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Cell‐penetrating peptides (CPPs) are short peptides (in general composed of 5–30 
amino acids) that can be efficiently internalized into cells and have great potential 
for the delivery of membrane‐impermeable bioactive molecules into cells. The CPP 
is sometimes called a protein transduction domain (PTD) or Trojan peptide. In 1988, 
such a peptide was first discovered in human immunodeficiency virus type 1 (HIV‐1) 
protein transactivator of transcription (Tat). Since then, numerous sequences of 
CPPs have been discovered in natural peptides/proteins such as Tat peptide and 
CPPs have also been artificially designed. Furthermore, the cell‐penetrating mecha-
nisms of CPPs in vitro and in vivo have been investigated, and CPPs have been used 
as delivery tools for drugs, peptides, proteins, nucleic acids, and nanoparticles. 
Several CPPs are currently under investigation in clinical trials. More than 500 
research papers per year have been published since 2012 with a keyword of “CPP” 
or “PTD,” and numbers have reached slightly less than 1000 for the last few years. 
From these numbers, we can understand the usefulness and significance of CPPs.

This book describes the design, mechanism, delivery tools, and applications of 
CPPs. There are several books and journals’ special issues on CPPs. However, none 
has previously categorized such topics. On the topic of design, the classification of 
CPPs is first described based on their characteristics, and then, typical types of CPPs 
(cationic, amphipathic, and hydrophobic peptides) and Arg‐rich peptides and fol-
damers are introduced. The topic of mechanism deals with important factors of 
CPPs, such as peptide secondary structure, cellular uptake, endosomal escape, and 
pharmacokinetics in vivo. The topic of delivery tools is categorized based on cargos, 
drugs, peptides and proteins, nucleic acids, and morpholino oligomers. Furthermore, 
CPPs assisting in the efficient delivery of nano‐sized drug delivery systems, poly-
meric micelles, and lipid‐based nanoparticles are introduced as delivery tools. The 
final topic of applications covers oral delivery and intranasal delivery using CPPs, 
CPPs in clinical trials, and applications in plants. Table 1.1 lists the representative 
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1  Introduction2

CPPs introduced in this book. We hope that this book will be useful for readers 
studying and treating CPPs now and in the future.

Table 1.1  Lists of CPPs introduced in this book.

CPP Sequence Ref.

[C12‐R4] Cyclic(CXRRRR)
X: (R,S)‐2‐amino tetradecanoic acid

[1]

[R6W3] Cyclic(CRRWWRRWRR) [1]

A2‐17 LRKLRKRLLRLWKLRKR [2]

A2‐17KR LRRLRRRLLRLWRLRRR [2]

AA3H MASIWVGHRG [3]

Ac5cNH2 peptide (RRX)3

X: Ac5cNH2, 1,3‐diaminocyclopentanecarboxylic acid
[4]

Ac5cGu peptide (RRX)3

X: Ac5cGu, 1‐amino‐3‐guanidinocyclopentanecarboxylic acid
[4]

Ac6cNH2 peptide (RRX)3

X: Ac6cNH2, 1,4‐diaminocyclohexanecarboxylic acid
[5]

Amphipathic 
β‐peptide

[(S,S)‐ACHC‐β3hArg‐β3hArg]3

ACHC: trans‐2‐aminocyclohexanecarboxylic acid
β3hArg: β3‐homoarginine

[6]

ApiC2Gu peptide (RRX)3

X: ApiC2Gu, 4‐aminopiperidine‐4‐carboxylic acid derivative
[7]

αR7W2 RRRWRRWRR [8]

ARF (1‐22) MVRRFLVTLRIRRACGPPRVRV [9]

ARF (19‐31) RVRVFVVHIPRLT [9]

β‐Heptaarginine (β3hArg)7

β3hArg: β3‐homoarginine
[10]

β‐Heptalysine (β3hLys)7

β3hLys: β3‐homolysine
[10]

β‐Tat β3hArg‐(β3hLys)2‐(β3hArg)2‐β3hGln‐(β3hArg)3 [11]

