent Interface	
UT	Upper Tester	
UTP	Unshielded Twisted Pair (cabling)	

	Abbreviation	Explanation
UUID	Universally Unique IDentifier	Used for the identity of an ASA Device
UWB	Ultra-Wide Band	
V	Voltage or Volts	
VCD	Video CD	
VCIC	Video Communication Interface for Cameras	Specified in ISO 17215 for Ethernet communication
VCR	Video Cassette Recorder	
VCSEL	Vertical Cavity Surface-Emitting Lasers	Light source for optical transmission systems
VDC-M	VESA Display Compression-M	Compression for mobile devices
VDE	Verband Deutscher Elektrotechniker	German SSO
VESA	Original meaning: Video Electronics Standards Association, however, it is no longer used	Alliance developing technical specifications in the realm of displays (including DCS and DP/eDP)
VGA	Video Graphics Array	Specific format for early video transmission
VHDL	Very high-speed integrated circuit Hardware Description Language	
VHS	Video Home System	
VLAN	Virtual Local Area Network	
VNA	Vector Network Analyzer	
Vres	Vertical RESolution	
Vsync	Vertical SYNChronization	Related to vertical blanking
WG	Working Group	
WOL	Wake-On LAN	
www	World Wide Web	
XAUI	10 Gbps Attachment Unit Interface	
XFI or XIFI	No specifics given	Extension of XAUI, pronounced "ziffie"
XGMII	10 Gbps Media Independent Interface	
XNOR	Exclusive Not OR	
XOR	Exclusive OR	
XPE	See also PE-X	
XT or XTALK	Crosstalk	
YANG	Yet Another Next Generation	Data modeling language for network management
YUV		Name for a video color format, where Y is the luminance and U and V carry the chrominance information

1

Introduction and Background

Considering that cars have been developed and sold commercially since the end of the 19th century, high-speed sensors and displays are a comparably recent event. At the end of the 20th century, more than 100 years after the start of commercial car sales, high-speed sensors and displays were, if at all, presented in concept cars or sold with selected luxury models. However, since the turn of the 21st century, the number of sensors and displays has grown, with the market really just gaining momentum at the time of writing in 2021. While the exact number for the expected market growth differ, market research agrees on the trend: it is significant. In [1], for example, the number of cameras per car is expected to grow between 2020 and 2030 from five to 20 and the number of displays from three to 15. Displays and cameras are thereby not only growing in numbers, they are also growing in resolutions. Furthermore, thanks to the increasing adoption of Advanced Driver ASsist (ADAS) functions, the number of sensors other than cameras is also growing, as is the number of types of sensors. The race for being the first to successfully achieve the ultimate ADAS function where driver intervention is no longer required - level 4 or 5 Autonomous Driving (AD) [2] - is accelerating the trend in two different ways. First of all, more sensors are deployed in order to reduce the number of tasks drivers have to perform. Then, the drivers can use that freed capacity in order to focus more on information and entertainment (infotainment) on the displays provided.

All these innovations are spurred by key technological inventions and developments. Next to the continuing empowerment and shrinking of digital processing technologies that are responsible for many amenities of modern life in general, more specific inventions are: high-resolution digital image sensor technologies, empowering (new types of) sensors for automotive use like Light Detection And Ranging (Lidar) sensors, digital video (compression) formats, digital display technologies that are small, robust, and cost efficient enough to be commonly used inside cars, and modern user interaction methodologies proliferated by the use of smartphones (plus the mobile communication telecom infrastructure enabling it).

One of the resulting key challenges for deploying all the sensors and displays inside cars is how to integrate them into the Electric and Electronic (EE-)architectures and, especially, how to realize their communication. When the adoption of (digital) cameras and displays in cars started at the beginning of the 21st century, the actual communication was analogue. However, analogue video transmission has severe limits with respect to resolution and quality, which prohibits the subsequent processing necessary to realize modern ADAS and infotainment functions. So nowadays, digital video data transmission drives the demand for data rates in the In-Vehicle Communication (IVC) systems, while the availability of suitable

high-speed communication technologies opens the door for innovations with respect to video-related customer functions and EE-architecture choices.

Unfortunately, it is thereby generally not possible to simply reuse the communication technologies from the consumer and IT industries, which already support the required high video data rates in a mass market. It is one goal of this book to explain the additional constraints IVC technologies have to master with respect to robustness and costs, why automotive suitable physical layer developments are important, and why Automotive SerDes and Automotive Ethernet technologies are the available choices in this context. In order to support a profound understanding of the interrelations between the automotive environment, the high-speed sensor and display use cases, and the communication technologies, and to motivate the choices, this book is structured as follows:

- In the continuation of this introductory Chapter 1, Section 1.1 motivates the focus on sensor and display applications. It explains the differences between sensor and display applications and between them and other use cases inside cars. Section 1.2 introduces the terminology used in the context of SerDes communication and the background of Automotive SerDes. Section 1.3 provides information on the origin of Ethernet as such and on Ethernet used as an IVC technology.
- Innovations and their underlying technologies are rarely introduced for the sake of "using a new technology". Normally, they serve a purpose. The three main reasons for innovations in the industrial Business-to-Business (B2B) environment are: first, to allow for new functionalities (and business), second, to save costs, and/or third, to fulfill new regulatory requirements. In order to provide the context, this book introduces first, in Chapter 2, the high-speed sensor and display use cases with respect to their history in the car industry as well as the underlying technical and architectural choices in more detail.
- Chapter 3 introduces the automotive environment, in which the use cases have to function reliably and safely. Cars are particularly complex products, because they have to provide a vast variety of functions under extremely different conditions, while needing to be attractive to customers in a very competitive market. The automotive environment impacts all technical choices made for cars and is therefore covered early in this book.
- One reason consumer and IT communication technologies are often not usable in cars, is their incapability to meet the automotive ElectroMagnetic Compatibility (EMC) requirements (at least not at reasonable costs). EMC is especially important for all electronics inside cars, and thus detailed in a separate Chapter 4.
- The cable harness is the third heaviest and third most expensive component inside cars [3]. Communication cables need to be robust, cost efficient, and light at the same time. One more reason why consumer grade products are generally unsuitable for in-vehicle use. Chapter 5 introduces general choices for the communication channel that have to be made for all IVC technologies. This includes options for cables and connectors.
- Power supply and power saving is another extremely important aspect in cars, independent of the actual technologies used. Aspects relevant for sensor and display use cases that impact the IVC technology in general are discussed in Chapter 6.
- Chapter 7 introduces the choices for Automotive SerDes technologies.

- Chapter 8 introduces the High-Speed (HS) Automotive Ethernet technologies and provides a general comparison between HS Automotive Ethernet and SerDes standards.
- Both, Automotive SerDes and Automotive Ethernet are first of all use case independent physical and data link layer technologies. To deploy them for high-speed sensor and display use cases, quite a number of related higher layer standards and protocols are added, which might also affect or become part of specific SerDes or Ethernet products. Chapter 9 provides and overview and introduction to many related standards and protocols. These comprise color codes, control interfaces, video compression formats, content protection, as well as camera and display specific protocols.
- Last but not least, Chapter 10 looks at test, qualification, and tools. That they can be tested and serviced is an extremely important aspect for all use cases and technical solutions in cars. So, while this topic is addressed at the end of this books, to ensure testability for all system designs and new technologies is actually an important starting requirement.

Note that, while the order of content and chapters is intended to be as logical and sequential as possible, a perfect order does not exist for a subject as complex as the one addressed in this book. There are many interrelations between chapters, so that the book contains many forward and backward references.

■ 1.1 The Distinctive Properties of High-Speed Sensor and Display Use Cases

Displays and sensors in cars – including cameras as a special type of sensor – actually address quite distinct use cases. Displays have the sole purpose of relaying technical, entertainment, or other information to the car users. Especially when backed by touch functionality, voice recognition, or related dials and knobs, they serve as an important element of the Human Machine Interface (HMI), with which the customers can control various functions inside their cars.

Sensors on the other hand, provide sensor specific, technical data that is, in its raw format, generally unusable to car occupants. Either the sensor data serves directly to control driving functions without the users ever being aware of their existence or it needs to be processed before it can be used for driver or passenger information or user interaction in ADAS functions. Camera images are the exception, as they might be used for machine vision/processing as well as for human vision, for example in back-up camera systems.

Table 1.1 lists additional properties that differ for display, camera, and other sensor use cases and that have some relevance for the architecture and other technical choices of the use cases discussed in the following chapters of this book, especially in Chapter 2. Table 1.1 also motivates why it makes sense to address cameras separately from other sensors. While there are some similarities between cameras and other sensors, there are also important differences.

