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1.1  Introduction

1.1.1  Cell Types

There are many types of cells in bone microenvironment [1], including genuine bone 
cells (osteoblasts, osteocytes, osteoclasts, and their precursors), cells of the hematopoi-
etic and immune systems, stromal cells, adipocytes, fibroblasts, and endothelial cells 
and so on [2]. A growing body of evidence, with the development of techniques such as 
single-cell sequencing, proposes a fluidity in the ability of bone marrow (BM) stem cells 
to differentiate toward distinct lineages [3]. In this section, the main cells in the bone 
microenvironment are presented below with origins, functions, and identifications.

1.1.1.1  Genuine Bone Cells
1.1.1.1.1  Bone Mesenchymal Stem Cells
As defined by the International Society for Cellular Therapy (ISCT), mesenchymal 
stem cells (MSCs) are capable of adhering to plastic and capable of differentiating 
toward adipogenic, osteogenic, and chondrogenic pathways and other specific phe-
notypes [4]. In the bone marrow, the percentage of MSCs is very low in terms of 
numbers, only 0.01% [5], but these cells play an important role, especially CAR cells 
(CXCL12-rich reticulocytes), CD146+ cells, and Nestin+ cells [6]. CAR cells are a 
subtype dispersed within the bone marrow that regulates the cell cycle and hemat-
opoietic stem cell (HSC) self-renewal through high expression of CXCL12 and 
SCF [7, 8]. CD146+ cells are a subtype predominantly found in the human vascular 
ecology that interacts with HSCs and endothelial cells through the expression of 
Tie-2 and CXCR4 [9]. Nestin+ cells are associated with the nerves of the sympa-
thetic nervous system (SNS) [6, 10] in the perivascular area of bone marrow [11].  
It supports the homing role of HSCs and also regulates homeostasis of HSCs by 
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1  Bone Microenvironment2

maintaining high expression of various genes such as CXCL12, SCF, and Ang1 [11]. 
Besides, skeletal stem cells (SSCs) have been identified as a lineage-restricted subset 
of bone marrow mesenchymal stem cells (BMSCs) with self-renewal and osteo-
chondral properties [6, 12]. They are able to differentiate into osteo-lineage cells, 
bone, cartilage, and stroma [13, 14] (Figure 1.1).

1.1.1.1.2  Osteo-Lineage Cells
Osteoblasts include osteogenic progenitor cells, preosteoclasts, and osteoblasts. It is 
now accepted that the whole process can be divided into three distinct stages of dif-
ferentiation. In the first stage, the transition in osteoblasts to pre-osteoblasts is 
marked by the expression of RUNX2 in osteoblasts. In the second stage, WNT-β-
catenin signaling acts on pre-osteoblasts to induce Ostrix expression. In the third 
stage, the expression of both RUNX2 and Ostrix drives differentiation toward osteo-
blasts [16]. Osteoblasts are located between the bone matrix, and they are derived 
from a subpopulation of osteoblasts [17].

Osteoblasts secrete extracellular matrix proteins, such as type I collagen, periostin, 
osteocalcin, and alkaline phosphatase. Among them, type I collagen plays an impor-
tant role in bone mineralization by depositing calcium together with the hydroxyapa-
tite form. Moreover, the mechanism of mutual coupling between osteoblasts and 
osteoclasts maintains bone mass homeostasis. The process of bone maintenance is 
sensitive to mechanical forces, and in response to mechanical loading, osteoblasts 
lead to increased bone formation by activating multiple signaling pathways, mainly 
the WNT-β-catenin signaling pathway [18]. There are other conditions such as radia-
tion and diet that also have an impact on osteoblast function [19–21].

Osteoclast

CAR+MSC

Chondrocyte

Arteries

Nestin+MSC

CMP CLP

Bone lining cell
Osteocyte

Osteoblast
OPC

BCSP
SSC

Pre-chondrocycle

Sinus

LEPR+MSC

Adipocyte

Pre-Ad

Figure 1.1  Classification of BMSCs. Source: Adapted from Gao et al. [15].
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1.1.1.1.3  Bone Lining Cells
Bone lining cells are also differentiated from osteoblasts [22]. In general, bone lining 
cells are defined as elongated, flattened cells on the bone surface in areas where no 
bone remodeling activity occurs  [23]. Bone lining cells, similar to osteoblasts, 
express some level of alkaline phosphatase. However, bone lining cells phenotypi-
cally express intercellular adhesion molecules, but not osteocalcin, which is the 
major difference between them and osteoblasts [24].

Recent studies have shown that bone lining cells play an important role in bone 
remodeling. They communicate with osteoblasts deep in the bone matrix through 
gap junctions and regulate the transformation of HSCs between the undifferenti-
ated state and osteoblasts under different conditions.

In addition, before bone-forming activity, bone lining cells first remove osteo-
clast remnants of matrix-by-matrix metalloproteinases  [25], such as demineral-
ized collagen [26]. Afterwards, osteoblasts can then enter the site to deposit new 
bone [27].

1.1.1.1.4  Osteoclasts
Osteoclasts are special cells from the monocyte/macrophage hematopoietic lineage, 
and morphologically, they are multinucleated cells. Their main hallmark is the 
expression of high levels of tartaric acid-resistant acid phosphatase and cathepsin 
K [28]. Osteoclasts play an important role in the coupling of bone formation to bone 
resorption through the RANK signaling pathway [29].

1.1.1.2  Chondral-Lineage Cells
Chondrocytes are cells that produce and maintain the cartilage matrix and charac-
teristically express the SOX gene [30]. Prechondrocytes develop from MSCs, which 
later differentiate into chondrocytes. Growing chondrocytes continue to undergo 
cell division as they grow, and the divided daughter cells usually form cell clusters 
distributed in the cartilage matrix. In contrast, older chondrocytes have a basophilic 
cytoplasmic nature due to an increase in the rough endoplasmic reticulum  [31]. 
Chondrocytes release extracellular matrix and collagen fibers to form elastic and 
collagen fibers [32].

1.1.1.3  Adipocytes
Adipocytes are abundant and occupy a large amount of space in bone marrow. The 
types of adipocytes include preadipocytes and mature adipocytes [31]. Adipose pre-
cursor cells are a specialized class of cells that do not contain lipid droplets but 
express adipocyte markers. They are usually present in large numbers in the perivas-
cular area, especially in the intraosseous veins, and are not proliferative. They can 
maintain vascular function and inhibit bone formation by occupying space [33]. In 
addition, it is noteworthy that adipocytes have been found to be associated with 
many pathophysiological mechanisms [34]. For example, preadipocytes and mature 
adipocytes can recruit multiple myeloma cells via monocyte chemotactic protein-1 
and stromal cell-derived factor-1α and produce many secreted factors that support 
multiple myeloma cells in the bone marrow [35].
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1  Bone Microenvironment4

1.1.1.4  Cells of the Hematopoietic Systems
1.1.1.4.1  Hemopoietic Stem Cells
HSCs produce billions of new blood cells every day and are responsible for the con-
tinuous renewal of blood. It is generally acknowledged that HSCs can further differ-
entiate into two main types: common lymphoid cells and common myeloid cells [36]. 
HSCs can be obtained from umbilical cord blood, bone marrow, and adult peripheral 
blood. The most primitive human HSCs were identified as CD34+CD90+Lin- [37]. 
Depleted expression of CD45RA has also been used in combination with the above 
markers to identify primary HSCs [14]. Most HSCs are in a resting state and are acti-
vated upon external stimulation [38].

1.1.1.4.2  Lymphoid Cells
Common lymphoid progenitor cells are differentiated from HSCs stimulated by 
IL-7 [39]. Further, stimulated by cytokines such as IL-3 and IL-4, lymphoid progeni-
tor cells differentiate into B lymphocytes [40]. Once maturation, B cells enter the 
circulatory system and eventually localize in the lymphoid follicles of peripheral 
lymphoid organs [41]. B cells are one of the major specific immune cells, accounting 
for 20% of peripheral lymphocytes [42]. In addition, lymphoid progenitor cells dif-
ferentiate into natural killer (NK) cells in response to IL-15 stimulation [43].

1.1.1.4.3  Myeloid Cells
Common myeloid progenitor cells are differentiated from HSCs in response to stimula-
tion by IL-3, GM-CSF, and M-CSF [44]. Myeloid progenitor cells can differentiate in  
two directions, toward granulocyte-macrophage progenitors and megakaryocyte- 
erythroid progenitors, depending on the stimulating factors in the bone 
microenvironment.

