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Abbreviations and Acronyms

AoR Angle of Repose
BCA Bulk Calibration Approach
CFD Computational Fluid Dynamics
CoR Coefficient of Restitution
CPU Central Processing Unit
DEM Discrete Element Method/Discrete Element Modelling
DMA Direct Measurement Approach
FEM Finite Element Method
GPR Gaussian Process Regression
GPU Graphical Processing Unit
GSMC Generalised Surrogate Modelling-based Calibration
MPM Material Point Method
PSD Particle Size Distribution
UCT Uniaxial Compression Test

1.1 Introduction

Mesh-based simulation techniques in continuum mechanics, such as the Finite Ele-
ment Method (FEM) or Computational Fluid Dynamics (CFD), require the body
or volume of interest to be discretised by a mesh. The mesh closely represents the
real object with small differences or idealisations, mostly directly proportional to
the size of the mesh. These approaches show the convergence of the results with
mesh refinement. However, Lagrangian approaches, such as FEM, suffer from severe
mesh distortion when the body experiences large deformation. In these cases, the
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2 1 Calibration of DEM Parameters

solution can become unstable, and the results inaccurate. The so-called meshless
continuum-based methods such as the Material Point Method (MPM) are capable
of modelling larger deformation [1]. However, these methods still assume a contin-
uum body and might still rely on a non-deforming mesh. As a result, these methods
cannot model the discrete nature of granular materials such as mixing and segrega-
tion or single particles separated from the bulk of the material in a screening process,
for example.

The Discrete Element Method (DEM) was developed by Cundall and Strack [2]
in the 1970s in order to solve problems associated with rock mechanics. The poten-
tial of DEM was quickly recognised for research purposes in a number of areas such
as physics, nanotechnology, chemical engineering, and materials handling. DEM is
completely meshfree (or meshless) and can easily model the large deformation typ-
ically associated with the handling and flow of bulk granular materials (particulate
matter). DEM can also model the discrete nature of the individual particles, during
screening for example.

To use DEM to analyse the behaviour of bulk materials, for example, in conveyor
systems, during transportation and storage and flow through processing equipment,
an accurate simulation model should be generated. A DEM model should define the
geometric properties of the particles, such as the size and shape distributions, as
well as the geometry of any structure or equipment. The interaction or contact prop-
erties (particle–particle and particle–wall) also need to be defined, which is a major
component of the modelling process. As in all the numerical simulation methods,
the experience (know-how) and sometimes the art applied by the user are critical to
define and create a model capable of producing the most accurate simulation results
in the shortest possible time frame.

In a DEM model, the discretisation of the bulk material is directly related to the
size of the considered particles, which have a significant influence on the behaviour
of the modelled material. DEM is also computationally intensive, and for this reason,
most practical models are simplified in terms of particle size, shape, and contact
properties. This idealisation is the reason why established bulk material properties
(e.g. the angle of internal friction and the angle of repose [AoR]) cannot be directly
used as input parameters. Hence, it is necessary to reverse engineer the parameters
by comparing the modelled bulk behaviour to that observed in the experimental
tests. This procedure is called the ‘calibration of DEM parameters’ and is the key
to produce realistic simulation results.

1.2 Basic DEM Theory

A typical DEM model consists of particles and walls. The particles can make contact
with one another and with walls, but wall–wall contact is usually undefined. The
particles represent the granular material and can in theory take on any shape and
size. However, in practice, spherical and multi-sphere particles are the most com-
monly used. Walls are used to define all the structures with which the particles can
interact, such as the walls of equipment and machines. Contact models are used to
calculate the contact forces and moments based on the contact kinematics.
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1. Contact detection

3. Equation of motion

2. Contact resolution4. Particle update

Figure 1.1 DEM computation cycle.

1.2.1 The Calculation Cycle

A DEM calculation cycle consists of four steps as illustrated in Figure 1.1, namely
(1) contact detection, (2) contact resolution, (3) solving the equation of motion, and
(4) updating of the particle velocity and position.

The contacting pieces (particles and walls) are allowed to overlap, and in the first
step of the computation cycle, all particle–particle and particle–wall contacts are
identified. The overlap is assumed to be relatively small compared to the particle
size. Although contact detection happens automatically, without any user interven-
tion, the particle shape selected by the user has a significant effect on the efficiency of
this step. Spherical particles are computationally the best, followed by multi-sphere
particles and more complex shape representations such as super-quadrics and
polyhedra.

In the second step, the force and moment vectors are calculated at each contact,
based on one of a number of available contact models selected by the user. The con-
tact force and moment are dependent on the relative contact displacement or overlap
(elastic force), velocity (viscous force) and the contact parameter values specified by
the user.

In the third step, the resultant force and moment acting on each particle are cal-
culated. This includes the forces, Fc, and moments, Mc, due to the contacts and the
body force due to gravity Fg. Based on the particle’s mass, m, and moment of iner-
tia, Ig, the translational acceleration, ẍ, and the rotational acceleration, 𝛉̈, can be
calculated using the equations of motion,

ẍ =
Fc + Fg

m
(1.1)

𝛉̈ =
Mc

Ig
(1.2)

In the fourth and last step, the particle velocity (translational v = ẋ and rotational
𝛚 = 𝛉̇) is first updated using an explicit time integration scheme,

vt+Δt = vt + ẍΔt (1.3)

𝛚t+Δt = 𝛚t + 𝛉̈Δt (1.4)

where Δt is the timestep. This is followed by the particle’s position and orientation
update,

xt+Δt = xt + vt+𝚫tΔt (1.5)

𝛉t+Δt = 𝛉t + 𝛚t+𝚫tΔt (1.6)
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The explicit time integration scheme is conditionally stable and requires a
timestep smaller than the critical timestep. Using the analogy of a single degree-of-
freedom mass-spring system, it can be shown that the stable timestep is proportional
to the particle mass and inversely proportional to the effective contact stiffness. For
slight variations in the explicit time integration scheme and the calculation of the
timestep, see O’Sullivan [3] for example.

This step concludes the basic time cycling sequence, after which the time is incre-
mented, followed by a new contact detection step.