1 Introduction and Background

	'		
	Displays	Cameras	Other sensors
Data recipient	Human vision only	Human vision or machine processing	Machine preprocessing required
Quality of Service (QoS) requirements	Human vision allows for some latency and losses	Machine processing require sensitive to losses, compres	
Size of housing	Generally large	Typically very small	
Power requirement	Power hungry because of the display (depends on size)	Small housings easily accumimpede the sensing quality. therefore be low	·
Location in car	Inside the cabin with stringent location require- ments with respect to the occupants' positions	Facing outside or to the driver or other occupants	ADAS sensors are typically on the body shell facing outside, other sensors might be anywhere including under the hood
Possible add-on functions	Might comprise micro- phones, Consumer Elec- tronics (CE) connectivity (including auxiliary sock- ets), or even cameras, typ- ically no speakers though	Might comprise InfraRed (IR) Light Emitting Diodes (LEDs) for interior cameras and night vision, exterior cameras might comprise heating	Generally singular, collects one type of data only

Table 1.1 Comparison of distinct sensor and display use case properties

There are, however, also aspects that unite the use cases. These are their requirement for highly asymmetric (high-speed) data communication and the related architectural choices. Both, sensor and display units, are generally located at the edge of a network as end nodes. Even if they are forwarding data in a type of display or sensor daisy chain – which happens seldom in any case – they can be designed such that they require no software-based processing, which might require frequent updates otherwise. These aspects not only unite the high-speed sensor and display use cases, it distinguishes them from (many) other Electronic Control Units (ECUs) inside the car.

Figure 1.1 shows two, fundamentally different architecture options. In order to directly compare the sensor and display use cases, the examples depicted assume that the sensor data is – after having been processed accordingly – displayed on a screen to the user. In a real car, such direct link between one sensor and display is seldom. A display might also be used to present pre-stored entertainment data, or they show aggregated results from the evaluation of various sensors. Sensors outputs, on the other hand, might result in vehicle control without user interaction or with audible feedback only.

The upper part of Figure 1.1 depicts the case in which sensor and display contain no video or sensor data processing themselves. The sensor data is transferred as collected (more or less) to the ECU, which processes the data, makes use of the result in its application, and then renders this into a video stream that is transferred to the display where it is presented on a screen. This could be the setup for a back-up camera. Colloquially, this scenario is often referred to as having "dumb" sensors and displays. The sensors and displays have no processing and thus "no intelligence". While some might object to the exact wording, key is that the sensors and displays in this scenario do not run any software that might require regular updates or upgrades.

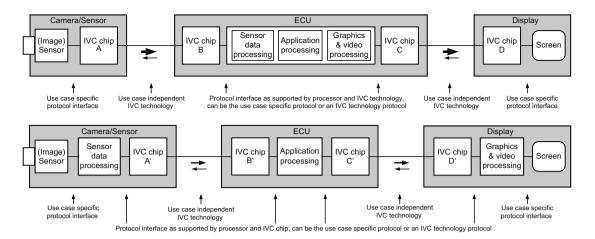


Figure 1.1 Principle architecture options for sensor and display use cases

In the lower part of Figure 1.1 the sensor as well as the display perform the major processing themselves. A typical example would be traffic sign recognition. The camera records the image, identifies the particular traffic sign in its processor, and then transfers only an identifier number to the ECU. The ECU would then perform a plausibility check in its application processing by comparing the identified traffic sign with its map data, before sending itself an identifier number to the display. The display then renders a picture of the sign that is displayed to the customer. Naturally, such a scenario makes the sensors and displays more complex. However, at the same time the amount of data that needs to be communicated is significantly smaller than in the case of sensors and displays without processing. The additional costs for the processing is potentially compensated for with a less expensive communication system that does no longer need to be "high-speed".

Note that in some cases the only processing that is being performed in the sensors and displays is data compression or decompression. This somewhat intermediate case is not depicted in Figure 1.1. The extra processing needed in the sensors and displays can often be realized in hardware. In general, hardware compression is faster and less power consuming than compression in software. With compression the data rate is decreased, but not as much as when just identifiers are transmitted, which would be the case after full processing. So, a scenario with compression would result in intermediate processing and intermediate data rate. At the same time, the compression might have other impacts, such as compression losses or added processing latencies, which might not be acceptable (see also Table 1.1). For more details on the use cases, see Chapter 2.

What is important in the context of this book: In both scenarios depicted in Figure 1.1, it is necessary to distinguish between the protocol interfaces that are used within the sensors or displays and the IVC technology. The protocol interfaces used for connecting the sensor and display chips are application specific, meaning that the imager interface technology inside a camera cannot be used for putting data onto the screen of a display and vice versa. At the same time, both camera and display might be connected to the ECU using the same IVC technology. Furthermore, the IVC chips used in both cases are not necessarily the same. This is why Figure 1.1, distinguishes between IVC chips with and without "'". In the upper part of Figure 1.1, it is likely necessary to use an "IVC bridge" that bridges between the

use case agnostic IVC technology and the use case specific protocol. In the lower part of Figure 1.1, the interface combination used, it depends on the availability of interfaces in the processing and IVC.

■ 1.2 Background to Automotive SerDes

The term "SerDes" is used for a number of different technologies in different use cases and scenarios. This section aims to clarify the ambiguity of the term at least for the use within this book. In order to do so, Section 1.2.1 starts with explaining the origin of the term "SerDes". Section 1.2.2 introduces the SerDes terminology common in the automotive industry and Section 1.2.3 outlines the status of Automotive SerDes in the car industry. The technical choices and properties of the Automotive SerDes technologies as such are discussed in Chapter 7.

1.2.1 The Origin of "SerDes"

"SerDes" first of all describes a very basic physical principle. When two chips had to communicate in the early days, each output pin of one chip was simply directly connected to the input pins of the other chip and vice versa. When more than one information had to be exchanged, other sets of parallel pins and connections were added. For reasons explained in more detail further below, having more parallel data lines became impractical, and formerly parallel data was serialized before being transferred to other chips. There, it would be deserialized before being processed internally. Figure 1.2 shows this in a very simple example. To have this serializer-deserializer conversion of data at both ends of the communication then condensed into the term "SerDes".

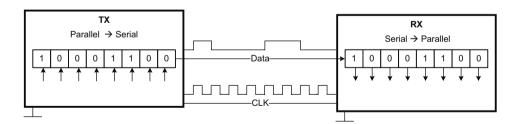


Figure 1.2 The basic principle of SERializer-DESerializer (SerDes) technologies

There are three main reasons to favor serial data transfer over parallel transmission [4] [5]:

- 1. lower number of pins at the Integrated Circuits (ICs)
- 2. better synchronization and supported data rates
- 3. less interference, especially less crosstalk

Ad 1. Lower number of pins at the Integrated Circuits (ICs)

Since their invention, the processing capabilities of IC's made huge progress. Moore's law observed that the transistor density has about doubled every two years [6]. At the same time, the packaging and pin density of ICs has not developed at the same pace, meaning that continued parallel data transmission would have resulted in prohibitively large ICs. This simply mandated using the existing pins more efficiently.

Ad 2. Better synchronization and supported data rates

Figure 1.3 shows a simple parallel transmission system consisting of one transmitter (TX), one receiver (RX), eight parallel data lines (D0 to D7), and one clock line (CLK). The clock line is important, because for the receiving unit it is essential that all eight lines are synchronized in order to be able to process the received data correctly. To the right of the TX – RX system shown in Figure 1.3, an example bit pattern is depicted as seen by the receiver. The upper part of Figure 1.3 shows the ideal situation. Here, the data of each data line is received in perfect synchronization. This might well be the case for low frequencies and short distances on well-designed Printed Circuit Board (PCB) layouts. The lower part of Figure 1.3 depicts – in a strongly simplified way – what can happen if the parallel data paths are not perfectly aligned. In this case, the receiver might not sample all bits in the same transmit slot.

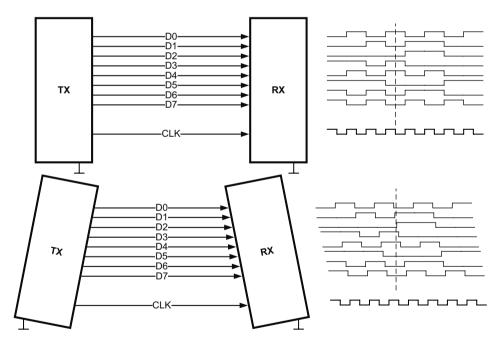


Figure 1.3 Synchronization issue in case of parallel data transmission

In this simplified figure, the data paths have unequal lengths. In real life such variations also depend on the chip process, voltage, and/or temperature. The higher the frequency, the more sensitive the system is to such delay variations, with the result that from a certain frequency on, it is not possible to reliably receive data transmitted on parallel lanes.

Naturally, transmitting over long cables increases the difficulties when compared with the transmission on a PCB.

A serial system does not have such synchronization problems, even if it needs to transmit with an n-times higher data rate in order to achieve the same throughput, when compared with a transmission over n parallel lanes.

Ad 3. Less interference, especially less crosstalk

Another important aspect in parallel data communication is the reference potential of the signals, the signal ground. The parallel data transmission as depicted in Figure 1.3 is single-ended and not differential. Single-ended means that one lane or wire carries the varying voltage levels that represents the signal while the other lane or wire needed for the communication is, usually, the ground.