Bac15‐24 RRIRPRPPRLPRPRPRPLPFPRPG [12]

Bip2 VPTLK [13]

Block3 LLULLULLUGGGRRRRRRRRR
U: Aib, 2‐aminoisobutyric acid

[14]

BP100 KKLFKKKKILKYL [15]

bPrPp (1‐30) MVKSKIGSWILVLFVAMWSDVGLCKKRPKP [16]

Butyl‐TH AGYLLGHBINLHBHBLAHBLUHBHBIL
U: Aib, 2‐aminoisobutyric acid; HB: 3‐butylhistidine

[17]

C105Y CSIPPEVKFNKPFVYLI [18]

CADY GLWRALWRLLRSLWRLLWRA‐cysteamide [19]

CH2R4H2C CHHRRRRHHC [20]

(Continued)
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3Introduction

Table 1.1  (Continued)

CPP Sequence Ref.

cLK Cyclic Ac‐CKKLLKLLKKLLKLGGLKKLLKLLKKLLKLLK
Crosslink between the side chains of C and K

[21]

CPP12 Cyclic(FXR4)
X: L‐2‐naphthylalanine

[22]

CPP2 DSLKSYWYLQKFSWR [23]

CPP44 KRPTMRFRYTWNPMK [23]

CPP9 Cyclic(fXRrRrQ)
X: L‐2‐naphthylalanine

[24]

Cyclic [W(RW)4] Cyclic[W(RW)4] [25]

Cyclic R9 Cyclic(CRRRRRRRRR) [26]

Cyt c77‐101 GTKMIFVGIKKKEERADLIAYLKKA [27]

D‐Oligoarginine rn [28]

D‐Tat49‐57 Rkkrrqrrr [28]

DPV1047 VKRGLKLRHVRPRVTRMDV [29]

DPV3 RKKRRRESRKKRRRES [29]

dTat‐Sar‐EED4 rrrqrrkkrXXXXXXGWWG
X: Sar, sarcosine

[30]

FHV coat35‐49 RRRRNRTRRNRRRVR [31]

GALA WEAALAEALAEALAEHLAEALAEALEALAA [32]

H5WYG GLFHAIAHFIHGGWHGLIHGWYG [33]

HA2 GDIMGEWGNEIFGAIAGFLG [34]

HAad IWLTALKFLGKAAAKAXAKQXLSKL
X: L‐2‐aminoadipic acid

[35]

hCT9‐32‐br LGTYTQDFNK(X)FHTFPQTAIGVGAP
X: PKKKRKVEDPGVGFA

[36]

HIV‐1 Rev34‐50 TRQARRNRRRRWRERQR [31]

HL CHHHHHRRWQWRHHHHHC [37]

HR9 CHHHHHRRRRRRRRRHHHHHC [38]

HTLV‐II Rex4‐16 TRRQRTRRARRNR [31]

Hydrophobic 
MPS

VTVLAGALAGVGVG [39]

K10H16 KKKKKKKKGHHHHHHHHHHHHHHHH [40]

KAibA poly(KUA)
U: Aib, 2‐aminoisobutyric acid

[41]

KALA WEAKLAKALAKALAKHLAKALAKALKACEA [42]

KLA (KLAKLAK)2 [43]

KLA10 KALKKLLAKWLAAAKALL [44]

(Continued)
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1  Introduction4

Table 1.1  (Continued)

CPP Sequence Ref.