1.2.2 Contact Models

A contact model defined at each contact describes the force–displacement relation.
There are a number of contact models from which the user can select. Figure 1.2
shows the basic elements of a contact model, namely springs, dashpots, frictional
sliders, and tension elements. A combination of these elements act in each of the
normal and shear (tangential) directions.

The spring elements define the elastic force component and can have linear
behaviour (as in the linear model) or non-linear behaviour (as in the Hertz–Mindlin
model). The viscous dashpots dissipate energy, and the frictional slider allows
for Coulomb-like frictional behaviour in the shear direction. For the modelling
of spheres, rolling resistance models are very important; however, they are not
visualised in Figure 1.2. Cohesive behaviour can be modelled by allowing tensile
forces in the normal direction. The details of the different contact models are not
presented here, and the interested reader should consult other sources such as
O’Sullivan [3] and Thornton [4].

Shear directionNormal direction

Springs Friction slider

Dashpots Tension / no-tension

Figure 1.2 Typical
elements of a contact
model.
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At each timestep, the relative motion between two contacting pieces is used, in
combination with the elements defined above, to update the contact force com-
ponents. The user should specify the parameter values for the spring stiffness, for
example the damping (dashpot) constants and the coefficient of friction. Obtaining
a set of parameter values so that the modelled bulk behaviour of the material is an
accurate representation of a physical material is the main focus of the calibration
process.

1.3 DEM Application and Calibration Philosophies

In general, the application of DEM can be classified in two groups:

● Group 1 focuses on improving our general understanding of the physics
(e.g. rheology, constitutive behaviour) of granular materials through applied
research [5, 6]. For this purpose, idealised (‘artificial’ or manufactured) bulk
materials such as glass beads with a very well-defined particle size distribution
(PSD) (mono-disperse or bi-disperse) and (close to) homogeneous properties
are used. Often the particle behaviour is investigated in small-scale laboratory
tests with a relatively small number of particles involved. The DEM model
replicates the real application with a scale of 1 : 1, even if it requires a very large
computational effort and duration of time.

● Group 2 focuses on the modelling of ‘natural’ bulk materials in industrial
applications. The materials range from powders to rocks and require an ide-
alisation of the DEM models in terms of particle shape, size distribution, and
stiffness.

In the first group of applications, it is possible to use tests to determine the par-
ticle or contact micro-properties and directly use them as DEM input parameters.
This approach or philosophy for DEM parameter selection was labelled the ‘Direct
Measurement Approach’ (DMA) by Coetzee [7].

In the second group of applications, the DMA can at most be partly used, since
there are a number of simplifications required. For these applications, the macro-
scopic (bulk) material behaviour needs to be replicated by an idealised DEM model.
Hence, the microscopic DEM parameters are to be chosen in such a way that
the macroscopic behaviour of the material in the simulation is the same as that
in reality. According to Coetzee [7], this approach is called the ‘Bulk Calibration
Approach’ (BCA) since the process of finding the DEM parameters is an iterative
process that involves a series of simulations which replicate at least one experiment.
This approach truly earns the name ‘calibration’, and in the sections to follow, the
term calibration refers to BCA, unless stated otherwise.

Although the process of parameter selection using the BCA is essential to produce
simulations with realistic results, there are only a few works which try to define a
systematic approach for the BCA. Especially in the industrial sector, many calibra-
tion approaches do not earn the name ‘calibration’. The selection of DEM parameters
based on a non-systematic parameter selection (‘guessing of parameters’) may lead
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to wrong DEM results and invalid conclusions. This may also be the case when
DEM parameters are ‘tuned’ based on simulations of the final application, where
the parameters are non-systematically varied until the flow results look like what is
expected.

Furthermore, the kind of applications being modelled can also influence the cal-
ibration experiments and DEM parameters to be used (the selection of appropriate
contact models, for example). Here the focus is on bulk storage and handling appli-
cations where the consolidation pressure is relatively low (less than 10 kPa), and the
material is either static (storage in a bin or moving with a conveyor belt, for example)
or dynamic and flowing (out of a bin or through a transfer chute, for example). When
the material is under higher consolidation pressure, aspects such as plasticity might
become important, which is not addressed in this work.

To ensure that the DEM simulation results can be trusted, the user must have a
basic understanding of the physical bulk properties and the most important DEM
parameters. This is addressed in the next sections, followed by a detailed discussion
of the calibration process.

1.4 Physical Bulk Properties

The properties that are important for bulk handling applications are discussed. It is
important to consider all these bulk properties during the calibration process.

1.4.1 Bulk Density and Porosity

Bulk density is needed to accurately model the body forces due to gravity and
hence the consolidation pressure (even if relatively low) experienced by a bed of
material. Bulk density is also important to accurately model the forces exerted
by the material on structures or equipment walls. When the material flow rates
are considered (modelling the conveying of material, for example), it is important
to accurately model not only the mass flow rate but also the volume flow rate.
The cross-sectional area of a transfer chute, for example, should be sufficient to
handle the volume flow rate, which is related to the mass flow rate by the bulk
density.

1.4.2 Bulk Friction

In this chapter, the term ‘bulk friction’ is used to define and characterise the bulk
property related to the material’s resistance to shear flow. Physically, the bulk fric-
tion is influenced by the PSD, particle shape, and inter-particle sliding friction. The
particle shape leads to mechanical interlocking, which results in shear resistance
even under zero normal load. The Coulomb-type sliding friction at contacts has a
significant effect on the bulk friction. On the bulk level, the material can be consid-
ered a continuum and described by the Mohr–Coulomb constitutive model, defining
a bulk cohesion and internal friction angle (yield locus) which can be measured in
a direct shear test, for example.
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1.4.3 Dissipation of Energy

In non-cohesive bulk materials, energy is dissipated in the form of contact friction,
inelastic deformation of the particles and walls, particle breakage (fracture energy),
and other losses such as wind resistance. Losses due to wind resistance and particle
breakage are usually ignored, unless multiphase flow (coupled CFD–DEM mod-
elling) or particle breakage is specifically analysed. Contact friction is responsible
for the majority of the energy dissipated and should be accurately accounted for in
all DEM models.