Such a communication concept is quite susceptible to interference and would require a perfect signal ground to mitigate the effects of, for example, crosstalk. Crosstalk is the interference between adjacent data lines. The longer and closer the lines or cables and the higher the transmit frequency, the more severe the impact of crosstalk. In case of parallel data transmission, there are many adjacent lines per definition and the risk of crosstalk impairments is therefore high. To mitigate the impact of crosstalk, ground lines could be put between all parallel data lines on a PCB, meaning that at least the same number of signal ground lines are connected between the transmitter and the receiver.

Serialized data allows easily for differential transmission. In case of differential transmission the same signal is transmitted over two wires with opposite voltage levels. At the receiver of a differentially transmitted signal, the two signals are combined. This cancels out various noise sources. Serialized data with differential transmission thus has better interference robustness and avoids the impact of the signal ground on the signal integrity.

High-speed SerDes has thus become the dominant form of input and output for (most) high-integration chips [4] and almost all modern communication technologies are based on the serialization/deserialization principle shown in Figure 1.2. The simple example of Figure 1.2 is single ended, it uses a dedicated clock line, and a dedicated voltage level for a single signal. Modern SerDes technologies are differential and do not need a dedicated clock line. The enhanced circuit technology can recover a stable and precise clock signal from the bit stream received. This further improves the robustness of the SerDes technologies as differences in transmission time between the clock and the data signal ("clock skew") are eliminated. Furthermore, the available circuit technologies allow modulating and encoding the transmitted data prior to sending it. This means that with a single, physical voltage level, more than one bit can be transferred, and the data rate can be increased (see also Chapter 7 for more details on actual solutions).

1.2.2 Automotive SerDes Terminology

The previous Section 1.2.1 explained, why the term "SerDes" might be used in different contexts for quite different communication technologies. "SerDes" as a physical principle does not distinguish whether the communication is on a Printed Circuit Board (PCB), across a wire, or even wireless. Often, even Ethernet is called a SerDes technology, simply because

it supports differential, serial transmission of data, while in this book Ethernet is treated as a different technology (see Section 1.3 or Chapter 8).

One way to lessen the ambiguity around the term is to give what is being discussed as SerDes in this book a clear definition and a different name. The following thus defines "Automotive SerDes" with listing the properties commonly associated with "SerDes" in the automotive industry. While it might not always be explicitly spelled out, apart from in the previous Section 1.2.1, "SerDes" or "Automotive SerDes" throughout this book has the characteristics as listed below.

- a) It drives a wire.
- b) It supports "asymmetric communication", meaning high data rates in one communication direction (only).
- c) It supports Point-to-Point (P2P) communication (only).
- d) It supports the lowest two layers of the ISO/OSI communication model (only).

Ad a) Automotive SerDes drives a wire.

The electronics in cars are generally distributed. This is particularly true for sensors and displays, because they need to be at specific locations inside the car to fulfill their function. A lot of the sensing is done at the extremities of the body shell of a car, the displays need to be in alignment with the viewing positions from the seats. In contrast, processing units can be anywhere in the car where there is space and the right environment to put them. All units, however, need to communicate across copper or optical cables that can easily reach 10–15 m length. For installation in busses and trucks even 40 m are a typical requirement [7].

If a SerDes technology is used for sensors or displays, it thus has to be able to drive the respective cables, else it is not of interest for these use cases. Having cables and connectors available that support the high data rates in the challenging automotive environment, is therefore decisive for the success of the technology. See Chapter 5 for more details.

Ad b) Automotive SerDes supports high data rates in one communication direction (only).

SerDes communication is first of all unidirectional. The transmission direction goes from the serializing sender to the deserializing receiver. That SerDes allowed for unidirectional high data rates is how the technology was adopted in cars (see also Section 1.2.3); as it was usable for the one main transmit direction the sensor/video applications needed. For control, a separate, low data rate communication technology – for example the Local Interconnect Network (LIN) bus [8] – was used at the side to start with. It was then a matter of progress and cost reductions in semiconductor processing to optimize this set up. As a result, a bi-directional, low data rate control channel is now available with Automotive SerDes solutions. Naturally, the use cases would also work with symmetric high-speed communication. However, there is, generally, no need for the added complexity and costs, so Automotive SerDes solutions strived supporting high data rates in one transmit direction only.

"High" data rates are thereby relative and a matter of perspective. When the first cameras in cars used digital transmission technologies, the imagers might have had a Video Graphics Array (VGA) resolution of 640 × 480 (see Section 2.1.2 for details). With 30 frames per second (fps) and 16 bits color, this lead to about 150 Mbps data rate. At the

time, this was considered a very high data rate for in-vehicle communication. When the Media Oriented Systems Transport (MOST) bus was introduced at about the same time, it supported 25 Mbps [9], which again was a huge leap from the Controller Area Network (CAN) bus [10] or LIN available before. In 2021 in the automotive industry (and therefore also in this book), data rates larger than 1 Gbps were considered high. Data rates larger than 10 Gbps were considered to be "very high". In general, "very high" describes what is at the brink of feasibility at the time; also in this book.

Ad c) Automotive SerDes supports P2P communication (only).

At the physical layer, SerDes communication is P2P. This does not only mean that the SerDes link is not a bus, where more than two units would share the bandwidth, it also means that the complete SerDes communication starts at the one side of the communication and ends at the other, without extended networking capabilities. This suits especially camera and display use cases that only forward video data to or receive video data from the ECUs where the data is processed.

Occasionally, Automotive SerDes architectures are discussed that envision a daisy chain of cameras or displays (see also Section 2.1.3). This is generally done to save hardware in the processing ECU and/or to reduce the needed cable length. On the physical layer anyway, but also on the Data Link Layer (DLL) the communication still typically remains P2P between each display/camera and the processing ECU. The cameras/displays do not communicate among each other as would be possible if the communication was truly networked.

Ad d) Automotive SerDes supports the lowest two layers of the ISO/OSI communication model (only).

As the Automotive SerDes communication is P2P, the respective technologies generally comprise the PHYsical layer (PHY) and some DLL functions. This means that of the seven different communication functions defined in the ISO/OSI layering model [11], Automotive SerDes only covers layer one and two. This in return means that Automotive SerDes technologies do not need communication-specific software. Any particular requirements that might affect the software are related to the handling of the application specific protocols, which might be part of the Automotive SerDes products or the application data transported across the SerDes link, but not the Automotive SerDes technology itself (see Section 9.6 and Section 9.7 for more details on the protocols).

These are the general properties of "Automotive SerDes". Yet another terminology with ambiguities refers to the actual chip products that are often just called "Serializer" and "Deserializer". Figure 1.4 provides an overview. The term "Serializer (SER)" originally stands for the part that serializes and then transmits the data, the "Deserializer (DES)" for the part that receives and then deserializes the data. However, in modern Automotive SerDes technologies, the chip at the side of the communication that transmits the high data rate, also receives a smaller data rate for the control channel and the chip at the side that receives the high data rate also transmits a smaller data rate for control purposes. Both parts are, however, still called SER and DES. Furthermore, these now enhanced SERs and DESs can be integrated in a System on Chip (SoC) with the sensors, processing, or display control chips. They can also be part of stand-alone IVC bridge chips. In the automotive industry these bridge chips are also referred to as SER on the side that sends the high data rate and as DES on the side that receives the high data rate. This means, SER and DES might refer to three different sets of functionalities.

In order to reduce confusion, in this book, the bridge chip depicted in Figure 1.4 is called a "SerDes bridge", a "SER-bridge", or a "DES-bridge", depending on the context. Just SER or DES, describes the function on one or the other side of the communication link discussed, including a potential control channel. When, in the following text, exceptionally the original meanings of SER and DES are relevant, it is explicitly mentioned. Note that SerDes bridge chips can come in a number of flavors. These depend on the application specific protocols they bridge into, and also on the number of SERs and/or DESs they incorporate. Among other possible combinations, dual and quad DES-bridges are particularly common.

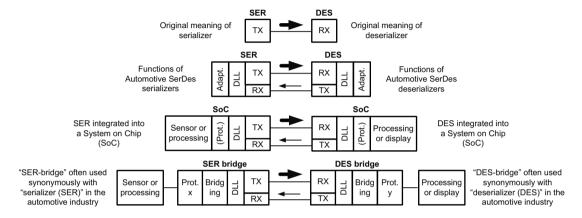


Figure 1.4 Different uses of the terms "SERializer (SER)" and "DESerializer (DES)"

One last note on the terminology. The terms "SerDes" and "Automotive SerDes" are a relatively new phenomena in the automotive industry. The industry tried other names, such as "High Speed Video Links (HSVL)" [12], "pixel links" [13], or, most commonly, "LVDS". Low Voltage Differential Signaling (LVDS) is a Serialization/Deserialization standard published in 1995 that combines low level signaling and differential communication (see also Section 7.2). It is often seen as the birthplace of SerDes and the early SerDes technologies used in the automotive industry were LVDS based. However, many modern Automotive SerDes technologies have nothing in common with the original LVDS. It is therefore no longer correct to use the term LVDS synonymously with Automotive SerDes. When the term "LVDS" is used within this book, it is used only when exactly LVDS is meant.