L‐ProGu peptide (RRX)3

X: L‐ProGu; 4‐guanidinoproline
[45]

L1‐7 Cyclic FIDIIIKILLI
Crosslink between the side chains of D and K

[46]

L17E IWLTALKFLGKHAAKHEAKQQLSKL [47]

L6 RRWQWR [48]

LAH4 KKALLALALHHLAHLALHLALALKKA [49]

LAH4‐L1 KKALLAHALHLLALLALHLAHALKKA [50]

LH LHHLLHHLHHLLHH [51]

LK LKKLLKLLKKLLKL [52]

LTP RRKRRKKRRKRRKKKAC [53]

M1 TFYGGRPKRNNFLRGIR [54]

M918 MVTVLFRRLRIRRACGPPRVRV [55]

MAP KLALKLALKALKAALKLA [56]

MAP(Aib) KLULKLULKULKAULKLU
U: Aib, 2‐aminoisobutyric acid

[57]

Melittin GIGAVLKVLTTGLPALISWIKRKRQQ [58]

Mitoparan INLKKLAKLUKKIL
U: Aib, 2‐aminoisobutyric acid

[59]

MPG GALFLGFLGAAGSTMGAWSQPKKKRKV [60]

MTS AAVALLPAVLLALLAP [61]

MTS1 AAVLLPVLLAAP [62]

N‐hxg9 (N‐hxg)9

N‐hxg: N‐guanidinohexylglycine
[28]

NF51 δ‐(Stearyl‐AGYLLG)OINLKALAALAKKIL
O: Orn, L‐ornithine

[63]

NF55 δ‐(Stearyl‐AGYLLG)OINLKALAALAKAIL
O: Orn, L‐ornithine

[64]

NF70 δ‐(Arachidyl‐HHHHYHHG)OILLKALKALAKAIL
O: Orn, L‐ornithine

[65]

Oligoarginine Rn [28, 
31]

Oligohistidine Hn [66]

Oligolysine Kn [67]

Oligourea3 iPrNHCO‐VUHUWUVUHUWURUγV
γV: γ‐valine

[68]

p18 LSTAADMQGVVTDGMASG [69]

(Continued)
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Table 1.1  (Continued)

CPP Sequence Ref.

P4 LGAQSNF [70]

PenetraMax KWFKIQMQIRRWKNKR [71]

Penetratin RQIKIWFQNRRMKWKK [72]

Pep‐1 KETWWETWWTEWSQPKKKRKV [73]

Pep‐7 SDLWEMMMVSLACQY [74]

Pept1 PLILLRLLRGQF [75]

PF14 Stearyl‐AGYLLGKLLOOLAAAALOOLL
O: Orn, L‐ornithine

[76]

PF3 Stearyl‐AGYLLGKINLKALAALAKKIL [77]

PF6 Stearyl‐AGYLLGK(X)INLKALAALAKKIL
X: 4‐trifluoromethylquinoline‐based derivative

[78]

PFV PFVYLI [79]

PG‐1 RGGRLCYCRRRFCVCVGR [80]

pHLIC Cyclic(EEEEWWWWWC) [81]

pHLIP AAEQNPIYWWARYADWLFTTPLLLLDLALLVDADEGTCG [82]

Pip6a RXRRBRRXRYQFLIRXRBRXRB
X: aminohexanoyl; B: β‐alanine

[83]

ppTG1 GLFKALLKLLKSLWKLLLKA [84]

ppTG20 GLFRALLRLLRSLWRLLLRA [84]

PR20 PRPRPRPRPRPRPRPRPRPRPRPRPRPRPRPRPRPRPRPR [85]

PreS2‐TLM PLSSIFSRIGDP [86]

PTD4 YARAAARQARA [87]

pVEC LLIILRRRIRKQAHAHSK [88]

R6/W3 RRWWRRWRR [89]

R9F2C RRRRRRRRRFFC [90]

RGE RGERPPR [91]

RICK Kwllrwlsrllrwlarwlg [92]

RLA Rlarlarrlarlar [93]

RRU peptide (RRU)n (n = 1–6)
U: Aib, 2‐aminoisobutyric acid

[94]

RRX peptide (RRX)3

X: (S)‐α‐methylleucine, 1‐aminocyclopentanecarboxylic acid,  
or (3S,4S)‐1‐amino‐3,4‐dimethoxycyclopentanecarboxylic acid

[95]

RW16 RRWRRWWRRWWRRWRR [96]

RWRWR RWVRVpGOWIRQ
O: Orn, l‐ornithine

[97]

(Continued)
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