The megakaryocyte-erythroid progenitor cells are stimulated by erythropoietin to 
produce erythrocytes, the most abundant blood cells in the blood and the main 
mediator of oxygen transport through the blood in vertebrates, and also have 
immune functions. Stimulation by IL-3, IL-3, SCF, and TPO results in the produc-
tion of megakaryocytes by megakaryocyte-erythroid progenitor cells. Megakaryocytes 
are a type of cell in the bone marrow that form platelets after partial rupture in 
response to IL-11 and TPO stimulation. Platelets play an important role in bleeding 
and clotting processes [45].

Granulocyte-macrophage progenitor cells can differentiate into primitive granu-
locytes and monocytes. They differentiate into monocytes under the stimulation of 
GM-CSF and M-CSF. Monocytes differentiate into macrophages under the stimula-
tion of IL-6, IL-10, M-CSF, and IFN-gamma [46] (Figure 1.2).

1.1.1.5  Cells of the Immune Systems
Research related to immune cells in the bone microenvironment has gradually 
entered the osteopathic field in recent years. Bone health is affected by them in vari-
ous ways, including the immune effects of immune cells and immune factors them-
selves and the regulation of the bone microenvironment.
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1  Bone Microenvironment6

1.1.1.5.1  T-Cells and Natural Killer Cells
T cells not only play a key role in adaptive immunity, but are equally significant in 
bone immunology. Basically, all T-cell subtypes have some impact on osteoblasts 
(mainly osteoclasts). Nevertheless, current studies have identified a capable role for 
Th17 cells in inducing osteoclast genesis. They characteristically express the 
cytokines: IL-17A, IL-17F, IL-22, IL-26, and IFN-γ [48]. In osteoblasts and stromal 
cells, it can also induce the expression of macrophage colony-stimulating factor (M-
CSF) and RANKL expression [49].

Most NK cells have similar osteoimmune functions to lymphocytes. Recent stud-
ies suggest that NK cells may be a target for rheumatoid arthritis (RA) treatment, 
based on the observation of osteoblast death by NK in RA-induced bone destruc-
tion [50, 51].

1.1.1.5.2  Dendritic Cells
Dendritic cells (DCs) are antigen-presenting cells with the specific role of guiding 
immune cells to the correct target as soon as possible and avoiding autoimmun-
ity [52]. In fact, they have an indirect role in bone immunity mainly by presenting 
antigens of T cells [53]. Cytokine signaling about DCs can also regulate their activi-
ties and subtype homeostasis [54, 55]. On the other hand, in RA, DCs can be trans-
differentiate into osteoclasts in response to stimulation by M-CSF and RANKL as if 
they are precursor cells for osteoclasts [56].

1.1.1.5.3  Neutrophils
Neutrophils have a strong presence in bone loss caused by particular inflamma-
tion [57]. In the presence of inflammation in systemic tissues, including bone tissue, 
neutrophils are usually the first to migrate to the site of injury  [58] and secrete 
chemokines, cytokines, and small molecules that are capable of acting as immu-
nomodulators. Most of the current studies task that activated neutrophils directly or 
indirectly induce osteoclast genesis [59].

1.1.1.5.4  B Cells
B cell production and development are dependent on factors produced by cells in 
the bone marrow stroma, such as RANKL, OPG, IL-7, and CXCL12 [60, 61]. B cells 
themselves produce RANKL [62] since conditional knockdown of RANKL in B lym-
phocytes can partially counteract the increased number of osteoclasts, thereby pro-
tecting against ovariectomy-induced bone attrition. Interestingly, no effect was 
observed in T lymphocytes [63]. This suggests the existence of a specific role of B 
lymphocytes on osteoclasts.

1.1.1.5.5  Osteomacs and Macrophages
Bone marrow macrophages and osteal macrophages, also called bone macrophages, 
are the resident macrophages in bone and, like many other organs, play a long-term 
immune role in the corresponding organ  [64]. In  vitro and in  vivo studies have 
shown that these bone macrophages play a role in osteoblast differentiation through 
the production of bone morphogenetic proteins (BMPs) [65] and Oncostatin M [66]. 
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Furthermore, elimination of bone macrophages inhibits further differentiation of 
primary osteoblasts [67]. If periosteal macrophages are selectively ablated, young 
mice show reduced bone growth and osteoporosis  [68]. Thus, bone macrophages 
are cells with pleiotropic functions, both in regulating bone mass and in becoming 
osteoclasts, as well as actively participating in the homeostasis of the immune system.

1.1.2  Extracellular Matrix

In the bone microenvironment, the ECM is involved in regulating various cell 
behaviors, responses to growth factors, and differentiation. The recent spurt of 
research on the osteoinductive, osteogenic, and osteogenic potential of ECM-based 
scaffolds has advanced the rapid development of regenerative orthopedic medicine. 
ECM-modified biomaterials and decellularized ECM scaffolds are two types of scaf-
folds that are widely used for bone tissue engineering [69].

1.1.2.1  Inorganic ECM
The main inorganic component of hard tissues in the body, such as bones and teeth, 
is hydroxyapatite (HA, Ca5(PO4)3OH)  [70]. The usual biomineralization process, 
referring to the series of physiologically regulated activities occurring in the bone 
microenvironment culminates in the deposition of HA. The template for HA depo-
sition is collagen, which is mostly expressed and secreted into the bone matrix by 
osteoblasts [71].

1.1.2.2  Organic ECM
1.1.2.2.1  Collagenous Proteins
Type I, type III, and type V collagen constitute the richest components of bone in 
terms of organic ECM. The primary function of collagen is to provide mechanical 
support and to act as a scaffold for bone cells [72]. The molecular structure of type I 
collagen is a triple-helix polypeptide of collagen fibrils. Together with other colla-
gen and non-collagenous proteins, these fibrils are assembled into fibrils bundles 
and higher order fibers [73]. Type III and V collagens are less abundant. Their func-
tion is to participate in the formation of collagen bundles as described above [74]. 
Inter- and intra-chain cross-links of collagen form a tight fibrous structure to main-
tain bone strength. A deficiency of collagen or a mutation in its structure can greatly 
alter the ECM and thus greatly increase the risk of fracture [75].

1.1.2.2.2  Noncollagenous Proteins
Proteoglycans  Proteoglycan is a structure in which glycosaminoglycan (GAG) resi-
dues are covalently bound to proteins. Its species include heparan sulfate, hyalu-
ronic acid, keratin sulfate, chondroitin sulfate, and dermatan sulfate  [76]. In the 
bone microenvironment, small leucine-rich proteoglycans (SLRPs) are the most 
important proteoglycans. SLRPs are involved in all steps of the bone formation pro-
cess such as cell proliferation, osteogenesis, mineral deposition, and bone remode-
ling  [77]. In addition, SLRPs regulate collagen fibrosis, and their dysregulation 
eventually leads to fibrosis caused by orthopedic injury or genetic defects [78].
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1  Bone Microenvironment8

γ-Carboxyglutamic Acid-Containing Proteins  γ-Carboxyglutamic acid (Gla) is a gluta-
mate produced by vitamin K-dependent post-translational modifications appearing 
in bone matrix and other calcified tissues [79]. Osteocalcin (OCN), matrix Gla pro-
tein (MGP), and periosteal proteins in bone all contain Gla protein [80]. OCN is an 
important player in osteoblasts performing bone formation and bone reconstruction 
functions. It contains three Gla residues that regulate calcium metabolism by bind-
ing to hydroxyapatite [81]. MGP, on the other hand, regulates the synthesis of osteo-
blasts, osteocytes, and chondrocytes in the skeleton. It has been reported that bone 
mineralization is advanced in MGP-deficient mice [82, 83]. In contrast, intramem-
branous bone mineralization is reduced in mice overexpressing MGP [84]. In addi-
tion, periostin, another Gla-containing protein, is abundantly expressed by osteoblasts 
in long bones and is involved in collagen folding and fibrillogenesis [85].

Glycoproteins  Glycoproteins have different combinations and positions in the 
protein chain where covalently linked glycoprotein molecules exist. Among the 
glycoproteins of the bone microenvironment, osteoprotegerin is the most com-
mon and capable of bone mineralization. Osteoblasts highly express osteoprote-
gerin and secrete it into mineralized tissues. Osteoprotegerin regulates calcium 
deposition by binding collagen crystals and hyaluronic acid  [86]. In the bone 
microenvironment of the developing skeleton, thrombospondins (TSP), grouped 
from TSP1 to TSP5, play an important role. One study reported increased bone 
mass and thickness of cortical bone and promotion of differentiation of osteo-
blasts in TSP1-deficient mice, possibly due in part to potential TGF-β activa-
tion  [79]. R-spondins (parietal plate-specific spondins) are four secreted, 
homologous glycoproteins belonging to a family of matricellular proteins with a 
TSP repeat sequence [80]. They are widely expressed in all developmental stages 
of skeletal tissue and act as an enhancer of the Wnt/β-catenin signaling pathway 
through leucine-rich repeat sequences 4, 5, and 6 of the G protein receptors 
(Lgr4/5/6). R-spondin is thought to be a skeletal regulator that controls embry-
onic bone formation and adult bone remodeling [81].