1.2.3 The Status of Automotive SerDes

The first time a SerDes technology was used in a series production car was in 2001. In its new 7-series, BMW used SerDes to connect the center display to the main infotainment, where the graphic data to be displayed was being rendered. The sources of original video data, such as cameras or a TeleVision (TV) receiver, were designed to be transferrable over analogue transmission systems. The graphic data for navigation systems was a new type of data that did not automatically cater for analogue transmission but required a high resolution on top. The SerDes technology used was the first Flat Panel Display (FPD) SerDes technology from National Semiconductor (now Texas Instruments, TI). The overall transmission

rate was about 500 Mbps using four wire pairs (three for data and one for the clock, see also Section 7.3.1) and a separate CAN connection for the control data.

Since then, the market has grown slowly but continuously. From 2005 on, Automotive SerDes solutions were even usable with dedicated, automotive suitable connectors; a fact not to be underestimated for the successful use of a communication technology (see Section 5.3.2 for more details). In 2021, the overall number of SerDes nodes in cars was expected to be about the same as the overall number of Ethernet nodes in cars [14]. The market growth had been accompanied by new features, such as higher data rates, integrated control channel, capabilities to transmit power with the data, support of coaxial cables and alike. Furthermore, more suppliers had entered the market, albeit offering their own non-interoperable, proprietary versions of Automotive SerDes solutions (see also Section 7.3 for technical details). And while the original FPD-Link technology was opened to be used by other semiconductor vendors, all follow up versions were also proprietary.

It is not so obvious, how the situation came about. After all, every technology used inside a car requires extra effort in terms of qualification (tools and test), logistics, and maintenance and that over many years (see also Section 3.1.2.2). If a car manufacturer decides to select just one supplier and technology to avoid multiplying the effort, the car manufacturer risks to be locked-in with a suboptimal technology down the road. This is because one vendor would need to supply the changing and growing portfolio alone, and it is unlikely that this one vendor will be the best choice for all chip variants needed. The monopolistic vendor might even lose the incentive to adapt and improve in the future. A living standard, for which a number of vendors is selling interoperable products, is the most desirable situation for a car manufacturer. It is likely optimized on various companies' core competences, entails an eco-system for tools, tests, cables, and alike, and is bound to be developed further for future versions.

So, why did this situation with various proprietary Automotive SerDes solution evolve? In the authors' opinion, it is a combination of the following two aspects: first, fast advancements of camera and display technologies that swept into the automotive industry from outside, and second, the connectivity was (is) P2P at the edge of the IVC network outside strategic decision making. Furthermore, camera and display applications have always had a large car user visibility. Up to know, only proprietary technologies were able to support the new features, as fast as the automotive industry wanted to use them. At the same time, it did not matter as much when proprietary technologies were used, especially, when the two units at each end of the communication link were provided by the same Tier 1 supplier in a closed system. The Tier 1 supplier offers exactly what the car manufacturer requires and looks for a cost optimized solution in order to win the contract. The car manufacturer also wants the best possible features available for its customers. As long as the costs work out, the incentive to push for a standard in such a scenario is limited.

While there might have been discussions on standardizing Automotive SerDes, until very recently though, they have not been followed through. There are a number of reasons, why the situation with respect to standardization has changed just now. First of all, it is a matter of sheer volume. The number of cameras and displays in cars is growing, while at the same time analogue connections for these applications are being phased out. Second, the car manufacturers are envisioning EE-architectures, in which cameras, high-speed sensors, and displays are bought from different Tier 1s than the ECU processing the data, potentially even with different time lines.

Index

Symbole	Advanced Driver ASsist functions. See ADAS
1-wire serial protocol 173	Advanced Video Coding. See H.264 AEC, Automotive Electronics Council 82
2.5GBASE-T1. See IEEE 802.3ch	AEC, Automotive Electronics Council 62 AEC-Q100 XVIII, 82
4G 58, 214	•
4K 311, 315, 345	AEC-Q101 82
4-Pair Power over Ethernet. See 4PPoE	AFDX, Avionics Full-Duplex Switched Ethernet 284
4PPoE. 4-Pair Power over Ethernet 165	AFEXT. See crosstalk
5GBASE-T1. See IEEE 802.3ch	after sales 74
8B10B 208 , 217, 222, 337, 342, 345	AGC, Adaptive Gain Controller 221, 237, 261, 274,
8K 25, 28, 32, 315, 345	360
8P8C 137	agile development 358
10BASE-T XVIII, 144	aging effect 76
10BASE-T1S. See IEEE 802.3cg	alien crosstalk. See crosstalk
10BASE-T2 143	ALSE, Absorber-Lined Shielded Enclosure 97, 219
10BASE-T5 143	Always-On Sentinel Conduit. See AOSC
10GBASE-T 273	AMEC 151
10GBASE-T1. See IEEE 802.3ch	American Wire Gauge. See AWG
100BASE-T1. See IEEE 802.3bw	AML. See ASAML
100BASE-TX XX, 16, 138, 142, 152, 165, 251	ANEXT. See crosstalk
150 Ohm EMC test method 94	ANSI/TIA/EIA-644A. See LVDS
644A. See LVDS	antennas 50, 58, 97, 124, 17, 141, 143
1000BASE-RH. <i>See</i> IEEE 802.3bv	- antenna tests 97
1000BASE-T 130, 133, 138, 146	- horn antenna 97
1000BASE-11. See IEEE 802.3bp	- LogPer antenna 97
1000BASE-11. See TEEE 802.Sup	- periodic broadband antenna 97
	- rod antenna 97
A	AOSC, Always-On Sentinel Conduit 330
	A-PHY. See MIPI A-PHY
A2B, Automotive Audio Bus 316	A-PHY Control and Management Database.
Absorber-Lined Shielded Enclosure. See ALSE	See ACMD
Abstract Service Primitives. See ASP	API, Application Programming Interface 41
AC-coupling 120, 166	APIX, Automotive Pixel Link 18, 210
ACK, ACKnowledge 225, 322	APPI, A-PHY Protocol Interface 215
ACMD, A-PHY Control and Management Database 232	Application Programming Interface. See API Application Stream Encapsulation Protocol. See ASEP
active matrix 26	Arbitrary Waveform Generator. See AWG
adaptive AUTOSAR. See AUTOSAR	architecture. See EE-architecture
Adaptive Gain Controller. See AGC	ARQ. See retransmissions
ADAS, Advanced Driver ASsist functions 1, 55, 76, 377	Arrhenius equation 149 ASA, Automotive SerDes Alliance XXI, 13, 45, 84, 232
AD, AUtonomous Driving 1, 55, 70, 80	ASAML, ASA Motion Link XXI, 45, 133, 232, 291, 316
Additive White Gaussian Noise. See AWGN	- Branch 232, 241

- channel 234	BCI, Bulk Current Injection 94, 96, 219, 236, 293
- DLL 240	 BCI test and ESD components 115
- keys for security 241	BER, Bit Error Rate 42, 119, 229, 258, 291, 360,
- Leaf 232	375
- PCS 239	best effort transmission 276
- PMA 237	Best Master Clock Algorithm. See BMCA
- Root 232	BGA package 83
- security 45, 241	Bias-T 166, 172, 174, 178, 186, 205, 207, 375
ASA Motion Link. See ASAML ASEP, Application Stream Encapsulation Protocol	Bill Of Material. See BOM BIST, Built-In Self-Test 189, 232, 359, 365
232, 237, 243	Bit Error Rate. See BER
ASIC 40	black box testing 366
ASIL. See functional safety	blanking 27, 43, 169, 195, 201, 240, 331, 335, 342
ASP, Abstract Service Primitives 368	BMCA, Best Master Clock Algorithm 280
asymmetric communication 9, 52, 58, 199, 269, 288,	BNC connector 201
289	BOM, Bill Of Material 206
asymmetric Ethernet 268	boundary scan test 363
ATS, Asynchronous Traffic Shaping 281	branch coverage 366
ATSC, Advanced Television Systems Committee XX,	bridge 5, 11, 15
24, 25	broadcast 232, 289
attenuation. See IL	BroadR-Reach XX, 138, 251
Audio Video Bridging. See AVB	BTA, Bus TurnAround 331
Automatic Retransmission/Repeat reQuest.	buck-boost converters 168, 184
See retransmissions Automotive Audio Bus. See A2B	built-in error generator 365 Built-In Self-Test. See BIST
Automotive Electronics Council. See AEC	Bulk Current Injection. see BCI
automotive environment 67	Bus TurnAround. See BTA
Automotive Ethernet. See Ethernet	ByteFlight 264
automotive market 67	5)101.116.11
Automotive Open System Architecture. See AUTOSAR	
Automotive Pixel Link. See APIX	C
Automotive Safety Integration Level. See functional	Cable Discharge Event. See CDE
safety	cabling 2, 9, 16, 18, 58, 76, 139, 180, 292, 347
Automotive SerDes. See SerDes	- aging 150
Automotive SerDes Alliance. See ASA	- bending 144
autonegotiation 268	- diameter 139
Autonomous Driving. See AD	- hybrid 147
AUTOSAR, Automotive Open System Architecture	- length requirement 9
XXIX, 41, 275, 286	- multi-port 145
- AUTOSAR SecOC XXIX	parameters for copper cables 120predefined 122
- SecOC 286 auxiliary channel 30, 342, 343	- stress types 149
AV1, compression format 311	Call for Interest. See CFI
AVB, Audio Video Bridging XX, 276	Camera Command Set. See MIPI CCS
AVC. See H.264	cameras XVII, XIX, 4, 34, 56, 78, 79, 169, 172, 173,
Avionics Full-Duplex Switched Ethernet. See AFDX	182, 188, 192, 200, 204, 205, 214, 240
AVNU Automotive Profile 277	- elements 39
AWG, American Wire Gauge 138	- lens 36, 39
AWG, Arbitrary Waveform Generator 377	- software 41
AWGN, Additive White Gaussian Noise 228, 377	Camera Service Extension. See MIPI CSE
	CAN 10, 12, 46, 141, 152, 166, 194, 199, 201, 204, 286
В	Capacitive Clamp Coupling method. See CCC method
	car variants 69
balance. See symmetry	CAT 5e 138, 146
bandwidth reservation 283 Bayer pattern filter 37	CAT 6a 138, 146 CAT cables 137
DOVEL DOLLETT THE 37	CALCAURS 137