Additional contact damping (usually viscous damping) is required to reach a
state of static equilibrium, when particles are dropped from a height into a bin, for
example. However, appropriate levels of damping are also required for dynamic
processes to keep the energy levels realistic and to avoid excessive particle motion.

1.4.4 Bulk Stiffness

When a bed of material is compressed, the relation between the applied force and
the displacement (change in bed height) defines bulk stiffness. The stiffness can be
measured under confined and unconfined conditions (these two approaches will
result in different stiffness values).

Even if the inter-particle contact stiffness is linear, bulk stiffness is not neces-
sarily linear. The non-linearity in bulk stiffness is caused by re-organisation of
the position of the particles and contacts in the packing – increasing the num-
ber of contacts under increasing load. Due to this phenomenon, initial cyclic
loading-and-unloading compression of a loosely packed particle bed results in
hysteretic behaviour, where the unloading curve shows increased stiffness as
compared to the loading curve.

1.4.5 Bulk Cohesion and Adhesion

In general, the term ‘cohesion’ refers to the attractive force between two similar
materials, and the term ‘adhesion’ to the attractive force between two dissimilar
materials. Here, however, the two terms are used interchangeably. The bulk cohesive
behaviour is due to cohesive forces acting at the contact level (particle–particle and
particle–wall), where it is mainly caused by one of two mechanisms: liquid-bridges
or Van der Waals forces.

When moisture or liquid (mostly water in the applications considered here) is
introduced, a thin liquid film forms on the outer surface of the particles and walls.
When a new contact forms, a liquid bridge is formed, resulting in a tensile force
due to the capillary effect and liquid surface tension (see Mitarai and Nori [8], for
example). The van der Waals force, on the other hand, acts between two macroscopic
bodies due to intermolecular cohesion forces, and the effects are significant only
for very small particles such as powders (<100 μm, [9]). Independent of the cohe-
sion mechanism at the contact level, an increase in contact cohesion results in an
increase in bulk cohesion. Here, the term bulk cohesion refers to the bulk material’s
resistance to shear flow under zero normal load.
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1.5 DEM Parameters and Their Relation
to Bulk Properties

The DEM contact parameters discussed in this section are generic and applicable to
all non-cohesive contact models, including linear and non-linear models. These are
the parameters that should in general be considered and calibrated to ensure accu-
rate modelling of the applications considered in this chapter. Although the imple-
mentation of these generic parameters is dependent on the specific contact model
(and even the software) used, the relation with bulk properties as described here will
remain valid.

The DEM parameters and bulk properties considered are listed in Table 1.1. The
first three parameters (particle shape, size, and density) are related to the parti-
cles, while the other parameters are all related to the contacts (particle–particle and
particle–wall). The relation between each parameter and bulk property (as discussed
in Section 1.2) is indicated as either ‘strong’, ‘weak’, or ‘negligible’ (insignificant),
and the effect of the parameter on the computation time is also indicated. These
relations are further discussed below, and typical calibration experiments for each
bulk property are listed at the bottom of the table.

1.5.1 Particle Shape

Discrete elements are used in DEM to represent the particles. In general, these
elements are referred to as particles, and pioneering DEM codes [2] were used for
circular (in 2D) and spherical (in 3D) particles due to the associated computational
efficiency in contact detection and overlap calculation. However, with advances
in computing power, more complex non-spherical shapes were introduced using
different techniques as discussed below.

The particle shape will influence all the other model parameters that need to be
calibrated and should be the first parameter to be decided by the modeller. If, at
any later stage, the shape is changed or even slightly modified, all the parameter
values should be re-calibrated. When the physical particles are non-spherical (which
is the case in most industry and practical applications), the user has the option to
make use of spherical particles and include rolling resistance or to make use of
one (or more) of the available non-spherical shape models (with or without rolling
resistance).

1.5.1.1 Non-spherical Particles
Any number of spheres can be merged to form a single particle, often referred to
as ‘multi-sphere particles’, ‘clumps’, ‘clusters’, or ‘glued particles’. The constituent
spheres can overlap, and their relative position within the particle remains fixed,
thus creating a rigid particle. Multi-sphere particles still allow for efficient contact
detection and overlap calculation. However, these particles still have some limita-
tions, and sharp edges or blocky particles cannot be easily created. Multi-sphere
particles also have ‘bumpy’ surfaces, which might introduce higher levels of
interlocking and tend to have more contacts with other particles and walls.
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Non-spherical particle shapes can also be modelled using mathematical descrip-
tions such as superquadrics, polyhedra, and faceted particles. The advantages of
this technique include the modelling of complex shapes more accurately, including
blocky particles and sharp edges; however, it comes with a decrease in computational
efficiency.

In general, when non-spherical particles are used, rolling resistance (friction)
can be omitted if the selected shape can be accurately calibrated using only sliding
friction [11].

1.5.1.2 Spherical Particles
The contact model for spherical particles should include rolling resistance to
realistically model the rotational behaviour of physical non-spherical particles.
Various authors (e.g. [11–14]) have shown that rolling resistance can accurately
account for the particle shape in terms of bulk behaviour. Wensrich et al. [15]
showed that spherical particles with rolling friction can accurately model the
behaviour of non-spherical particles in both static and dynamic flow conditions
with the dilational nature also captured to a reasonable degree. Several rolling
resistance models are available as summarised by Ai et al. [16], and accord-
ing to Wensrich and Katterfeld [17], Type C is the preferred and most stable
model.

1.5.1.3 Shape Selection
If the bulk material has a relatively homogeneous particle size and shape, it is sug-
gested to make use of spherical particles with rolling resistance. This is applica-
ble to materials such as sand, crushed gravel, mineral ore, and agricultural grains
and seeds. Also, when the material flow is relatively homogeneous, i.e. the material
flows in a stream with little variation in particle velocity, the effect of particle shape
becomes less significant, and a simple and efficient shape can be selected. In these
cases, if non-spherical particles are used, it is proposed to use simple multi-sphere
particles comprising three spheres in a pyramid shape [18, 19], where rolling resis-
tance can be ignored.