Small Integrin-Binding Ligand N-Linked Glycoproteins/SIBLINGs  A kind of glyco-
phosphoproteins generally found in mineralized tissues, named SIBLINGs, consist 
of bone sialoprotein (BSP) and osteocalcin (OCN) [87].

First, BSP is a glycosylated, non-collagenous phosphoprotein that is expressed 
at the onset of hard connective tissue mineralization. It has been shown that mice 
deficient in BSP have significantly diminished bone deposition and a significantly 
reduced rate of bone formation, resulting in a decrease in both the length of long 
bones and the thickness of cortical bone. Thus, BSP has an important function in 
regulating osteoblast differentiation and initiating bone mineralization [88].

OPN is also an important regulator highly expressed by osteoblasts, bone lineage 
cells, especially in bone transformation. OPN is enriched in sites that undergo phos-
phorylation during inhibition of mineralization, such as serine, acidic, and aspar-
tate patterns. In addition, in bone remodeling, OPN is involved in regulating 
osteoclast production and osteoblast activity [89] (Figure 1.3).
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1.2  Bone Microenvironment and Diseases

1.2.1  Bone Microenvironment in Osteoporosis

The bone microenvironment consists of complex structures and biological systems, 
including bone cells (BMSCs, osteoblasts, osteoclasts, bone cells, and their precur-
sors), fibroblasts, adipocytes, hematopoietic cells, immune cells, endothelial cells, 
and a large number of growth and signal factors in extracellular matrix [90]. Proper 
bone homeostasis maintenance relies on the equilibrium between bone formation 
and bone resorption. However, patients suffering from osteoporosis have the char-
acteristics that bone resorption is greater than bone formation, which leads to bone 
loss and fragility-related fracture [91].

1.2.1.1  Bone Marrow Mesenchymal Stem Cells (BMSCs) and Osteoporosis
BMSCs in patients with osteoporosis show changes in osteogenic ability. It was 
found that the transcriptome of BMSCs in the bone microenvironment of elderly 
patients with osteoporosis changed compared to that in elderly patients without 
osteoporosis [92]. The levels of MAB21L2 and SOST expressed by BMSCs in osteo-
porosis were remarkably increased, which were inhibitors of BMP transcription and 
Wnt signal, respectively. BMSCs from patients with osteoporosis expressed higher 
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Osteoblast
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Figure 1.3  Bone microenvironment and diseases.
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levels of genes related to osteoclastogenesis, which indicates that their osteogenic 
ability is limited. At the same time, they enhanced the production of osteoclasts 
through local release factors. Multiple in  vitro studies have found significantly 
reduced proliferative activity (reduced S-phase fraction) and differentiation poten-
tial (reduced Osterix [Osx] expression and alkaline phosphatase [ALP] activity) and 
enhanced expression of aging markers in aging mouse BMSCs [93]. Recent experi-
ments have shown that microRNAs in BMSCs of patients with osteoporosis have 
also changed. For example, overexpression of miR-21 in BMSCs can enhance osteo-
genic differentiation and bone formation [94].

BMSCs from patients with osteoporosis showed decreased response to anabolism 
irritant. As mentioned above, BMSC osteoblasts induced by 25 (OH) D3 are weak-
ened in cells from elderly donators, and a coordination dosage of PTH is required to 
restore this reaction [95]. BMSCs from elderly subjects showed decreased expres-
sion and activity of CYP27B1, which was increased in PTH treatment. In recent 
experiments, compared with young people, the higher levels of PEHR and CREB 
activation expressed by BMSCs in the bone marrow of the elderly have been more 
stable β-Catenin induced by PTH [96]. Mice knockout of IGF-1 in BMSC showed a 
decrease in bone mass. Interestingly, IGF-1  in BMSC decreased in osteoporotic 
mice, suggesting that IGF-1  in BMSC is related to the occurrence of osteoporo-
sis [97]. BMSC in bone microenvironment has undergone many changes in patients 
suffering from osteoporosis relative to healthy person.

1.2.1.2  Osteoblasts and Osteoporosis
Senile osteoporosis is caused by insufficient osteoblast function, while postmeno-
pausal osteoporosis is mainly caused by an increase in bone resorption activity of 
osteoclasts due to estrogen deficiency. Various local and systemic factors under 
physiological and pathological conditions can affect the strict coupling activities of 
osteoblasts and osteoclasts, leading to the imbalance of bone remodeling and pro-
moting bone resorption. Moreover, the change in osteoblast function plays a signifi-
cant function in the occurrence of osteoporosis. Abundant experimental studies 
show that under the condition of osteoporosis, compared to normal osteoblasts, 
osteoblasts have low proliferation ability and defective function.

Long-term use of glucocorticoids is a prime reason of osteoporosis. High-dose 
and long-term glucocorticoid stimulation inhibited the proliferation and activity of 
osteoblasts and promoted the apoptosis of osteoblasts. At the same time, it increases 
the expression of RANKL, reduced the production of OPG, and enhanced bone 
resorption [98]. In vitro studies showed that dexamethasone treatment of human 
osteoblasts could overexpress DKK-1  mRNA. This indicates that glucocorticoids 
can inhibit Wnt signal transduction and inhibit osteogenesis. Glucocorticoid can 
reduce the expression of BMP-2 and increase its antagonist follistatin to inhibit 
osteogenesis [99]. PTH and bisphosphonates for the treatment of osteoporosis can 
change the difference of dexamethasone on BMP and Wnt signal transduction. 
Interestingly, pretreatment of BMSCs in elderly subjects with dexamethasone 
increased the expression of PTHR1 and saved the defect of proliferation induced by 
hormone.
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1.2.1.3  Osteoclasts and Osteoporosis
Osteoclast is a highly differentiated multinucleated giant cell, which is the main 
functional cell for bone tissue resorption and participates in the process of bone 
remodeling throughout life. Postmenopausal osteoporosis patients produce more 
osteoclasts by increasing hematopoietic progenitor cells and increasing the recruit-
ment of more osteoclast progenitor cells due to estrogen deficiency. The upregulated 
expression of osteoclasts leads to the expansion of cortical porosity and absorption 
regions indicated by bone trabeculae. At the same time, the life of osteoclasts in the 
bone microenvironment increases, which further prolongs the time of bone loss, 
deepens the absorption cavity, and increases the brittleness of bone [92].

Some animal experiments have shown that the cytokine tumor necrosis factor-
alpha (TNF-α), which is mainly secreted by macrophages can increase osteoclast 
production in ovariectomized mice. TNF and RANKL synergistically increased the 
differentiation of hematopoietic pluripotent stem cells into osteoclasts, thus increas-
ing the production of osteoclasts [93]. IL-6 is increased in the bone microenviron-
ment of patients with osteoporosis. IL-6 is widely considered to be an effective 
stimulator of osteoclast-driven bone resorption. In vivo studies showed serious dam-
age to cortical and trabecular bone microstructure, increased osteoclast production, 
and decreased osteoblast production in transgenic mice overexpressing IL-6  [94]. 
The important role of IL-6 is to promote the expression of signaling molecules 
downstream of osteoblasts, such as RANKL, so as to enhance the formation and 
activity of osteoclasts. In addition, IL-6 increases the promoting effect of IL-1 and 
TNF on bone resorption by increasing the pool of osteoclast progenitor cells. IL-7 is 
a major osteoclast factor, which stimulates T cells to produce RANKL and TNF and 
promotes bone loss. IL-7 can stimulate the increase in TNF in T cells. Moreover, the 
expression of IL-7Rα and IL-7 was upregulated by TNF. Therefore, there may be an 
interaction mechanism between TNF and IL-7 [95].

1.2.1.4  Bone Marrow Adipocytes (BMAs) and Osteoporosis
The accumulation of fat in the bone marrow of osteoporosis patients increases. 
Studies have shown that bone marrow adipocytes (BMAs) can inhibit bone forma-
tion and hinder fracture healing, and their content is negatively correlated with bone 
mass [100, 101]. Bone formation was also enhanced when BMAs decreased. After 
ablation, BMAs promote the recruitment and differentiation of pre osteoblasts into 
mature osteoblasts [102]. Recent studies have found that BMA can inhibit the func-
tion of osteoblasts by producing IL-6 [103, 104]. BMAs mediate myeloma induced 
inhibition of osteoblast formation. Multiple myeloma is characterized by excessive 
bone resorption and impaired osteogenesis [105]. When BMSCs were cultured with 
conditional medium from myeloma patients with BMA or pre-exposed myeloma 
cells, researchers observed reduced alizarin red S staining, alkaline phosphatase lev-
els, and osteoblast gene expression  [106]. BMA and osteoblasts are derived from 
BMSCs. When the adipogenic differentiation of bone MSCs increases, the osteogenic 
differentiation will decrease. Therefore, according to the above characteristics, osteo-
genesis can be changed by changing the differentiation direction of BMSC, so as to 
change the bone mass [107, 108]. BMAS promote osteoclastogenesis [109]. Adipoqcre; 
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1  Bone Microenvironment12

Ranklfl/FL mice showed similar BMAs amplification compared with control Ranklfl/
FL mice, but the number of osteoclasts decreased [110].