Cathode-Ray Tube. See CRT display conflict between ESD, EME and EMI 115 CBS, Credit Based Shaper 281 Conformance Test Specification. See CTS CCC method, Capacitive Clamp Coupling method connecting process 150 98 connectors 76, 150, 347 CCD, Charge-Coupled Device XVII, 34 - parameters 150 CCS. See MIPI CCS - predefined 122 CD. Compact Disc XVII. 304 - variants 150 CDE, Cable Discharge Event 109 consumer device integration 31 CDM, Charged Device Model 108 Consumer Electronics Control. See CEC CEC, Consumer Electronics Control 338 content protection XVII, 43, 313 center-stack display 23 Continuous-Time Linear Equalizer. See CTLE centralized network management 283 Continuous Wave. See CW CFA, Color Filter Array 37 control channel 9, 29, 33, 40, 44, 49, 201, 203, 208, CFI, Call For Interest XXI, 253, 261, 264 210, 222, 234, 338 channel 119, 217, 234, 253, 265, 373 Controller Area Network. See CAN - definition 120, 217, 234, 253, 261 cooperation among car manufacturers 72 - impairments 126 costs 2, 9, 12, 23, 45, 56, 68, 70, 80, 81, 165, 320, - responsibilities in the value chain 121 355 - specification 137 coupling - testing 373 - capacitive 91, 132 channel monitor loop 361 - clamp coupling methods 98 Charge-Coupled Device imager. See CCD - conducted 91, 136 Charged Device Model. See CDM - far-field 91 - inductive 91, 132 chirp 50 CIA, Confidentiality, Integrity, Availability 43 - methods 98 cinch connectors 201 - parasitic resistive 132 CISPR XVI, 255 coupling attenuation 131, 218, 254, 262 classic AUTOSAR. See AUTOSAR CRC, Cyclic Redundancy Check 14, 205, 224, 226, clock 209, 315, 317, 320, 331, 347 - clock generation 211 Credit Based Shaper. See CBS - clock master 216 crosslink PolyEthylene. See PE-X - inter-pair skew 130 crosstalk 8, 132, 145, 218, 234, 254, 262, 294 - intra-pair skew delay 131 - alien XTALK 133, 136, 294 - leader 237 CRT display, Cathode-Ray Tube display 22, 27, 334 - skew 8, 263 CSI-2. See MIPI CSI-2 closed loop method 96 CTLE, Continuous-Time Linear Equalizer 332 CMC, Common Mode Choke 120, 172 CTS, Conformance Test Specification 372 CML, Current Mode Logic 204, 210 Current Mode Logic. See CML CMOS, Complementary Metal-Oxide Semiconductor CVBS, Color, Video, Blanking, and Synchronization XVIII, 34, 213 199, 200 CMOS imager 34, 36, 55 CW, Continuous Wave 50 cyclic queuing and forwarding 284 CMYK **304** CO2 emissions XXI, 77 Cyclic Redundancy Check. See CRC coaxial cables 12, 13, 40, 100, 119, 123, 138, 143, 217, 234, 288 color filter 36 D2B, Domestic Digital Bus 264 Color Filter Array. See CFA daisy-chain 31, 44, 212, 213, 233, 277, 341, 343 color resolution. See resolution, color Color, Video, Blanking, and Synchronization. Dark Signal Non-Uniformities 38 See CVBS Data Link Layer. See DLL Common Mode Choke. See CMC data loggers 376 Compact Disc. See CD data rate adaptation 195, 225 DCC method, Direct Capacitive Coupling method 98 complexity 68, 269, 288, 291 compliance 84, 366, 367, 372, 375 DC-DC converters 167 compression 4, 16, 28, 30, 204, 251, 305, 341 DC resistance 120, 167, 179, 180 Confidentiality, Integrity, Availability. See CIA DDC, Display Data Channel 334, 337, 341, 347

E decentralized network management 283 deep packet inspection 363 deep sleep 192, 232, 241, 272 echo canceller 261, 270, 274 defect rate 81 echo strength. See RL EDID, Extended Display Identification Data 334, 338 de-mosaicing 39 Denial of Service. See DoS eDP, embedded DisplayPort XX, 210, 244, 341, 343, deserializer 6, 11, 206, 209, 211, 213, 245 development cycle 73 EE-architecture 2, 5, 12, 29, 39, 47, 55, 57, 70, 78, Device Under Test. See DUT 210, 213, 251, 253, 277, 358 dielectric losses 126 EEE, Energy Efficient Ethernet XX, 196, 257, 269, 272, dielectric strength 105 Dieselhorst-Martin stranding. See DM stranding EFM, Ethernet in the First Mile 268 differential transmission 8, 124, 201, 262 electrical breakdown 105 differentiation among car manufacturers 69 electric ground. see GND Digital Millennium Copyright Act. See DMCA ElectroMagnetic Compatibility. See EMC Digital Stream Compression. See DSC ElectroMagnetic Emissions. see EME digital TV. See TV, digital or DVB ElectroMagnetic Immunity 94. see EMI Digital Video Broadcasting. See DVB electromagnetic waves 47, 48 Digital Visual Interface. See DVI electrostatic charge levels 106 Direct Capacitive Coupling method. See DCC method ElectroStatic Discharge. See ESD embedded DisplayPort. See eDP Direct Memory Access. See DMA Direct Power Injection. see DPI EMC, ElectroMagnetic Compatibility XVI, 79, 89, 207, display 4, 21, 166, 192, 200, 203, 210, 215, 244 228, 236, 255, 293 - elements 30 - sensitive systems 93 - formats 25 - specification 92 - protocols 333 - test order 93 Display Data Channel. See DDC variants of interference 91 DisplayPort. See DP EME, ElectroMagnetic Emissions 89, 94 Display Service Extension. See MIPI DSE EMI, ElectroMagnetic Immunity 89 dithering 26, 238 emissions gap 134 DL, DownLink 32, 234 End-Node-Interconnect-Structure. See ENIS DLL, Data Link Layer 10, 14, 230, 240, 272 (MDI network) DMA, Direct Memory Access 319 End Of Production. See EOP DMCA, Digital Millennium Copyright Act XIX, 313 Energy Efficient Ethernet. See EEE DM stranding, Dieselhorst-Martin stranding 145 ENIS (MDI network), End-Node-Interconnect-Structure Domestic Digital Bus. See D2B Doppler effect 47, 50 environmental safety 255 DoS, Denial of Service 282, 286 EOP, End Of Production 74, 75 EPON. Ethernet Passive Optical Network 268 DownLink. See DL DP, DisplayPort XX, 122, 244, 341, 347 EPROM, Erasable Programmable Read-Only Memory - DP++, dual-mode transmission 344 39, 378 D-PHY. See MIPI D-PHY Equivalent Series Resistance. See ESR ESD, ElectroStatic Discharge 105, 374 DPI, Direct Power Injection 94, 95 DSC, Display Stream compression 28, 311 - diode snapback 112 DSI-2. See MIPI DSI-2 - ESD diodes 112, 120 DSI3 46 - ESD diodes, uni- and bidirectional 112 DSNU, Dark Signal Non-Uniformities 38 - ESD, powered 110 dual homing 285 - ESD protection 112 dual-view display 24 - ESD protection, chip internal 114 duplexing methods 288 - ESD, unpowered 106 DUT, Device Under Test 366, 373 protection parameters 113 DVB, Digital Video Broadcasting XX, 24, 25, 308 - test voltages 107 DVB-T2 XX, 308 ESR, Equivalent Series Resistance 169 DVD XVIII, 308 Ethernet XVII, 13, 17, 33, 41, 46, 52, 53, 57, 58, 199, DVI, Digital Visual Interface XIX, 335, 347 211, 228, 244, 251 Ethernet camera 40