In applications where the material is non-homogeneous in particle shape and
size and where the particles are relatively large in comparison to the model bound-
aries (interacting with structures, equipment, and machine parts), the particle shape
becomes more important. Also, if mixing, screening and sieving, or mechanical arch-
ing and bridging are investigated, accurate shape models should be considered [20].
The modelling of materials such as biomaterials might also require more accurate
shape modelling if the particles are far from spherical, for example, wood chips and
fibres [21, 22].

1.5.2 Particle Size Distribution and Scale

The PSD and scale (size) of calibration experiments are closely related. The PSD
of the physical material being modelled can be measured using sorting sieves
or screens. Alternative methods include photo analysis and laser diffraction
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techniques. However, the modeller should decide how the PSD of the physical
material will be modelled. Due to computational constraints, the maximum
number of particles that can be modelled within a reasonable time frame is limited,
depending on the available software and hardware (Central Processing Unit [CPU]
versus Graphical Processing Unit [GPU], for example). In most industrial-scale
applications the number of particles can easily be in billions to trillions [23],
which cannot be modelled, regardless of the available hardware. In these cases, the
number of particles should be reduced by scaling the PSD.

There are several approaches available for this, as described by Roessler and
Katterfeld [24] and the references therein, namely exact scaling, coarse graining,
scalping, and combined scaling. Mohajeri et al. [25] developed a hybrid scaling
technique where the geometry and the particles are scaled in a stepwise manner.
This technique requires more simulation runs, but it can be used for the calibration
and validation of upscaled particles even if the available experimental setup is too
small to accommodate the final upscaled particles and if the experiment is scale-
dependent.

The final selection of the modelled PSD will depend on the physical PSD, the
application being modelled, available calibration equipment, and the available com-
putational power. There are no general rules and guidelines that apply to all possible
cases. The PSD used in the calibration step should be identical to the PSD used in
modelling the (full-scale) final application. Similar to the particle shape, once a PSD
is calibrated, it cannot be modified, unless the calibration steps are repeated. As a
general rule, the particle size should be selected so that there are at least 10–20
particles across all dimensions of the geometry. The particle resolution should be
high enough to render realistic and accurate results within a reasonable time frame.
With larger (fewer) particles, the resolution is reduced, and boundary (wall) effects
become significant. When the flow of the material through an orifice is modelled,
the ratio of the orifice opening to particle size should be as large as computationally
possible to avoid any choking effects.

1.5.3 Particle Density

Despite the idealised PSD and particle shape, the bulk density can still be accurately
modelled by calibrating the particle (solid) density. The best approach is to follow
the technique often used to experimentally measure the material’s bulk density. A
container with known volume is filled with modelled particles, and the total parti-
cle weight is determined and used to calculate the modelled bulk density. Iteratively
changing the particle density, the modelled bulk density will converge to the mea-
sured value (allow for static equilibrium to be reached after each change in particle
density).

This process is suitable for the relatively low consolidation pressures (less than
10 kPa) and non-cohesive to slightly cohesive materials as considered in this chapter.
For higher consolidation pressures and cohesive materials, the density test should
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be performed with different consolidation pressures or at least in the same range of
pressures that the material will be subjected to in the final application.

1.5.4 Contact Damping

The dissipation of energy is accounted for by frictional contacts and by introducing
viscous damping at the contacts. Viscous damping is modelled as a dashpot in par-
allel to the contact stiffness (spring). In general, depending on the specific software
implementation, the level of damping can be specified in one of three ways:

1. Directly providing the damping coefficient in units of Ns m−1

2. Specifying the dimensionless critical damping ratio, ζ
3. Specifying the dimensionless coefficient of restitution (CoR)

1.5.5 Contact Stiffness

In DEM, the stiffness in the normal and tangential directions is used to calculate
the contact forces. The formulation of the stiffness depends on the specific contact
model used, and commonly used models include the Hertz–Mindlin (no-slip) model
and the linear model.

In the linear contact model, the normal stiffness and tangential stiffness are
independently specified in units of N m−1, i.e. linear spring elements. In the Hertz
model, the particle’s elastic properties are specified, either the Young’s modulus
or shear modulus, and Poisson’s ratio. Based on these properties, the non-linear
normal stiffness and tangential stiffness are calculated, which is a function of the
overlap.

With the Hertz–Mindlin contact model, realistic bulk flow results can often be
achieved using relatively low values for Young’s modulus, starting at 1e7 Pa [24, 26,
27], and calibration is not necessary and often not performed. For the linear contact
model, a lower-end contact stiffness is in the order of 1e4 N m−1. If forces or pressures
have to be predicted, it must be determined how the reduction of the Young’s Mod-
ulus will influence the simulation results, see for example, the detailed description
by [27].

1.5.6 Particle–Particle Sliding Friction

The particle–particle coefficient of friction considered here cannot be measured
directly due to their shape and size. But even if it could be measured, the shape
and size are almost always simplified for computational efficiency. The whole
calibration process compensates for these simplifications, and in the end, the
combination of particle shape, size, sliding, and rolling friction has to produce
realistic bulk flow behaviour. Thus, the final value used for the coefficient of sliding
friction is not necessarily equal to that between two physical particles of the same
material.
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1.5.7 Particle–Wall Sliding Friction

The particle–wall sliding coefficient of friction can be directly measured in wall shear
tests or inclined wall (plane) tests. In the applications considered here, the mod-
elled bulk behaviour is usually less sensitive to the particle–wall friction than to the
particle–particle friction.

1.5.8 Contact Rolling Friction

The rolling friction of non-spherical particles cannot be directly measured. Often
different values are used for the rolling friction of particle–particle and particle–wall
contacts. However, due to the fact that the rolling friction compensates primarily for
the effect of the particle shape, the same value can be used for both. When spher-
ical particles are used, rolling friction should be included, but when non-spherical
particles are used, the inclusion of rolling friction will depend on the exact shape
used [11].