1.2.2  Bone Microenvironment in Osteoarthritis

Osteoarthritis (OA) is the most common joint disease with predominant damage to 
articular cartilage and involvement of the entire joint tissue, eventually leading to 
degeneration, fibrosis, fractures, defects, and damage to the entire joint surface. It is 
characterized by joint pain, stiffness, hypertrophy, and limited movement, and it 
occurs most commonly in weight-bearing joints such as the knee.

1.2.2.1  Subchondral Bone and Osteoarthritis
1.2.2.1.1  Subchondral Bone Cells
Subchondral osteoblasts are derived from BMSCs. Osteoclasts are not only involved 
in bone resorption in subchondral bone metabolism, but they also play an impor-
tant role in the formation of H-type vessels. The histone proteinase K (ctsk) expres-
sion of anti-tartrate acid phosphatase positive (trap+) cells located around the 
cartilage-bone junction was lower than that of cells in the bone marrow interstitial 
space and had fewer nuclei [111]. Vascular-associated osteoblasts have a high affin-
ity for H-type vessels, whose endothelial nuclear factor-κ B ligand (RANKL) expres-
sion is supported by receptor activators and induces H-type vascular anastomosis.

High turnover rate. The relative balance of bone formation and bone resorption 
establishes a stable microenvironment of subchondral bone. The subchondral bone 
conversion rate changes in response to changes in mechanical stress to maintain a 
stable microenvironment. The subchondral bone structure and mechanical support 
were abnormal in patients with OA. The number of osteoclasts in the bone micro-
environment increases. Interestingly, osteocytes and chondrocytes provide the main 
RANKL. Abnormal mechanical force activates RANKL signaling to promote osteo-
clast fusion differentiation that promotes osteoclast formation, resulting in bone 
remodeling  [112]. Soluble RANKL can pass through the subchondral bone plate 
cavity, which can promote the maturation of osteoclasts and play the role of bone 
resorption. It is found that subchondral bone plays an important role in cartilage 
injury [113]. Significant increase in osteoclasts near perichondrium trabeculae in 
subchondral bone marrow [114]. The subsequent remodeling process is related to 
the growth of blood vessels and nerves and the activity of osteoclasts. This suggests 
that during the onset of OA, subchondral bone undergoes increased bone remode-
ling conversion in response to external stimuli.

1.2.2.2  Cartilage and Osteoarthritis
1.2.2.2.1  Cartilage Erosion
There is top-down erosion from synovial tissue and synovium in the process of car-
tilage vascular invasion in patients with OA, but the most important is the bottom-
up vascularization of subchondral bone. Matrix digestive proteases, such as MMPs, 
play an important role in angiogenesis. Subchondral angiogenesis plays a key role in 
cartilage degradation. In the process of cartilage formation, endothelial cells express 
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more MMP-9. Knocking out MMP-9 endothelial cells will lead to the destruction of 
bone formation ability and the formation of abnormally large bone plates, which 
indicates that MMP-9 is pivotal to bone resorption during cartilage formation. When 
vascular endothelial growth factor (VEGF) is injected into the joints of rabbits, it 
accelerates the formation of arthritis, and the use of inhibitors of VEGF can protect 
the articular cartilage [115, 116]. These experiments further suggest that neovascu-
larization has a cartilage resorption effect on OA and endochondral ossification.

1.2.2.2.2  Mechanical Stimulation and Cartilage Homeostasis
Proper mechanical stimulation can maintain the health of articular cartilage. 
Overload will lead to cartilage fissure and bone atrophy. Research shows body 
weight, especially in obese individuals, weight load, and daily knee activity are asso-
ciated with cartilage degeneration, and the knee is more prone to degenerative dis-
ease on the medial side  [117]. In chondrocyte impact experiments, early 
mitochondrial dysfunction followed by cell death occurred in chondrocytes, but 
chondrocytes in the weight-bearing zone were less likely to die [118]. Appropriate 
biological load not only promotes the formation of cartilage matrix but also pro-
motes the synthesis of matrix protein, collagen, and GAG. However, when the load 
is too heavy, p38 will be hyperphosphorylated, and MMP-13 will be overexpressed, 
resulting in matrix degradation and proteoglycan loss  [119]. In the presence of 
increased circulatory pressure in vivo, the differentiation of BMSC toward the osteo-
genic aspect of formation increases due to various effects. MSCs under abnormal 
stress showed increased angiogenesis  [120]. There are several cytokines closely 
related to angiogenesis in the above medium, such as FGF, TGF-β, and MMP-2. 
Other studies have shown that BMP-dependent signaling promotes osteogenic dif-
ferentiation [121]. Thus, as described above, MSC from sclerotic subchondral bone 
may promote angiogenesis, thereby promoting cartilage degradation.

1.2.3  Bone Microenvironment in Fracture

Bone has the ability to regenerate. Fracture healing restates the mechanism of bone 
tissue formation in embryogenesis. In this way, fracture healing can restore the orig-
inal structure and function rather than scar formation. Fracture healing can be 
divided into intramembrane osteogenesis and endochondral osteogenesis. 
Endochondral osteogenesis is to form cartilage callus in the area between medullary 
cavity and cortex and then form new bone through endochondral ossification. In 
conclusion, the stages of fracture healing are divided into a period of hematoma 
inflammatory response, cartilage scab formation, hard bone scab formation, and 
remodeling. Hematoma is a fibrin clot formed by coagulation at the injured bone, 
with infiltration of mast cells and other inflammatory cells. With the infiltration of 
fibroblasts and endothelial cells, granulation tissue was formed and gradually 
degraded to replace hematoma. Chondrocytes produce cartilage matrix and trans-
form granulation tissue into cartilage callus. With the osteoid deposition of 
hydroxyapatite calcium and osteoblasts, the callus became woven bone. After rear-
rangement of collagen fibers, bone formation and differentiation of osteoblasts occur.
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1.2.3.1  Cells in Bone Microenvironment
1.2.3.1.1  Platelet
Platelets are formed from cytoplasmic fragments of megakaryocytes in bone mar-
row. After vascular injury, platelets interact with collagen, von Willebrand factor 
(VWF), and fibronectin under the damaged endothelium to mediate the adhesion 
and activation of platelets. Platelets can be activated after endothelial cell damage. 
The particles released by platelets include dense particles α particles and lambda 
particles [122]. Platelet granules contain many cytokines related to osteogenesis and 
angiogenesis, and these cytokines play an important role in the healing process of 
fracture fractures [123]. These cytokines promote the chemotaxis and vasculariza-
tion of inflammatory cells and the differentiation of BMSC to osteoblasts [124–126]. 
Among these cytokines, PDGF-AB and TGF-β can promote the proliferation and 
migration of vascular smooth muscle cells. During the inflammatory phase of the 
hematoma, growth factors can promote the formation of blood vessels and collagen 
and subsequently support bone healing. TGF-β1 can inhibit the formation of osteo-
clasts, PDGF-AB supports the proliferation of smooth muscle cells, and both the 
above growth factors promote collagen synthesis and angiogenesis to support bone 
healing [127, 128]. In addition, platelet-rich plasma can increase the production of 
bone morphogenetic protein 2 (BMP-2) from MSC, so as to comprehensively 
improve the bone regeneration of bone defect [129].

1.2.3.1.2  Erythrocytes
Erythrocytes are binucleate concave cells. The hematoma formed in the early stage 
of fracture mainly contains erythrocytes, platelets, and leukocytes. The number of 
each group of cells in the hematoma formed at the initial stage of fracture change 
dynamically. The erythrocytes in the hematoma decreased significantly from the 
fourth day of fracture, which was due to MSC proliferation and inflammatory cell 
infiltration in the hematoma. The number of each group of cells in the hematoma 
formed at the initial stage of fracture changed dynamically. The erythrocytes in the 
hematoma decreased significantly from the fourth day of fracture, which was due to 
MSC proliferation and inflammatory cell infiltration in the hematoma. The interac-
tion between erythrocytes and platelets contribute significantly to the process of 
coagulation. The negative charge of phospholipids in erythrocyte membrane is 
related to coagulation [130]. Erythrocytes can promote platelet aggregation and acti-
vate platelets, and activated platelets can promote erythrocyte aggregation  [131]. 
Hemoglobin has been shown to enhance fibrinolysis. Therefore, erythrocytes play 
an important role in the fracture healing process.