Ethernet in the First Mile. See EFM Glass Optical Fiber. See GOF Ethernet Passive Optical Network. See EPON global shutter 37 Ethernet side channel 210 GMSL, Gigabit Multimedia Serial Link 207 Ethertype 14, 278 GND, ground 90, 100 - car body GND 103 EU, European Union 35, 79 evaluation boards 372 - GND shift 103, 172 Extended Display Identification Data, See EDID ground loops 103 extinctions 157 - recommended ECU GND 112 extreme programming 359 GOF, Glass Optical Fiber 288 golden device 367 GPI/O 33, 205, 209, 244, 317 F GPS navigation. See navigation system FAKRA 152 gPTP, generalized Precision Time Protocol 279 Farb-Bild-Austast-Synchron-Signal. See CVBS GPU, Graphics Processing Unit 29, 30 Far-End CrossTalk. See FEXT Graded Index POF. See GI-POF fast transients 135, 219, 236 grandmaster clock 280 FBAS. See CVBS Graphics Processing Unit. See GPU FDD, Frequency Division Duplexing 174, 178, 204, Gray code 223, 237, 259 207, 217, 270, 288 ground. See GND FEC, Forward Error Correction 137, 228-230, 234, GVIF, Gigabit Video InterFace 212 237, 241, 258, 268, 271 ferrite beads 176 Н FEXT, Far-End CrossTalk 133 Fiber Optical Transmitter. See FOT H.262 XVIII, 308, 310 flash Lidars 53 H.264 XX, 303, 308, 310, 312 FlexRay 46, 141, 199, 286, 369 H.265 308, 310, 312 FMCW, Frequency Modulated CW 50, 53 half-duplex 13, 129, 234, 272, 332 FoFa, Forwarding Fabric 233 HBM, Human Body Model 108 Forward Error Correction. See FEC HDBASE-T 140, 217 Forwarding Fabric. See FoFa HDCP, High-bandwidth Digital Content Protection FOT, Fiber Optical Transmitter 264 XIX, 31, 205, 313, 338 FPD-Link XIX, 12, 130, 133, 203 HDMI, High Definition Multimedia Interface XIX, XX, FR-2 **157** 29, 122, 206, 210, 337, 347 FR-4 158 HDR, High Dynamic Range 33, 37 frame preemption 284 HDTV, High-Definition Television 25 Frame Rate Control. See FRC HEIF, High-Efficient Image Format 307 frame replication 284 HEVC. See H.265 FRC, Frame Rate Control 26 HFM, High-speed FAKRA Mini 153 High-bandwidth Digital Content Protection. See HDCP Frequency Division Duplexing. See FDD Frequency Modulated CW. See FMCW High Definition Multimedia Interface. See HDMI FRR, Front-Range Radar 51 High-Definition Television. See HDTV full-duplex XIX, 13, 129, 175, 205, 264, 270, 272, High Dynamic Range. See HDR High Efficiency Image File format. See HEIF High Efficiency Video Coding. See H.265 functional safety 33, 42, 79, 224, 241 High-Speed Data cables. See HSD cables High-Speed Data connectors. See HSD connectors G High-speed FAKRA Mini. See HFM Gamma correction 26, 39 High-speed Modular Twisted-pair Data connector. Gamma sequence 33 See H-MTD connector High Speed Video Links. See HSVL gamut 26 generalized Precision Time Protocol. See gPTP HMI, Human Machine Interface 3 General Purpose Input/Output. See GPI/O H-MTD connector, High-speed Modular Twisted-pair Gigabit Multimedia Serial Link. See GMSL Data connector 151, 152 Gigabit Video InterFace. See GVIF H-MTDe connector 151, 152 GigaSTAR 210 horizontal blanking 27 GI-POF, Graded Index POF 265 housing. See package

HSD cables 212	IEEE 802.3dh 265
HSD connectors, High-Speed Data connectors	IEEE 1149 363
152	IEEE 1394 Firewire 152
HSVL, High Speed Video Links 11	IEEE 1722 15, 278
Human Body Model. See HBM	IEEE 2977. See MIPI A-PHY
Human Machine Interface. See HMI	IEEE P802.1DG 277
human vision 3, 34, 40	IET, Interspersing Express Traffic 284
hybrid 270, 274	IL, Insertion Loss 126, 135, 144, 145, 149, 155, 234,
	254, 261
I	imager, image sensors 35, 36, 39
ı	Image Signal Processor. See ISP
12C XVII, 29, 33, 40, 204, 205, 207, 244, 320,	immunity gap 135
333, 338	impedance 91, 94, 95, 100, 123, 144, 149, 209, 210,
- ACK mechanism 323	217, 234
- addressing 323	- in the power path 175
- channel access 322	- mismatch 115, 123
- multi controller system 323	Improved Inter-IC bus. See MIPI I3C
- PHY 321	In-Circuit Testing. See ICT
- transmission modes 321	Inductive Coupling/Current Clamp method.
I2C bulk mode 326	See ICC method
12S XVII, 30, 244, 315	inductor 176
I3C. See MIPI I3C	Industrial, Scientific, and Medical frequency band.
IBG, Inter-Burst Gap 237	See ISM band
ICC method, Inductive Coupling/Current Clamp	infotainment 21
method 98	InfraRed. See IR
ICs, Integrated Circuits 6, 81	ingress policing and filtering 282
ICT, In-Circuit Testing 83	innovation 70
IEEE 802.1 15, 276	input current 168
IEEE 802.1AS 279	inrush current 169, 190
IEEE 802.1CB 284	Insertion Loss. See IL
IEEE 802.1Q XIX, 14	insulation material 156
IEEE 802.1Qat 283	insurance 68, 80
IEEE 802.1Qav 281	Integrated Circuits. See IC
IEEE 802.1Qbu 284	Integrated Services Digital Broadcasting.
IEEE 802.1Qbv 283	See ISDB
IEEE 802.1Qca 284	intelligence 4, 29, 41, 70
IEEE 802.1Qcc 283	Inter-Burst Gap. See IBG
IEEE 802.1Qch 284	interface latency 327
IEEE 802.1Qci 282	interference model 134
IEEE 802.1Qcr 281	interference types 137
IEEE 802.3az. See EEE	interfering noise. See noise types
IEEE 802.3bp 18, 138, 140, 141, 151, 152, 172	Inter-IC bus. See I2C
IEEE 802.3br 284	Inter-IC Sound bus. See I2S
IEEE 802.3bu 172	Inter-Integrated Circuit. See I2C
IEEE 802.3bv 18, 264	interleaving 257, 262, 271, 293
IEEE 802.3bw XX, 16, 18, 138, 139, 151, 152,	Internet Protocol. See IP
172, 199	interoperability 84
IEEE 802.3cg 18, 199, 319	inter-pair skew. See clock
IEEE 802.3ch XXI, 18, 133, 140, 252, 255,	Interspersing Express Traffic. See IET
291–294	InterSymbol Interference. See ISI
- PCS 257	IP, Internet Protocol 286
- PMA 261	IPsec XXXVII, 286
- test modes 370	IR, InfraRed 35, 48
IEEE 802.3cy XXI, 18, 261, 291–294	ISDB, Integrated Services Digital Broadcasting
- PCS 263	XX, 24, 25
FFF 802 3cz XXI 18 263	ISI InterSymbol Interference 129

ISM band, Industrial, Scientific, and Medical frequency	Low Power Idle. See LPI
band 50	low power modes 191
ISO 9646 368	Low Voltage Differential Signaling. See LVDS
ISO 26262. See functional safety	LPI, Low Power Idle 273
ISO/OSI layers XVII, 14	LRR, Long-Range Radar 51
ISP, Image Signal Processor 38, 39	LSFR, Linear Shift Feedback Register 237, 258
IVC bridge. See bridge	LTE, Long Term Evolution 58, 214
	LV 124 136
I	LVDS, Low-Voltage Differential Signaling XVIII, 11,
J	199, 201
JEIDA, Japan Electronic Industry Development	
Association 212	8.4
JEITA, Japan Electronic and Information Technology	M
industries Association 212	Machine Model. See MM
JITC, Just-In-Time Canceller 226	machine vision 3, 34
JPEG, Joint Photographic Experts Group 40, 305	Macrovision content protection 313
JTAG, Joint Test Action Group 363	MACsec 45, 285
Just-In-Time Canceller. See JITC	maintenance 68
	Management Data Clock. See MDC
V	Management Data Input/Output. See MDIO
K	MASS, MIPI Automotive SerDes Solution 329
key exchange 43, 241	MateAX 153
, ,	MateNet 151
	maximum current 179
L	MC, Mode Conversion 125, 126, 131
laminated paper. See FR-2	MDC, Management Data Clock 256
laptop market 23, 202	MDI, Media Dependent Interface 40, 120
layer 2 bridge. See switch	- MDI insertion loss 156
LCD, Liquid Crystal Display 22, 24, 29, 202, 334, 345	- network 120, 156
LCL, Longitudinal Conversion Loss 131	- MDI return loss 40, 121, 156
legislation 77, 78	MDIO, Management Data Input/Output 256
licensing 212, 311, 312, 314, 347	Mean Square Error. See MSE
Lidar XXI, 52, 56	mechanical stress 148
lifetime 76	Media Dependent Interface. See MDI
light sleep 194, 196, 240, 272	Media Independent Interface. See MII
Linear Shift Feedback Register. See LSFR	Media Oriented Systems Transport. See MOST bus
linear voltage regulators 167, 184	memory map 325, 328, 329
Line Impedance Stabilization Network. See LISN	MGBASE-AU. See IEEE 802.3cz
link adaptation 225	MGBASE-T1. See IEEE 802.3ch or IEEE 802.3cy
link length 121	Micro Quadlok System. See MQS
link margin 155	micro-reflections 130, 262
LIN, Local Interconnect Network	microstrip 158, 331
9, 46, 101, 199, 201, 286	Mid-Range Radar. See MRR
lip synchronization 30, 33	MII, Media Independent Interface 14, 251
Liquid Crystal Display. See LCD	MIMO, Multiple Input Multiple Output 51
LISN, Line Impedance Stabilization Network 96	Mini-coax 153
Listener 277	MIPI Alliance XX, 13, 84, 214
load changes 136	MIPI A-PHY XXI, 214, 291
Local Interconnect Network. See LIN	- channel 217
Longitudinal Conversion Loss. See LCL	- Profile 1 217, 224
Long-Range Radar. See LRR	- Profile 2 217, 224
Long Term Evolution. See LTE	MIPI Automotive SerDes Solutions. See MASS
loopback testing 364	MIPI Camera Service Extension. See MIPI CSE
lossless compression 305	MIPI CCS, Camera Command Set 41, 333
lossy compression 305, 310	MIPI C-PHY 215, 331
lower tester 368	- dual-mode transmitter 332