1.6 Overview of Calibration Tests

The main objective of the calibration process is to compare the results from an exper-
iment and a simulation, from which the DEM parameters are then derived, which
will provide the most realistic and accurate results. Most calibration experiments
need to consider the macroscopic (bulk) material behaviour, i.e. the behaviour of the
interaction of a large number of particles (BCA). However, there are a small num-
ber of DEM parameters for which it is sufficient to investigate single particle/contact
behaviour (DMA, e.g. a drop test to determine the CoR).

Standard tests for measuring bulk material properties include direct shear tests,
using either translational (Jenike) or rotational (Schulze) shear testers. However,
due to the complexity and the time duration of these tests, other non-standard tests
were developed.

Katterfeld et al. [28] proposed in a White Paper that the calibration experiment
should be chosen according to the real bulk material’s flow mechanism in the final
(industrial) application. If, for example, the final aim is to optimise the design of
a transfer chute with a relatively fast flow regime and low to medium consolida-
tion (typically≪ 100 kPa), the calibration experiment should consider the same flow
regime. If compaction or comminution processes are analysed, a different set of
calibration tests might be more appropriate.

Due to the very large variety of bulk solid handling applications, where DEM sim-
ulations may be of interest, it is not possible to describe each calibration experiment.
The following calibration tests, each having advantages and disadvantages, can be
used to study applications with fast flow regimes and low to medium consolidation
as mentioned above. Coetzee [11] showed that the results of a proper calibration
procedure can be reproduced by a different calibration procedure by using different
experiments.
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1.6.1 Basic Requirements for Calibration Tests

Due to the many possibilities, it is beneficial to define some practical evaluation
criteria for the calibration tests. A typical test should:

● be simple and quick to undertake, both experimentally and numerically
(simulation).

● Require only a small amount of bulk material.
● Provide a test result that can be easily measured or determined (experimentally

and in the simulation).
● Be scale invariant. This means that the procedure should provide the same test

results independent of the physical size of the test apparatus. The determination of
an angle (such as the AoR for example) is typically invariant to the size of the parti-
cles and the test setup, as long as the flow mechanism which leads to the formation
of the angle, is not significantly influenced by the size of the setup used [24].

● Produce consistent results. Due to the discrete (stochastic) nature of granular
materials, two identical experiments will not necessarily provide identical results.
Experiments should be repeated, and the results statistically analysed to obtain at
least an average value and the standard deviation. Ideally, the experiment should
produce consistent results, with a relatively small standard deviation.

All these tests do not necessarily result in the same AoR. This is mainly due to
differences in the particle kinetic energy during the execution of the test, which
influences the settling of the particles. Therefore, it is also important to simulate
the exact same test and not to directly compare the AoR from one test apparatus to
that of another.

All tests typically allow for an optical measurement of the AoR. The angle should
be measured on a part of the slope where it is constant (approaching a straight line),
and on several cross sections, so as to obtain an average value. Several image pro-
cessing and measurement algorithms have been developed to ensure a consistent
technique is applied and to eliminate human error in measuring the angle. A num-
ber of algorithms for experimental and simulation results can be found in Wensrich
and Katterfeld [17], Tan et al. [30], Muller et al. [31], and Klanfar et al. [32].

1.6.2 Calibration Tests

Table 1.2 provides a brief summary and graphic representation of the most com-
monly used calibration tests from multiple studies. Since it is one of the most widely
considered bulk material calibration tests (and parameter), the only test which
should be explained in more detail is the AoR. To determine the AoR, several tests
can be undertaken [31, 47]:

● Lifting cylinder test
● Funnel test (also called the hopper or drained test)
● Shear box (also called the ledge, slump, or rock box test)
● Cone test (also called the hourglass, sandglass, or trapdoor test)
● Rotating drum test (also called the dynamic AoR test)
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1.7 Recommended Calibration Procedure
for Non-cohesive and Slightly Cohesive Materials

As described earlier, the contact model parameters need to be determined by
running a series of DEM simulations with varying parameters. The parameters
can be varied systematically or through an optimisation algorithm. Ideally, in both
approaches, an automated post-processing of the model results is required since a
manual process would not be feasible for a large number of simulations.

The systematic variation of the parameter values over a whole range is
time-consuming due to the high number of independent simulations required. How-
ever, this approach provides a deep understanding of the general relation between
the simulated macroscopic (bulk) behaviour and the (individual) input parameters.
Hence, this section focuses on the systematic approach, while Section 1.8 provides
an overview of optimisation algorithms.

1.7.1 Ambiguous Parameter Combinations

The ideal situation would be to have an experiment of which the result is dependent
on only a single parameter. If such an experiment is available for each of the
unknown parameter values, calibration would be straightforward. Unfortunately,
most numerical experiments are, however, sensitive to more than one parameter.
As an example, take the very common AoR lifting cylinder test. Wensrich and
Katterfeld [17] showed that (for non-cohesive materials) the AoR is dependent on
both the particle–particle coefficient of sliding friction 𝜇P and the coefficient of
rolling friction 𝜇r. When such results are plotted, a contour diagram results, which
typically looks like the graph presented in Figure 1.3.

Figure 1.3 clearly demonstrates that there are an infinite number of parameter
(𝜇P and 𝜇r) combinations which result in the same value of the macroscopic AoR.
This example highlights the problem of ambiguous parameter combinations. One
calibration test result cannot provide a unique set of two (or more) contact model
parameters. Hence, several test results are necessary to find a unique parameter set.
The following section describes a procedure which solves the problem of ambiguous
parameter combinations for non-cohesive materials.

This approach can also work for ‘slightly’ cohesive materials. However, with
increasing bulk cohesive behaviour, the material flow increases in complexity and
the test results are usually less consistent. Therefore, a larger number of tests are
required to decrease the parameter range. To illustrate this point, a comparison of
the AoR test with and without cohesion is shown in Figure 1.4. The calibration of
cohesive materials is described in more detail in Section 1.7.