1.2.3.1.3  Leukocytes: Monocytes and Macrophages
Leukocytes are composed of granulocytes, monocytes, and lymphocytes, which play 
different functions in immune defense. Leukocytes play an important part in anti-
inflammation and sterilization. When the body is damaged, neutrophils are the first 
cells to migrate to the damaged tissue. Due to the short service life of neutrophils, the 
number decreases after 24–48 hours, and they are replaced by monocytes. Monocytes 
at the damaged site differentiate into long-lived macrophages under cytokines, 
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extracellular metabolites and hypoxia. Leukocytes are composed of granulocytes, 
monocytes and lymphocytes, which play different functions in immune defense. 
Leukocytes play an important role in anti inflammation and sterilization. When the 
body is damaged, neutrophils migrate to the damaged tissue for the first time. Due to 
the short service life of neutrophils, the number decreases after 24–48 hours and is 
replaced by monocytes. Monocytes at the damaged site differentiate into long-lived 
macrophages under cytokines, extracellular metabolites and hypoxia. Macrophages 
can be divided into two types: resident macrophages and inflammatory macrophages 
derived from circulating monocytes. Inflammatory macrophages can be divided into 
two types: M1 and M2. M1 type cells mainly serve an anti-inflammatory function. In 
contrast, M2 cells mainly function in tissue repair and angiogenesis in response to 
foreign injury. The resident macrophages in bone tissue, called bone macrophages 
(osteomacs), further show macrophage repair function during fracture healing. It 
was found that the distribution of macrophage subtypes was very important for the 
formation of intrachondral callus. Using the femoral fracture model, it was found 
that inflammatory macrophages existed in granulation tissue at the front of soft cal-
lus, while resident macrophages (osteomacs) existed in mature hard callus. In all, 
The above demonstrate that osteosarcoma (OS) is vital to the healing process during 
the formation of endochondral and intramembrane callus during bone fracture. 
Immune cells and osteoblasts interact through signaling of cytokines, signaling mol-
ecules, transcription factors, and receptors [132].

1.2.3.1.4  Mesenchymal Stem Cells (MSCs)
BMSCs can differentiate into a variety of cells, which include adipocytes, chondro-
cytes, and osteoblasts. During the inflammatory phase of fracture hematoma forma-
tion, various cytokines such as interleukin 1, interleukin 6, and tumor necrosis 
factor-alpha are released in large amounts and converge to the injury site, thereby 
activating the differentiation of BMSCs into a variety of cells [54]. In addition, plate-
let-derived growth factor and tumor necrosis factor-beta have been reported to stim-
ulate the migration activation and proliferation of bone marrow MSCs [133]. There 
are various differences in the processes of intramembranous and endochondral 
ossification with different BMSC sources and their differentiation processes. In 
intramembranous ossification, BMSCs mainly originate from the periosteum and 
surrounding soft tissues and begin to proliferate and differentiate toward the forma-
tion of woven bone within 24 hours of fracture. In intrachondral ossification, BMSCs 
mainly originate from the bone marrow and bone cortex, and proliferate toward the 
cartilage scab within 72 hours of fracture [134]. Moreover, BMSCs play an important 
role in promoting angiogenesis during fracture healing. BMSCs highly express 
BMPs, which play an important role in the angiogenesis process.

1.2.3.2  Molecular Components in Bone Microenvironment
1.2.3.2.1  Transforming Growth Factor-β (TGF-β)
Activated platelets can produce transforming growth factor-β at the initial injury 
site, which participates in callus formation. Osteoblasts and chondrocytes can also 
produce TGF-β which can also promote the transformation of MSCs into osteoblasts 
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and chondrocytes. TGF-β plays an important role in cartilage formation and endo-
chondral ossification. Moreover, TGF-β can induce the expression of a series of 
matrix molecules. TGF-β can induce chemotaxis of inflammatory cells to establish 
a positive feedback circuit of growth factors in damaged bones [135]. Transforming 
growth factor has the ability to recruit immune cells and induce fibrous matrix, 
which has been seen as an inflammatory factor  [136]. TGF-β2 and TGF-β3 are 
assumed to make a difference in fracture healing because their expression peaks 
during cartilage formation, while the expression of TGF-β1  was relatively stable 
during the entire healing process.

1.2.3.2.2  Insulin-like Growth Factors (IGFs)
IGF-I (or somatomedin-C) and IGF-II (or bone growth factor) are growth factors 
with a similar structure to insulin. IGF-I is known to promote mitosis of pre-
osteoblasts and osteoblasts. It was found that IGF-1 promotes osteogenesis of osteo-
blasts and enhances the action of PDGF during bone formation, thereby improving 
the overall healing rate [127]. Studies have suggested that IGF-I in articular cartilage 
is required for chondrocyte homeostasis, proteoglycan synthesis, and chondrocyte 
degradation. It has also been shown that IGF-I affects the cartilage differentiation of 
MSC independent of transforming growth factor [137]. This shows that IGF-I play a 
great role in cartilage formation.

1.2.3.2.3  Vascular Endothelial Growth Factor (VEGF)
A fracture hematoma is a hypoxic environment, and hypoxia stimulates mac-
rophages to produce VEGF, which promotes angiogenesis. Leukocytes in the inflam-
matory phase of fracture hematoma can also release VEGF and PDGF to promote 
fracture healing [138]. Hypoxia inducible factors (HIFs) are transcriptionally active 
proteins that are stably present in response to hypoxia. The combination of HIFs 
and VEGF can regulate angiogenesis and bone formation under hypoxia. The acti-
vation of HIF-1 in osteoblast can increase the level of VEGF in osteoblasts and sig-
nificantly increase angiogenesis and bone formation. Bone reconstruction involves 
two processes: bone resorption and bone formation. Osteoclasts adhering to the 
bone surface can resorb necrotic and damaged bone, while bone resorption recruits 
a large number of osteoblasts, which can secrete a large amount of bone matrix and 
then mineralize bone. In the balance between bone resorption and bone formation, 
the balance between the number and expression of osteoclasts and osteoblasts plays 
an important role. Vascular invasion of bone tissue plays an important role in bone 
homeostasis, as blood vessels bring nutrients and various cytokines necessary for 
bone remodeling. The vascular network of bone has a longitudinal Haver’s pavilion 
and a transverse Harvard’s canal forming the periosteal cortical vascular network, 
which facilitates the exchange of nutrients between blood vessels. The vasculature 
plays an important role in distraction osteogenesis and also prevents the process of 
distraction osteogenesis when the formation of blood vessels is inhibited  [139]. 
These findings suggest that bone remodeling can be regulated by the molecular the 
local environment of bone.
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1.2.4  Bone Microenvironment in Osteosarcoma (OS)

OS is a malignant tumor that occurs in adolescents, often in the epiphysis of long 
bones, such as the proximal tibia and distal femur. The bone microenvironment 
provides a suitable environment for tumor cell proliferation and migration, and pro-
vides sufficient conditions for the metastasis of tumors to be important [140]. The 
main components of bone microenvironment, such as hypoxia, acidosis, and 
chemokines, are crucial in the proliferation and metastasis of OS.

1.2.4.1  Mesenchymal Stem Cells (MSCs) and OS Metastasis
MSCs are considered to be the vital factor in the bone microenvironment to induce OS 
metastasis. OS comes from mesenchymal stem cells, and its development, metastasis, 
and drug resistance are highly related to mesenchymal stem cells. Mutations of tumor 
suppressor genes TP53 and Rb, aneuploidy of p16/CDKN2A, and genomic loss often 
lead to the transformation of MSCs into OS cells [141]. In a rat OS model, subcutane-
ous injection of rat OS cos1NR cells for three and five weeks followed by intravenous 
MSCs significantly promoted lung metastasis, but it did not affect tumor growth [142]. 
At the same time, gene expression analysis showed that compared to cos1NR cells, 
adhesion plaque, cytokine receptors and extracellular matrix receptor pathways were 
significantly altered. Cellular signaling pathway molecules are also altered during 
tumor metastasis and tumor angiogenesis. It was found that BMSCs and OS can inter-
act with each other, and tumor cells can influence the bone microenvironment, which 
can likewise influence the proliferation and migration of tumor cells [143]. The study 
of tumor extracellular vesicles also confirmed the interaction between MSCs and 
OS. TGF carried in vesicles can stimulate MSC to release IL-6 expression [144]. The 
oxidative stress environment in the bone microenvironment of OS can stimulate lac-
tate production in MSC. The acidic environment allows bone marrow MSCs to secrete 
a variety of cytokines, thereby promoting tumor metastasis [145].