MIPI CSE, Camera Service Extension 232, 333	NodelD 233
MIPI CSI-2 XX, 206, 214, 329, 330	noise floor 134
MIPI DCS, Display Command Set 341	noise generator 365
MIPI Display Service Extension. See MIPI DSE	noise types 135
MIPI D-PHY 206, 214, 331	NRZ, Non-Return to Zero 120, 207, 208, 210, 214, 217,
MIPI DSE, Display Service Extension 232, 341	234, 236, 267
MIPI DSI-2 XX, 206, 347	NTSC, National Television System Committee 25,
MIPI I3C 324, 333	200, 334
MJPEG, Motion JPEG 40, 307	Nyquist frequency 127, 221, 234, 254
MMF, MultiMode Fiber 265	
MMIC, Monolithic Microwave Integrated Circuits 51	^
MM, Machine Model 107	0
mobile communication 58, 214	OAM, Operation, Administration, and Management
mobile device integration 31	240, 241, 257, 262
Mode Conversion. See MC	OFDM, Orthogonal Frequency Division Multiplexing
modulation 155	50
Monolithic Microwave Integrated Circuits.	OLED, Organic Light Emitting Diodes 22, 24
See MMIC	OM3 265
MOST bus, Media Oriented Systems Transport bus	One-Time Programmable memory. See OTP
10, 152, 252, 264	OPEN Alliance 18, 84, 272, 319, 371
Motion JPEG. See MJPEG	OpenLDI XIX, 206, 209, 211, 213, 335, 347
moving cycles 76	open-load 170
Moving Pictures Experts Group. See MPEG	Operation, Administration, and Management channel.
MPEG-2. See H.262	See OAM
MPEG-4. See H.264	optical media 263
MPEG, Moving Pictures Experts Group XVIII, 305,	Organic Light Emitting Diodes. See OLED
307, 308	Orthogonal Frequency Division Multiplexing.
MQS, Micro Quadlock System 151	See OFDM
MRR, Mid-Range Radar 51	oscilloscope 375
MSE, Mean Square Error 360	OTP, One-Time Programmable memory 39, 379
MST, Multi-Stream 342, 343	outsourcing 69
MTP, Multi-stream Transport Packet 344	over-voltage 170
multi-beam Lidars 53	
multicast 31, 44, 232, 240, 289	Р
MultiMode Fiber. See MMF	•
Multiple Input Multiple Output. See MIMO	P2P communication 10, 32, 44, 58, 213, 232, 244,
multipoint MAC control 268	276, 277, 289
Multi-Stream (DP/eDP). See MST	pacer 226
Multi-stream Transport Packet. See MTP	package 83
	Packet Error Rate. See PER
N	PAL, Phase Alternation Line 25, 200
	PAL, Protocol Adaptation Layer 215, 230, 330
nACK 323	PAM 2. See NRZ
Narrow Band Interference. See NBI	PAM 4 208, 234, 259, 262, 267
National Television System Committee. See NTSC	PAM 16 223
navigation system XVII, 22, 23	PAM, Pulse Amplitude Modulation 120, 221, 223, 226,
NBI, Narrow Band Interference 228, 236, 293	234
NCAP, New Car Assessment Program 80	parallel data transmission 7
Near-End CrossTalk. See NEXT	parking aid systems 49
Near Field Communication. See NFC	partial networking 77, 194
network congestion 282	Parts Per Million. See PPM
New Car Assessment Program. See NCAP	pattern generator 377
NEXT, Near-End CrossTalk 133	PCB, Printed Circuit Board 7, 83, 120, 156
- PSANEXT 133	- material 157
NFC, Near Field Communication 141 nMQS, nano MQS 151	PCIe, Peripheral Component Interconnect express
HIVIGO, HAHO IVIGO IJI	122

PCM. Pulse Code Modulation 315 Power over Coaxial. See PoC PCS, Physical Coding Sublayer 14, 220, 222, 236, Power over DataLine, See PoDL 239, 257, 263, 267 Power over Differential cables. See PoD pDelay measurement 280 Power over Ethernet. See PoE PD, Powered Device 136, 166, 167, 182 Power Sourcing Equipment. See PSE PDU, Protocol Data Unit 368 Power Spectral Density. See PSD Peripheral Component Interconnect express. Power Sum Alien Attenuation to Crosstalk Ratio See PCIe Far-end, See FEXT Peripheral Sensor Interface five. See PSI5 Power Sum Alien Near-End crossTalk. See NEXT PPI, PHY Protocol Interface 332 PER, Packet Error Rate 229 PPI, Pixels Per Inch 26 PE-X, crosslink PolyEthylene 139 phantom power 165 PPM. Parts Per Million 81 Phase Alternation Line. See PAL PP, PolyPropylene 139 PHY 119, 220, 236, 255, 265, 321 PRBS, Pseudo-Random Bit Sequence 208, 238 PHY Protocol Interface. See PPI, PHY Protocol Precision Time Base. See PTB Interface pre-processed data 199 Physical Coding Sublayer. See PCS presentation time 278 Physical Layer Signaling. See PLS Printed Circuit Board. See PCB Physical Media Attachment. See PMA privacy 43, 242 Physical Media Dependent. See PMD production 69 PICS, Protocol Implementation Conformance Product Life Cycle. See PLC Statement 366 Protocol Adaptation Layer. See PAL picture element. See pixel protocol analyzers 377 pixel 24, 25, 36 Protocol Data Unit. See PDU - size 36 Protocol Implementation Conformance Statements. pixel links 11 See PICS Pixels Per Inch. See PPI PSAACRF. See FEXT Plastic/Polymer Optical Fiber. See POF PSAACRF. Power Sum Alien Attenuation to Crosstalk PLC, Product Life Cycle 73 Ratio Far-end 133 PSANEXT. See NEXT PLS, Physical Layer Signaling 269 PMA, Physical Medium Attachment 14, 220, 237, 261 PSD, Power Spectral Density 121, 219, 236 PMD, Physical Media Dependent 220, 264 PSE, Power Sourcing Equipment 136, 166, 167, PoC, Power over Coaxial 40, 136, 173, 204 182 - manual 186 Pseudo Random Bit Sequence. See PRBS - stability 182 PSI5 46, 101, 199 PoDL, Power over DataLine 172 PTB, Precision Time Base 237, 238 PoD, Power over Differential cables 171 Pulse Amplitude Modulation. See PAM PoE, Power over Ethernet 165 Pulse Code Modulation. See PCM Pulse-Width Modulation. See PWM POF, Plastic Optical Fiber 265 Point-to-Point. See P2P communication PVC, PolyVinyl Chloride 139 PolyEthylene, crosslink. See PE-X PWM, Pulse-Width Modulation 29, 101, 135 PolyPropylene. See PP PolyVinyl Chloride. See PVC power - consumption 4, 38, 40, 53, 68, 77, 164, 291 QAM, Quadrature Amplitude Modulation 200 - load change 169 QFN package 83 - modes 188, 190 QoS, Quality of Service XX, 4, 15, 57, 276 - power ripples 135, 169, 236, 292 Quadrature Amplitude Modulation. See QAM - savings 77, 164, 188, 191 quality 81 - savings potential 274 Quality of Service. See QoS - supply 30, 40, 49, 77, 152, 164, 188 quiescence current 77 - supply limits 170 - supply path 179 R Powered Device. See PD