1.7.2 Solving for an Unambiguous Parameter Combination

The problem of ambiguous parameter combinations is equivalent to simultaneously
solving a set of mathematical equations with a number of unknown variables or
(calibration) parameters. A unique solution can only be obtained if the number of
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Figure 1.3 AoR simulation
results according to Wensrich
and Katterfeld et al. [17] using a
lifting cylinder test for a
systematic variation of
particle–particle sliding friction
𝜇P and rolling friction 𝜇r. A
constant macroscopic AoR is
represented by an isoline. No
cohesion was considered.

Angle of repose – spheres with rolling friction
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independent equations is equal to the number of variables. Using this analogy, the
calibration test(s) should produce the same number (or more) of ‘independent’ test
results as the number of DEM parameters to which the model is sensitive. The expla-
nation in Section 1.4 and the summary in Table 1.1 help to identify the most influ-
ential parameter(s) for a given bulk property.

This analogy clearly explains why calibration tests which produce more than one
test result (or bulk measure) are preferred. For example, the draw down test and
the direct shear test produce four results each. However, not all of the test results
can be called independent. For instance, the two AoR results and the remaining
mass in the upper or lower chamber of the draw down test are dependent on each
other. The higher the AoR in the upper chamber, the higher is the remaining mass in
that chamber, and vice versa. In the direct shear test, the shear response at different
normal stresses can be used as well as the internal friction angle and the time to
reach failure.

For each bulk measure (either from a single test or multiple tests), a diagram such
as the one presented in Figure 1.3 can be produced. The diagrams can then be super-
imposed to obtain a unique or unambiguous set of parameter values, i.e. a single set
of parameter values which satisfies all test results. However, there is no guarantee
that, in all cases, the isolines (one for each bulk measure) will intersect at a single
point as described in Derakhshani et al. [36]. Often the measurement error needs to
be considered to ensure a significant overlap of the test results as shown in detail by
Roessler et al. [14].

Figure 1.5 shows how the different draw down test results (shear angle in the
upper chamber, AoR in the lower chamber, mass in the lower chamber, and mass
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Figure 1.4 Comparison of AoR simulation results with varying particle–particle (sliding)
friction and rolling friction coefficient for non-cohesive (a) and cohesive materials (b).
Similar to Pachon-Morales et al. [43] for non-cohesive and slightly cohesive materials, a
direct relation between the frictional values and the AoR can be shown. This is not the case
for the cohesive material where a more irregular and complex behaviour can be seen.
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1. Select model for particle shape

2. Select particle size distribution

6. Calibrate particle density
– Assume realistic values for the still uncalibrated particle-particle friction  

parameters.

4. Select/measure particle-wall coefficient(s) of friction
– Sliding and rolling coefficients of friction.

– Assume realistic values for the still uncalibrated particle-particle friction
  parameters and the particle density.  

7. Calibrate particle-particle coefficient(s) of friction 
– Sliding and rolling coefficients of friction.

– If rolling resistance is not used: use at least one experiment/measure.

– If rolling resistance is used: use at least two independent 

experiments/measures.

– More accurate results achieved if more experiments/measures are use.

3. Select/measure coefficient of restitution
Done for each type of contact/material (particles and walls).

5. Select/calibrate contact stiffness
– Assume realistic values for all the still uncalibrated friction parameters
  and particle density.

Depending on the specific application and the

advantages and disadvantages of each shape model

as discussed in Section 1.5.1.

Depending on the specific application, available

computation power, size of calibration experiments

and time constraints as discussed in Section 1.5.2.

Measured in drop/pendulum tests (Section 1.6.2) but

usually specified as discussed in Section 1.5.4.

Measured in confined uniaxial test (Section 1.6.2) but

usually scaled or assumed as discussed in
Section 1.5.5.

Measured with an inclining wall test or direct shear test
(Section 1.6.2) as discussed in Section 1.5.7.

Calibrated by filling a container of known volume as

discussed in Section 1.5.3.

Calibration experiments include: the angle of repose,

discharge test, draw down test, and direct shear tests

(Section 1.6.2). The optimal parameter set is then

obtained using the procedures outlined in Section 1.7

and Section 1.9.

START

END

8. Check bulk density
– If needed, check the bulk density after all the parameters are calibrated

  by iterating between steps 6 and 7 and adjusting the particle density.

Figure 1.6 Calibration procedure for non-cohesive materials. Source: Adapted from
Katterfeld et al. [28].

flow rate) can be plotted by taking the measurement error (grey marked areas in the
diagrams on the left) into account. This significantly decreases the number of possi-
ble parameter combinations (sliding and rolling friction in this case) if the isolines of
the contour plots are then overlaid as shown in the diagram on the right-hand side.
The small black area in the right-hand side diagram shows the possible combina-
tion of the sliding and rolling friction which results in the same realistic shear angle,
AoR, mass in the lower chamber, and the mass flow rate as measured in the experi-
ment. Within the black area, the calculated cumulated error between simulated and
measured test result allows the identification of a single parameter set.

The steps required to identify a unique set of DEM parameters can be summarised
as follows:

1. Make use of a single calibration test with several independent bulk measures or a
number of calibration tests, each with a single result or bulk measure. The latter
case requires more effort in terms of experiments and simulations.
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2. Determine the measurement errors for each test result (bulk measure) and con-
sider them in the analysis of the DEM results.

3. Identify the parameter ranges which provide realistic simulation results for each
test.

4. Calculate the cumulative error between simulation results and experimental
measurements and identify the parameter set with a minimum error.

In the given examples of the lifting cylinder test (Figure 1.3) and the draw down
test (Figure 1.5), only the influence of the particle–particle coefficients of sliding
and rolling friction was shown. Although these two parameters are the ones which
have the most significant influence on the modelled bulk behaviour of non-cohesive
materials, the other parameters should also be carefully considered. This leads to the
obvious question: is it necessary to vary all these parameter values systematically?
This would require a tremendous number of independent simulation runs, which is
not feasible. However, it has been shown that if the calibration procedure of individ-
ual parameters is executed in a specific sequence, the need for iterations and finding
the unique (optimal) set of parameters can be minimised.