1.2.4.2  Effect of Hypoxia Environment on OS Metastasis
Bone microenvironment is a hypoxic and acidic environment, which provides the 
necessary conditions for tumor metastasis. Hypoxia can stimulate the expression of 
HIF; therefore, many studies on HIF have been recently conducted. HIF1 overex-
pression promoted the invasion and proliferation of MG63 and U2OS cells, while 
Mir-20b and Mir-33b inhibited HIF1 expression and thus slowed down the prolif-
eration of tumor cells. In the process of tumor metastasis, Lncrna malat1 could 
induce angiogenesis to promote tumor metastasis [146]. In the hypoxic bone micro-
environment in OS, increased HIF1 content could regulate the expression of Angptl2 
and subsequently promote bone tumor invasion and metastasis, in addition, it could 
improve the formation of osteoclasts and bone resorption [147].

1.2.4.3  Extracellular Vesicles (EVs) in the Tumor Microenvironment
Tumor cells can communicate between cells through extracellular vesicles, which 
play an important role in tumorigenesis, progression, metastasis, and invasion. 
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MSc-derived EV promotes OS growth by activating the hedgehog and PI3K/Akt 
signaling pathways. Meanwhile, OS-derived EV regulates the transformation of 
BMSCs by regulating LINE-1 hypermethylation in these cells [148]. OS-derived EV 
regulates BMSC transformation by modulating LINE-1 hypermethylation in these 
cells [149]. In addition, OS-derived EVs alter bone microenvironment remodeling 
by affecting gene expression [150].

1.3  Biomaterials and Bone Microenvironment

Bone microenvironment is easily affected by the following two factors: external 
environment and internal environment, which is the main cause of bone dis-
eases [151]. Biomaterials play an indispensable role in restoring bone microenviron-
ment. The interaction between cells and biomaterials is vital to affect the changes in 
bone microenvironment, including cell proliferation, differentiation, and regulation 
related factors [152]. At present, many biomaterials have been found to be used for 
the restoration of bone microenvironment. Their biocompatibility or biodegradabil-
ity of biomaterials has great application value [153]. The biomaterials used in bone 
microenvironment are classified as follows according to different functions.

1.3.1  Biomaterials and Bone Cells

Bone cells usually differentiate into several types: BMSCs, osteocytes, osteoblasts 
(OB), osteoclasts (OC), and their precursors  [154, 155]. BMSCs are a kind of cell 
subpopulations found in mammalian bone marrow stroma with multiple differen-
tiation potentials to differentiate into bone, cartilage, fat, nerve, and myoblasts [156]. 
Compared to other cells, OB account for a large proportion in mature bone tis-
sue [157]. OB is generated from bone, periosteum, bone marrow, and extra-osseous 
tissue; human embryonic skull and neonatal animal skull are common sources of 
osteoblasts [158]. A variety of biologically active substances are secreted by OB to 
regulate and influence the process of bone growing and reconstruction [159]. OB 
are also responsible for the synthesis, secretion, and mineralization of bone 
matrix [160]. Bone tissues are continuously reconstructed in the entire life process. 
Bone reconstruction is a complex process, which includes absorption and reforma-
tion of bone [160, 161]. OC, derived from the blood mononuclear-macrophage sys-
tem, are a special terminally differentiated cell. It can form huge multinucleated 
cells by fusion of its mononuclear precursor cells in a variety of ways  [162]. 
Osteoblasts and osteoclasts have different sources and functions and play important 
roles in bone reconstruction and bone disorder [163].

The abnormal state of these cells is interfered by different factors, which directly 
affects the changes in the bone microenvironment, but it can often be adjusted by the 
adjustment of biological materials [164, 165]. The stimulation of bone cell attach-
ment, proliferation, and differentiation depends in part on the physical and chemical 
properties of the biological material such as the surface properties, chemical  
composition, static electricity, geometric structure, texture, and roughness  [166].  

Su350438_c01.indd   18 09-12-2022   14:54:25



1.3 Biomaterials and Bone Microenvironmen     19

The interaction between biomaterials and bone cells occurs mostly in bone recon-
struction [167]. Most of the current research on cell-biomaterial interaction is con-
ducted on osteoblasts; the materials used for bone repair included inorganic 
materials, natural polymers, synthetic polymers and even composite materials for 
bone replacement [168]. In addition, compared to bone, the main properties of bone 
substitutes, used for bone repairing, are their mechanical properties (elastic modu-
lus, fatigue, and permeability) [168, 169]. Bone conductive inorganic materials are 
hydroxyapatite (HA), tricalcium phosphate (TCP), calcium phosphate bone cement, 
apatite wollastonite, and bioactive glass [170]. For example, the calcium phosphorus 
ratio of organic bone matrix is about 1.66, that of hydroxyapatite is about 1.67, and 
that of TCP is about 1.5 [171]. HA has chemometrics similar to minerals [171]. In 
clinical applications, calcium phosphate ceramics are usually used due to body toler-
ance, osteoconductivity, and bionic properties  [172, 173]. In addition, chemical 
bonding with bones is used during implantation. Due to its deformation resistance, 
titanium (Ti) is also used in bone repair and hip prosthesis [174]. BMSCs attached to 
titanium fiber mesh can differentiate into osteoblasts in vitro, but some in vivo experi-
ments emphasize the importance of using protein or HA coating to improve the 
osteogenic properties of titanium fiber mesh [175]. For example, Vlacic-Zischke et al. 
reported that micro-roughness was formed on the surface of Ti substrate by sand 
blasting and acid etching. The results showed that the modified surface increased the 
level of TGF- β signal transduction and stimulated osteoblast differentiation. Nano-
scale surface morphology is also important for cell [176]. Lim et al. used PLA polysty-
rene films with a depth of 14 ~ 45 nm, and discovered that surface with shallower 
nano-dimple material results in more spreading and better adhesion of human fetal 
osteoblasts as compared to flat PLA surfaces [177]. The surface morphology of the 
materials will yet affect adsorption and integrins of protein of the cell surface, thereby 
regulating the behavior of materials for cell adhesion [178]. Cell proliferation, dif-
ferentiation, and activity can also be regulated by the surface morphology of bioma-
terials. Some behaviors of cell can be affected by adjustment surface microstructure. 
Studies have found that the expression of osteoblast genes is intervened by titanium 
with different morphologies [179]. Compared to smooth surface (Ra = 0.6 μm), when 
they were on a sandblasted titanium surface (Ra = 4 μm), the expression of about 
10% of the genes changed more than three times  [180]. In addition, the micro-
roughness degree of titanium surface not only affects the production of cytokines but 
also affects the angiogenesis and the function of BMSC [181].

Natural polymers and synthetic polymers form polymer materials for clinical use 
togethers. Natural polymers include polysaccharides (hyaluronic acid, alginate, col-
lagen, etc.) or proteins (collagen, fibrin)  [182]. For example, F. Munarin et  al. 
reported that Pectin, derived from plant cell walls, provides properties as artificial 
ECM. The results revealed that pectin showed the potential to maintain the survival 
and differentiation of immobilized cells in the experiment of metabolic activity, 
morphology, and osteogenic differentiation of pre-immobilized MC3T3-E1 osteo-
blasts  [183]. In the study of Elaine Quinlan et  al., osteoblasts used in collagen 
hydroxyapatite (CHA) scaffolds were tested in  vitro, which showed an enhanced 
pro-osteogenic effect [184].
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Although these polymers have bone conduction properties, their mechanical prop-
erties are poor and difficult to be used in clinic. The following synthetic polymers can 
be used in clinical applications: polyethylene glycol, poloxamer, polyalpha-hydroxy 
acid, polyorthoester, polyanhydride, polyphosphazene, and polyphosphonate [185]. 
Polymer degradation can trigger an inflammatory response and affect cell adhesion 
and proliferation. At present, synthetic polymers have been widely studied, because 
they can combine the advantages of many single materials, and they can significantly 
overcome many shortcomings of a single material. Polymer-to-cell behavior is also 
affected by its chemical composition, molecular weight, and crystallinity. Seher 
Ozkan et  al. developed a porous scaffold (discrete and continuous) composed of 
polycaprolactone (PCL), b-tricalcium phosphate (b-TCP) nanoparticles and salt 
porogen Gradient radial grading [186]. A scaffold with interconnected porosity, pore 
size distribution, and b-TCP nanoparticle can be obtained through this strategy. The 
compression properties of human fetal osteoblasts and cell proliferation in vitro show 
that this scaffold has a good application prospect.