radar XVI, XIX, 50, 56

- cube 51

power-over XXI, 165, 166, 235, 288

- limit 179

radio XVI, 22, 58	seamless redundancy 284
Radio Corporation of America. See cinch connectors	SecOC. See AUTOSAR
Radio Frequency. See RF	security 33, 43, 241, 285, 292
raw data 199	semiconductor market 71
RBP, Reverse Battery Protection 171	semiconductor quality 81
RCA, Reverse Channel Audio 339	semiconductor supply 84
- RCA. See cinch connectors	semiconductor vendor 72
Real-time Transport Protocol. See RTP	SenseWire. See MIPI I3C
Rear Seat Entertainment. See RSE	sensors 4, 46
recall 355	- architecture 57
receiver input 135	- dumb 4
Red Green Blue. See RGB	- intelligent 4
Reed Solomon FEC. See RS-FEC or FEC	SENT, Single Edge Nibble Transmission 46, 101, 199
reference clock 206	SEPIC, Single-Ended Primary-Inductor Converter 168,
reference time 279	184
regulation 77, 79	SEP, Service Extension Packet 333
relation between IL and RL 128	SerDes 6, 9, 16, 52, 199, 289, 333
resistive losses 126	Serial Advanced Technology Attachment. See SATA
resolution 25, 32	Serial Communication Classification Protocol.
- color 9, 26	See SCCP
resonances 157	serializer 6, 11, 206, 209, 211, 213, 245
retrain 227	Serial Peripheral Interface. See SPI
retransmissions 137, 212, 217, 220, 224, 227–230	Service Extensions Packet. See SEP
Reverse Battery Protection. See RBP	SFCW, Stepped Frequency CW 50
Reverse Channel Audio. See RCA	Shield Attenuation. See SA
RF ingress 219, 236, 293	Shielded Differential Pair. See SDP
RF, Radio Frequency 135	Shielded Parallel Pair. See SPP
RGB, Red Green Blue XVI, 26, 200, 206, 302, 329	Shielded Twisted Pair. See STP
RGGB. See Bayer pattern filter	Shielded Twisted Quad cables. See STQ
ringing effect 170	shielding 99, 141
ripples. See power, power ripples	- 360-degree 102
RJ-45 137	- case shielding 102
RL 126, 128, 234, 254	short-load 170
rolling shutter 37	Short-Range Radar. See SRR
RSE, Rear Seat Entertainment XIX, 58	shutter 37
RS-FEC 228-230, 234, 237, 258, 262, 268	signal propagation delay 127
RTP, Real-time Transport Protocol 279	Signal Quality Indicator. See SQI
	Signal to Noise Ratio. See SNR
S	Single Edge Nibble Transmission. See SENT
S	single-ended communication 8
SA, Screening Attenuation 126, 131, 148, 254	Single-Ended Primary-Inductor Converter. See SEPIC
SATA, Serial Advanced Technology Attachment 122	SI-POF, Step Index POF 265
Scalable service-Oriented MiddlewarE over IP.	skew. See clock, skew
See SOME/IP	skin-effect 156
scanlines 363	sleep modes. See light sleep or deep sleep
scanning Lidars 53	sleep signal 273
SCART connector 201	slow transients 135
Scattering parameters. See S-parameters	slow wake 273
SCCP, Serial Communication Classification Protocol	Smart Region Of Interest. See SROI
173	SNR, Signal to Noise Ratio 100, 120, 155, 221, 241,
SCI, Sub-Constellation Index 226	360
scrambler 205, 208, 214, 222, 237, 258, 268	SOME/IP, Scalable service-Oriented MiddlewarE over
Screening Attenuation. See SA	IP 41
scrum 359	sonar XVII, 48, 56
SDL, System and Description Language 369	- ECU 49
SDP. Shielded Differential Pair 143, 152	sonic 47

sonic waves 48 SOP, Start Of Production 73	TCP, Transmission Control Protocol XVII, 286 TDD, Test-Driven Development 359
SOVS, System Operational Vector Space 369	TDD, Time Division Duplex 239, 268, 270, 274, 304,
space considerations 78	322
S-parameters, scattering parameters 124 spectrum analyzer 376	TDR, Time Domain Reflectometry 148, 236, 374 television. <i>See</i> TV
speed of an electrical signal 157	temperature requirements 76, 82
SPI, Serial Peripheral Interface 29, 33, 40, 205, 244,	testability 359
317	Test-Driven Development. See TDD
SPP, Shielded Parallel Pair 119, 142, 261	test metrics 366
SQI, Signal Quality Indicator 360	test output 361
sRGB XIX, 302	Test Points. See TP
SROI, Smart Region of Interest 330	test specifications 367
SRP, Stream Reservation Protocol 283	TFT, Thin Film Transistor 26
SRR, Short-Range Radar 51	thermal breakdown 105
standard 13, 15, 244	thermal noise 133
STar Quad cables. See STQ	Tier 1 69, 70, 81
Start Of Production. See SOP	Time Aware Shaper. See TAS
star topology 31	Time Division Duplex. See TDD
start-up 77, 240	Time Domain Reflectometry. See TDR
status registers 360	Time of Flight. See ToF
step-down converters 168, 184	timeouts 241
Step Index Plastic/Polymer Optical Fiber. See SI-POF	Time Sensitive Networking. See TSN
Stepped Frequency CW. See SFCW	Timing CONtroller. See TCON
step-up converters 168, 184	TLIS (link segment) 217
stereo cameras 40	TLP, Transmission Line Pulse measurement 109
STP, Shielded Twisted Pair 101, 119, 123, 138, 141, 288	TLS, Transport Layer Security 286
STP, Shieled Twisted Pair 100 STO, STar/Shielded Twisted Quad cables 119, 141,	TMDS, Transition-Minimized Differential Signaling 337
145, 210, 212, 226	ToF, Time of Flight 35
stream blocking 282	- camera 54, 56
stream ID 278	- Lidar 53, 54
Stream Reservation Protocol. See SRP	Token Ring 16
stripline measurement 94, 95	touch screen XVII, XVIII, 23, 29, 33
stripline (PCB design) 158	TP, Test Points 120
Sub-Constellation Index. See SCI	traffic shaping 281
substitution method 97	transients. See fast and slow transients
suck-out 141	Transient Voltage Suppression. See TVS
supply chain 69, 84	Transition-Minimized Differential Signaling.
surround view system 34	See TMDS
switch 15	Transmission Control Protocol. See TCP
switching noise 136, 169	Transmission-Line-Interconnect-Structure.
symmetry 101, 131	See TLIS (link segment)
System and Description Language. See SDL	Transmission Line Pulse measurement. See TLP
System Operational Vector Space. See SOVS	transmitter output 135
	Transport Layer Security. See TLS
T	Transverse Conversion Loss. See TCL
	triboelectric effect 105
tag coverage 366	triboelectric series 105
Taguchi's method 370	TSN, Time Sensitive Networking XX, 15, 276
Talker 277	TVS, Transient Voltage Suppression 112
TAS, Time Aware Shaper 283	TV, television 23, 25, 27, 58
TC 10 272, 275	- digital 24, 25
TCL, Transverse Conversion Loss 131 TCON, Timing CONtroller 29, 30	
TCP/IP XVIII, 15, 290	

U	video compression. See compression
UDP, User Datagram Protocol 286	video conferencing 30
Ultra Short Range Radar. See USRR	Video Graphics Array. See VGA
ultrasonic. See sonar	Video Home System. See VHS
UL, UpLink 33, 217, 234	Virtual Local Area Network. See VLAN
unbalance attenuation 131	visibility 33
under-voltage 170	visible light spectrum 35
unicast 31, 289	visually lossless compression 305, 311
Unified Serial Link. See USL	VLAN ID 276
Universal Serial Bus. See USB	VLAN, Virtual Local Area Network 276
unprocessed data 199	V-model 357
Unshielded Twisted Pair. See UTP	VNA, Vector Network Analyzer 373
UpLink. See UL	voltage regulators 167
upper tester 368	
USB-C 346	W
USB, Universal Serial Bus 29, 122, 142, 146, 152	
User Datagram Protocol. See UDP	Wake-On LAN. <i>See</i> wake-up, WOL
user data rates 252	wake-up 152, 192, 275
USGMII 256	- forwarding 276
USL, Unified Serial Link 330	 power switched 192
USRR, Ultra Short Range Radar 51	- signal 273
USXGMII 256	- wake-up line 193
UTP, Unshielded Twisted Pair 16, 101, 119, 123, 138,	- WOL 193
139	waterfall model 356
137	wavelengths 48,157
	white box testing 366
V	wire gauge 140
varistors 113	wiring harness 70, 78
V-by-One 344, 347	WOL, Wake-On LAN 193, 275
VCD, Video CD 308	
VCSEL, Vertical Cavity Surface-Emitting Laser 265	X
VDC-M, VESA Display Compression-Mobile 311	
	XAUI 256
Vector Network Analyzer. See VNA vertical blanking 27	XFI 256
Vertical Cavity Surface-Emitting Laser. See VCSEL	XGMII 256
	XPE. See PE-X
VESA XVIII, 341 VESA Display Compression-Mobile. See VDC-M	
	Υ
VGA, Video Graphics Array 25, 334, 336, 341 VHDL 369	VChCr 202
	YCbCr 303
VHS, Video Home System XVII, 304 vibration 76	YCoCg 303
Video CD. See VCD	YPbPr 303
VIUEU OD. SEE VOD	YUV 200, 303