Based on the experience of a large number of academic and industrial experts,
the calibration procedure as shown in the flowchart in Figure 1.6 was developed
for non-cohesive materials, as presented in Katterfeld et al. [28]. The flowchart
includes references to the sections where the influence of the specific parameter on
the bulk behaviour is explained as well as the proposed experiment(s) to calibrate
each parameter.

1.8 Outlook on the Calibration of Cohesive Materials

Cohesion, usually through the effects of moisture, can significantly alter the bulk
behaviour of granular materials. However, the DEM research and modelling com-
munity do not yet have the same level of confidence in any DEM model to accurately
predict the bulk behaviour of cohesive materials compared to that of non-cohesive
materials. The exact reason for this is not known, and it might be that we are not
yet able to successfully calibrate the cohesive parameters, and/or the cohesive con-
tact models that are currently available do not capture the real physics accurately
enough. For completeness, a short summary of the published attempts made to cal-
ibrate cohesive materials is presented here.

Grima [68] and Grima and Wypych [49] developed and validated a strategy for
calibrating the parameters of dry and wet black coal and bauxite. First, the material
was calibrated in a dry non-cohesive state based on flow property measurements
and bench scale tests and using the Hertz–Mindlin (no slip) contact model. There-
after, the material was tested in a moist cohesive state and the appropriate cohesive
parameters introduced to the DEM contact model. The cohesive parameters were
calibrated, while the non-cohesive parameter values remained unchanged. Two
experimental tests were used to calibrate the parameters. First, a swing-arm slump
test with a split cylinder was developed to measure the AoR. The second test was
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based on a cylindrical draw down test, where the shear angle (upper box), poured
AoR (lower box), and the mass flow rate (estimated from high-speed photography)
were measured. In addition, the impact force of the material onto the bottom plate
was measured.

Due to the cohesive effects, the shape of the formed piles was irregular, which
made it difficult to define the AoR in the slump test. A quantitative approach was
then followed, and the general shape of the heap used for comparison. In the draw
down test, the cohesive material slumped down onto the lower plate, and the cohe-
sive parameter (the cohesive energy density) had no significant effect on the poured
AoR. However, it had a significant effect on the shear angle, and in the end, this
was the only measured parameter from the draw down test that could be used for
calibration purposes. However, a single value of the cohesion energy density, which
accurately predicted the slump test AoR and the draw down shear angle, could not
be found. In the end, the study concluded that a calibrated cohesion parameter for
one system might not be suitable for another system.

Katterfeld et al. [69] used two different cohesive contact models and the draw
down test to calibrate the parameters for wet gypsum. Both models under-predicted
the shear angle in the upper box of the draw down test and over-predicted the poured
AoR in the lower box.

Roessler and Katterfeld [29] made use of the lifting cylinder test to calibrate the
cohesive parameter for wet sand. The AoR showed a very high level of variability,
ranging from 40.4∘ to 84.3∘ for the same material in repeated tests. Hence, the macro-
scopic flow behaviour was rather analysed where three distinct and reproducible
phases could be identified during the upward motion of the cylinder and used as
calibration criteria. This study, however, made use of a single moisture content, and
this approach still needs to be verified for different moisture contents and different
bulk materials.

Ajmal et al. [70], on the other hand, showed that the draw down test could be used
to successfully calibrate sliding friction, rolling friction, and cohesion parameter
for wet sand (10% moisture content). It was shown that the blockage or arching
of material at the opening was independent of sliding and rolling friction and
depended only on the cohesion parameter. Comparing these results to experimental
observations for various opening sizes, a narrow band of values for the cohesion
parameter could be established. A unique set of parameter values could then be
obtained by comparing the AoR, formed in the lower box, and the total mass that
flowed to the bottom box, to experimental measurement. It was noted that the shear
angle, formed in the upper box, could not be used since it was not reproducible.

Mohajeri et al. [57] used the ring shear test to calibrate the parameters of cohesive
(moist) coal by using an elasto-plastic cohesion contact model. This work was further
extended [71] in a study where a combination of calibration experiments was used
to calibrate the parameters of cohesive iron ore. The tests included a ring shear test,
a shear box (ledge AoR), and a penetration test.

Carr et al. [72] investigated the use of two contact models to simulate the behaviour
of cohesive iron ore with varying moisture content. The material was allowed to
flow from a feeding conveyor onto an impact plate, where the build-up of material
was observed. It was concluded that only the liquid-bridge model was capable of
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simulating the clumping effect of the material which was observed during the exper-
iments. In a further study [73], a combination of the shear box (ledge test), draw
down, and a conveyor impact plate test was used. By varying the cohesive parameter,
the draw down test was used to investigate flowing and arching cases. The irregular
slopes that formed made it difficult to measure the angles, and it was concluded that
in the shear box and the draw down test, the residual mass was a more definite and
reproducible calibration measure.

1.9 Optimisation Approaches Applied to the Calibration
Process

An increasing number of calibration parameters increases the problem of ambigu-
ous parameter sets and brings classical visualisation techniques such as the contour
plots, shown in Section 1.6, to their limits. Hence, if more than two parameters
should be calibrated, for example, if one would include cohesion or particle upscal-
ing, the use of optimisation algorithms might be mandatory. Also, an increasing
number of calibration test results such as an AoR, shear angle, and mass flow
rate from a draw down test or different yield loci from a direct shear test lead
to complex analyses with a lot of processing steps. The aim of the calibration
process is to find a set of DEM parameter values in such a way that the simulation
results of the physical calibration experiments are the most accurate (optimal)
as compared to the experimental results. Hence, the task of the optimisation
process is to minimise the difference between the experimental and simulation
results.

It was already discussed that multiple calibration test results are necessary for
finding an unambiguous parameter set. The calibration test results are the so-called
objective function values or target values for the optimisation algorithm. Hence, only
such algorithms can be used which can handle multiple target values. However,
besides the problem of handling multiple parameters and multiple target criteria, the
biggest advantage of optimisation algorithms is the reduced number of calibration
simulations. This addresses one of the largest bottlenecks in the whole calibration
process, namely the time required to run a whole series of calibration simulations.