Composite biomaterials, which contain a free combination of synthetic and 
inorganic materials, are particularly useful for preparing tissue engineering materi-
als, which process sufficient bionic and mechanical properties  [187]. Composite 
materials can also simulate the characteristics and morphology of cortical bone and 
trabecular bone [188]. In addition, the physical properties of biomaterials also affect 
the physiological changes of bone cells. Empirical observations of medical implants 
show that when using implants with high surface roughness, the interaction between 
bone and implant will be better [189]. Recent studies have proved that biomaterials 
with terminal polyethylene glycol (PEG), OH, COOH, NH2, SH, and CH3 can be used 
to evaluate the role of surface chemistry on the level of cell [190]. For example, alkyl 
mercaptans at the end of self-assembled monolayers affect the adhesion and function 
of osteoblasts  [191]. The positive and negative of the surface charge of biological 
materials participate in the influence of cell behavior [166]. Rat skull osteoblasts are 
cultured on positively charged and negatively charged polymers, and their morphol-
ogy is completely different [192]. Osteoblasts attach and diffuse more on positively 
charged hydrogels than on neutral or negatively charged hydrogels [193]. In recent 
years, short-chain peptides have been successfully immobilized on the surface of bio-
materials by covalent attachment [194]. The addition of commonly used sequences 
like RGDs, consisted of arginine, glycine and aspartate, to biomaterials greatly aids in 
the attachment, growth and differentiation of osteoblast precursor cells [195]. Bone 
sialoprotein (FHRRIKA) sequence and fibronectin (PRRARV) peptide exhibit 
increased osteoblast and macrophage numbers specialty [196]. In the past 10 years, 
the research on bone tissue in three-dimensional polymer scaffolds has attracted 
much attention. One of the biggest disadvantages of a lot of stents is the restricted 
transportation of nutrients, oxygen, and waste removal  [197]. Therefore, cells are 
only colonized on the surface of the scaffold because they are prone to necrosis in 
deeper parts. For example, R. DI LIDDO et al. reported that poly-ε-caprolactone scaf-
folds prepared with alginate threads (PCL-AT) with a pore size of 10–100 μm encap-
sulate HA and bone extracellular matrix (BEM). The results showed that the porosity 
grades of PCL-AT-HA and PCL-AT-BEM promote the best conditions for the growth 
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of bone marrow-derived MSCs in the early stage [198]. Therefore, the ideal 3D bone 
graft scaffold should have a high specific surface area to achieve cell attachment and 
nutrient exchange, not just through diffusion.

In short, the physical and chemical properties of biological materials determine 
the changes in cell behavior, which is often an important indicator for evaluating 
the good biocompatibility of biological materials. The materials that affect the 
behavior of bone cells have been developed more widely and diversely. It can be 
found that by adjusting the physical and chemical properties of the materials (the 
difference in surface structure, functional groups, and the positive and negative 
charges), biomaterials with good cell compatibility can be optimized. However, this 
must be verified by in vivo experiments to prove the biocompatibility and function-
ality of the material (Figure 1.4).

1.3.2  Biomaterials and Bone Hematopoietic System

Bone marrow (BM) is the largest hematopoietic organ, is also the main place of 
hematopoiesis and an important repository of minerals  [199]. Bone marrow is a 
kind of spongy tissue that exists in the mesh between the bone marrow cavity of 
long bone (such as humerus and femur) and the loose bone of flat bone (such as 
iliac bone)  [200]. BM is divided into red bone marrow and yellow bone marrow. 
HSCs in red bone marrow have hematopoietic function. It can differentiate and 
develop into red blood cells, platelets, lymphocytes, granulocytes, etc. [201].
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Figure 1.4  Effects of physical and chemical properties of biomaterials on bone cells.
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HSCs play an important role in stem cell transplantation in patients with blood 
diseases [202]. The important factor of its regenerative potential is the BM microen-
vironment [202]. In recent years, it has been found that changes in HSCs in the bone 
marrow microenvironment can often be adjusted with biological materials [203]. As 
mentioned earlier, bone biomaterials play an important role in bone microenviron-
ment by providing matrix for cell adhesion, proliferation and differentiation, and by 
regulating cell activity and function. Another concern is that the directional differ-
entiation of stem cells is induced for artificial biotransformation through the inter-
action between bone biomaterials and stem cells. Novel bone biomaterials have 
emerged, including biodegradable bioactive ceramics, polymers, and metals with 
good biocompatibility [204].

Studies have shown that the different chemical composition, surface characteris-
tics, and morphology of bone biomaterials may promote the proliferation of HSCs 
in vitro, so that HSCs can differentiate into mature blood cells or serve as a drug 
testing platform [205]. For instance, A.C. Wilkinson, et al. found that polyvinyl alco-
hol (PVA) was identified as a substitute for serum albumin in culturing HSCs. Under 
the action of PVA, 100 ng/ml Thrombopoietin and 10 ng/ml stem cell factor, mouse 
CD34, LSK, and HSC were amplified in vitro and maintained function-activity [206]. 
Similarly, for CD34+ hematopoietic stem and progenitor cell (HSPCs) derived from 
human cord blood, PVA can replace serum albumin [207]. However, compared to 
mouse HSCs, human CD34+, CD38−, CD90+, CD49f+, and HSCs are not sensitive to 
the hydrolysis state of PVA. Sambit Sahoo et al. developed a bio-hybrid fiber scaffold 
system by coating bioactive bFGF-releasing ultra-fine PLGA fibers on a mechani-
cally strong, slow-degrading degummed knitted microfiber wire scaffold, which 
stimulated the proliferation of mesenchymal progenitor cells (MPCs) [208].

The introduction of biomolecules on the surface of biomaterials is the most com-
monly used biofunctionalization technology for cell culture [209]. Nanofibers (NFs) 
have been widely used in the past 20 years, due to their ability to mimic the ECM 
structure of many body tissues (such as bone marrow) [210]. To overcome the disad-
vantages of poor mechanical properties and poor processability of natural nanofib-
ers, chemical surface treatment was performed on the surface of polymer NFS, and 
functional groups were introduced on the surface. K.-N. Chua, C.et al. reported that 
human CD34+ HSPCs cultured on grids of aminated polyethersulfone NFs exhib-
ited stronger adhesion and larger HSPCs progenitor cell expansion and mainte-
nance capacity than HSPCs cultured on unmodified, hydroxylated or carboxylated 
NFs grids or aminated membranes. This study shows that even simple surface 
chemistry can affect HSPC in the microenvironment [211].

The three-dimensional (3D) structure of biological materials can simulate micro-
environment of bone hematopoietic system. Hydrogel is notable representative of 
biomaterials  [212]. The properties of hydrogels can be adjusted according to the 
characteristics of the microenvironment, which makes them advantageous for cer-
tain applications or analytical methods  [213]. In the field of in  vivo and in  vitro 
research based on biological materials, the use of hydrogel incorporation systems is 
extensive and diverse. The raw materials used to make 3D structured hydrogels can 
be natural ECM (such as fibrin, sodium alginate, chitosan, collagen, pullulan, 
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cellulose, silk fibroin, etc.) or synthetic polymers (such as PEG, polyurethane, 
poly(lactic-co-glycolic acid), and PCL) [214]. However, when preparing hydrogels, 
natural sources and synthetic compounds are often used to prepare hydrogels 
together, which have improved physical and chemical properties. The research team 
of A.E. Gilchrist, S. successfully fabricated hydrogels with different pore sizes, sup-
porting paracrine (large pores) or autocrine (small pores) signaling, and obtained 
cell behavior data. The results showed that when cultured alone, murine BM-derived 
lineage− Sca1+ c-Kit+ (LSK) HSPCs proliferated significantly in the paracrine signal 
supporting gelma matrix, but when HSPC and MSCs were co-cultured in the auto-
crine signal support gel, the expansion rate was much higher [215]. RUWAN D.et al. 
also described the successful cultivation of HMSCs in a three-dimensional collagen 
matrix under mechanical strain. In addition to providing a 3D structure, the hydro-
gels were also allowed to be tuned to have functionalization, mechanical properties, 
and degradability to improve compatibility with the human environment  [216]. 
T. Bai et al. reported that a zwitterionic hydrogel with peptide chain cleavage sites 
was used to amplify HSPC derived from human cord blood and bone marrow and 
cultured for several generations. In immunocompromised mice, the number of 
long-term HSCs can be increased by 73 times and can be reconstituted for at least 
24 weeks [205] (Table 1.1).

Part of the application of the above-mentioned materials for BM microenviron-
ment is at the cellular level, and we are still facing great challenges. Often the appli-
cation of biomaterials in  vitro and in  vivo will make a big difference, due to the 
complex and changeable environment in the body that is difficult to control.