Different optimisation schemes are available, and Richter et al. [74] identified
the following characteristics of typical DEM results as significant to consider in the
selection process:

● nonlinear objective function topology,
● expensive computation,
● gradients cannot be obtained directly,
● limitations of the search space in the form of parameter boundaries (restricted

optimization problem),
● there can be more than one optimum or many local optima,
● rough objective function surface due to stochastic effects and numerical noise,
● more than one objective function value is necessary for calibration,
● discontinuities can occur (e.g. bridging in funnel flow experiments due to high

friction values).
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Figure 1.7 Overview of optimisation algorithm. SQP = sequential quadratic programming,
NSGA = non-dominated sorting genetic algorithm, PSO = particle swarm optimization,
SCE = shuffled complex evolution. Source: Richter et al. [74]/with permission of Elsevier.

Richter et al. [74] also provides a comprehensive overview of the different opti-
misation approaches which are generally known (Figure 1.7). A systematic review
of these approaches is essential since different terms are used in literature for the
same optimisation approach. For example, Hess et al. [75] used the term particle
swarm optimisation whereas Do et al. [35] used the term genetic algorithms.

An increasing number of publications explain the use of ‘Artificial Intelligence’ or
‘Machine Learning’ to optimise the calibration process. However, often the actual
algorithm used is similar to those from publications which make use of different
terms.

For the DEM application, the use of surrogate models can be identified as
one of the best optimisation approaches. Many DEM publications focus on this
approach. Most surrogate models are capable of identifying a global optimum on
a rough objective function surface with many local optima within a few iterations.
Further, they can consider parameter limitations and multi-objective problems and
discontinuities.

The surrogate model approach generates, in the first step, a virtual approximation
of the objective functions. Only a few calibration simulations are necessary for
this. The sampling method for selecting the initial parameters is an important step.
Based on the generated surrogate model, a set of optimised parameters is predicted
and evaluated by the so-called acquisition function. Then, an additional calibration
simulation is undertaken, and the difference to the target values is calculated. If the
difference is larger than stopping criteria, the surrogate model is refined by the
new simulation results and the whole process is repeated. Richter et al. [74] have
suggested a general description of the necessary steps to use the surrogate model
approach. The flow diagram in Figure 1.8 summarises the flow of the so-called
Generalised Surrogate Modelling-based Calibration (GSMC).
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Figure 1.8 Component structure and process of generalised surrogate modelling-based
calibration (GSMC). Source: Richter et al. [74]/with permission of Elsevier.

To calculate and predict the surrogate model, several approaches are known. They
can be separated in probabilistic and non-probabilistic approaches. Probabilistic sur-
rogate models include the calculation of the probability for the prediction of the
estimated value, which provides advantages in the evaluation process. Richter et al.
[74] have analysed a number of different surrogate algorithms, which include Gaus-
sian process regression (GPR), artificial neural networks, multi-adaptive regression
splines, and universal Kriging. Rackl and Hanley [76] and Kriging and Benvenuti
et al. [77] used artificial neural networks. Richter et al. [74] could achieve the best
results with the GPR which belongs to the probabilistic approaches. Due to the prob-
abilistic surrogate model and the probabilistic acquisition function, the approach
can be classified as a Bayesian optimisation approach. This approach and the Gaus-
sian model were also used by Hartmann et al. [78].

Since Richter et al. [74] and Roessler et al. [14] used the same calibration tests and
data, it could be shown that the use of the optimisation algorithm resulted in the
same final DEM parameter set as the systematic parameter selection process where
a full factorial design was used. While the systematic selection process required at
least 64 simulation runs, the GSMC with GPR needed less than 23 simulation runs.
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1.10 Conclusion

This chapter discusses one of the most important requirements for the successful
application of the DEM: an understanding of how the DEM parameters influence
the bulk behaviour of granular materials, and why a calibration of these parame-
ters is absolutely necessary if accurate simulation results are to be achieved. The
most important parameters used in almost all DEM models were presented, and
their general influence on simulated results was discussed.

The most commonly used calibration tests were described as well as the problem
of ambiguous parameter sets, which require calibration tests with several measur-
able outcomes (bulk measures). A standard process for the calibration of non- and
slightly cohesive materials was presented, and it was discussed why the calibration
of cohesive materials is much more problematic and still a matter of research.

Finally, the use of optimisation algorithms for an efficient calibration process was
described. Such algorithms might be an essential prerequisite for the complex task
of calibrating cohesive materials.

Although the calibration process is essential for the successful application of
DEM, no available DEM software addresses this issue with a predefined workflow,
including both pre- and postprocessing. Most DEM software have a batch feature to
run a series of simulations with automated parameter variation. For the automated
calibration using optimisation algorithms, open source software packages such as
Decalioc or GrainLearning exist, but they demand a deep understanding of the
whole procedure and require programming skills.

This is one reason why the calibration of DEM parameters – although very
necessary and important – is often performed by experts in the field as a consulting
service. Such services must include suitable experimental tests and the run and
analysis of a series of calibration simulations. Experience proves that, with the
current state of the art in DEM calibration, knowledge of the physical behaviour
of bulk materials in close combination with simulation know-how is required to
obtain accurate calibration results. However, metamodel-based approaches like
those described by Richter and Will [79] might lead to an improved understanding
of the DEM parameters and their influence on the macroscopic behaviour of bulk
materials and, in the future, significantly reduce the complexity of the calibration
process.

Glossary

Angle of repose
Bulk calibration approach
Bulk cohesion
Bulk density
Bulk friction
Bulk stiffness
Calibration philosophies
Calibration process
Calibration test
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Coarse graining
Coefficient of restitution
Cohesive material
Combined scaling
Contact damping
Contact model
Contact properties
Contact stiffness
DEM parameters
Direct measurement approach
Dissipation of energy
Draw down test
Exact scaling
Hybrid scaling
Lifting cylinder
Multi-sphere particle
Non-cohesive material
Optimisation
Parameter combination
Parameter set
Particle density
Particle shape
Particle size distribution
Physical bulk properties
Porosity
Rolling friction
Scalping
Sliding friction
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