1.3.3  Biomaterials and Bone Immune System

In addition to the main site of hematopoiesis, BM also contains lymphoid progeni-
tor cells and mature immune cells (B cells, neutrophils, macrophages, and T 
cells) [217]. The immune system has the functions of immune surveillance, defense, 
and regulation. Immune cells exist in the bone microenvironment and interact with 

Table 1.1  Application of biomaterials in bone marrow hematopoietic system.

Biomaterials Characteristic
Main functional 
group

Polyvinyl alcohol (PVA) Replace serum albumin −OH; C=C

PLGA microfiber wire scaffold ECM-like biomimetic architecture −COOH; −OH

Polyethersulfone nanofibers Adhesion −SO2−

Natural hydrogels (fibrin, 
chitosan, collagen)

3D structure; supporting paracrine 
(large pores) or autocrine (small 
pores) signaling

−OH; −COOH; 
−NH2

Artificial hydrogel 
(polyethylene glycol, 
polyurethane)
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bone to perform the functions of the “bone immune system” in concert [218]. The 
key role of the bone immune system in bone microenvironment against foreign bod-
ies and pathogens has long been familiar to researchers [219]. With the clear under-
standing of this new research field of bone immunology, the reciprocal regulation 
between immune cells and bone morphogenetic cells has been studied in greater 
depth, and the two systems are thought to be tightly linked through various 
cytokines, signaling molecules, transcription factors, and receptors [164].

In the clinical treatment of bone defects, biomaterials show a significant thera-
peutic role, when bone microenvironment changes  [220]. However, the host 
immune response determines the fate of implants in vivo, whether they are formed 
in new bone, wrapped in fibrous tissue, or used for drug delivery for decrease of 
autoimmune response in the bone microenvironment [221]. The traditional bioma-
terial design includes the manufacture of inert biomaterials that can stimulate oste-
ogenesis; however, in  vivo and in  vitro often fail to achieve consistent evaluation 
results. This has led to the evolution of biomaterials for implants with bone immu-
nomodulatory properties  [222]. These orthopedic biomaterials are endowed with 
good bone immunomodulatory properties that can trigger the desired immune 
response for proper bone regeneration process [176]. Under these circumstances, to 
regulate the crosstalk with immune cells (macrophages, neutrophils), various meth-
ods have been adopted such as changing chemical/structural characteristics or add-
ing biologically active molecules.

An ideal biomaterial should be able to stimulate good crosstalk between immune 
cells and cells of the skeletal system at different stages of bone healing. In this case, 
to be able to design biological materials that control the polarization of mac-
rophages and the positive crosstalk with bone-forming cells, it is often through 
changing the chemical/topographic characteristics or adding biologically active 
molecules [223]. As mentioned earlier, the interaction between the surface of the 
biomaterial and the protein adsorption layer is critical for the emergence of an 
immune response to the implantable biomaterial. In this regard, existing studies 
confirmed that changing different surface chemical properties, hydrophilicity, sur-
face charge or functional groups, can affect the response of immune cells  [164]. 
Hydrophobicity or hydrophilicity of biomaterials is the key factor affecting protein 
adsorption. The hydrophilicity of biomaterials has a non-negligible relationship 
with protein layer adsorption, fibrin formation and clot formation [224]. Strongly 
hydrophilic biomaterials have inherent immunogenicity. Kakizawa et al. prepared 
monodisperse silica nanoparticles that showed different hydrophobic poly (amino 
acid) surface modification and reported that the secretion of IL-1 β and IFN- γ is 
related to the hydrophobicity of poly(amino acids) [225]. In addition, their research 
also showed that strong hydrophilic biomaterials can promote the process of bone 
regeneration. Li et al. discovered lower hydrophilicity of Ti surfaces can induce the 
secretion of a variety of pro-inflammatory cytokines (TNF) compared to heparin/
fibronectin functionalized titanium surface-α, MCP-1, and IL-1β) [226]. The addi-
tion of hydrophilic molecules such as PEG and polyoxyethylene (PEO) to carriers 
and tissue engineering structures as surface modifiers for implants to improve 
their hydrophilicity and reduce protein adsorption [227]. Future strategies can use 
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changes in surface chemistry to regulate immune response to achieve natural heal-
ing response to injury. Immune response is also closely related to the surface charge 
of implanted biomaterials [228]. Therefore, the following functional groups, such 
as amino (−NH2), hydroxyl (−OH), carboxyl (−COOH), are usually investigated, 
and in vivo applications have found that the amino and hydroxyl groups can induce 
immune cell infiltration and form a complex surrounding the thick fibrous capsule 
of the implant [229].

In the process of natural degradation in the microenvironment when biodegrad-
able biomaterials are implanted, the immune response will also be affected by sur-
face changes and degradation products  [230]. Furthermore, there are great 
differences in the structure of biomaterials, and some of them can further promote 
the process during initial degradation, leading to structural collapse and loss of orig-
inal functions. After the bio-implantation, the blood in the injured blood vessel 
begins to interact rapidly with the biomaterial. The surface properties of biomateri-
als can exhibit differences in the amount and type of adsorbed proteins and further 
recruitment and adhesion of various cells. Implantable biomaterials are not only 
passive targets when confronted with the host immune system, but they also have a 
dramatic effect: the magnitude and type of the implant-mediated immune response 
can be modulated.

In addition to surface chemistry, the morphological features and porosity of bio-
materials also affect the plasticity and function of immune cells [231]. The surface 
roughness of biological materials can also affect the interaction with immune cells, 
which is a characteristic of biological materials. In the study of Ali K. Refai et al. on 
the effect of titanium (Ti) surface morphology on the activation of macrophages and 
the secretion of pro-inflammatory cytokines and chemokines, four topography were 
used: topography produced by mechanical polishing, coarse sandblasting, acid etch-
ing, sandblasting, and acid etching (SLA)  [232]. It was found that unstimulated 
macrophages increased their pro-inflammatory cytokine (TNF-α) secretion when 
adhered to rough surfaces. This in  vitro study showed that surface morphology, 
especially SLA surface, regulates the expression of macrophage pro-inflammatory 
cytokines and chemokines in a time-dependent manner. Generally speaking, the 
roughness can be presented on a micro-scale, and there is evidence that the micro-
patterned surface show a beneficial effect on the bone immune microenvironment, 
thereby increasing the success rate of implantation. For example, Hotchkiss et al. 
discovered that micro-roughness-modified Ti surface promotes phenotypic trans-
formation of M2 macrophages with increased IL-4 and IL-10 cytokine production, 
while smooth Ti matrix promotes M1 polarization [233].

In recent years, nano-scale biomaterials have been extensively studied, because 
the surface depth of bone tissue is about 32 nm  [234]. Biomaterials that can be 
surface-regulated at the nanoscale can directly affect important processes such as 
cell adhesion and proliferation. Chen et  al. prepared a plasma-polymerized 
allylamine surface to modulate immune cell responses by immobilizing gold nano-
particles of different sizes (16–68 nm)  [176, 235]. From the results obtained, the 
scale of the nanotopography can significantly modulate the immune microenviron-
ment by altering the gene expression profiles of inflammatory cytokines.
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The porosity and pore size of biomaterials are considered to be another relevant 
surface feature in that because the penetration of oxygen and nutrients can affect 
the fate of macrophages [236]. The small pore size on the surface will destroy the 
diffusion of nutrients and oxygen, especially in the interior of the implant material, 
resulting in a local hypoxia microenvironment. The local hypoxic environment 
leads to the development of a local inflammatory response, leading to the formation 
of granulation tissue and complete blockage of the pores, creating a barrier between 
the surrounding bone cells and the implant. In addition, appropriate hypoxic envi-
ronments can stimulate the release of angiogenic growth factors, which are local 
host tissues necessary for angiogenesis [237]. Therefore, biomaterials should exhibit 
suitable pore sizes to enable the creation of a moderately hypoxic environment, 
which not only prevents inflammation but also promotes angiogenesis. Garg et al. 
showed that increasing polydioxanone scaffold pore size and porosity enhanced 
M2 macrophage markers. The surface with larger pores down-regulates the produc-
tion of iNOS compared with smaller pores, which promotes the transition to the M1 
phenotype [238].

Based on these observations, the strategy of adjusting the immune response by 
adjusting the physical and chemical properties of biological materials can be consid-
ered a valuable method. These biological materials can be used in smart drug deliv-
ery carriers, and materials that are friendly to the immune system can be used in the 
treatment of bone diseases, which will also provide a sufficient reference for devel-
oping new drug delivery systems for bone-related diseases (Table 1.2).
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