

Contents

1	Introduction	1
1.1	The Robot Mapping Problem	2
1.2	The Spatial Representation Perspective	3
1.3	The Uncertainty Handling Perspective	3
1.4	Combining Representation and Uncertainty Handling	4
1.5	Route Graphs Based on Generalized Voronoi Diagrams	5
1.6	Theses, Goals, and Contributions of This Book	6
1.7	Outline of This Book	8
2	Robot Mapping	11
2.1	A Spatial Model for What?	14
2.1.1	Navigation	14
2.1.2	Systematic Exploration	16
2.1.3	Communication	16
2.2	Correctness, Consistency, and Criteria	17
2.2.1	Extractability and Maintainability	18
2.2.2	Information Adequacy	18
2.2.3	Efficiency and Scalability	18
2.3	Spatial Representation and Organization	19
2.3.1	Basic Spatial Representation Approaches	19
2.3.2	Coordinate-Based Representations	20
2.3.3	Relational Representations	26
2.3.4	Organizational Forms	31
2.4	Uncertainty Handling Approaches	36
2.4.1	Incremental Approaches	37
2.4.2	Multi-pass Approaches	41
2.5	Conclusions	42
3	Voronoi-Based Spatial Representations	45
3.1	Voronoi Diagram and Generalized Voronoi Diagram	45
3.2	Generalized Voronoi Graph and Embedded Generalized Voronoi Graph	47
3.3	Annotated Generalized Voronoi Graphs	49

3.4	Hierarchical Annotated Voronoi Graphs	50
3.5	Partial and Local Voronoi Graphs	51
3.6	An Instance of the HAGVG	53
3.7	Stability Problems of Voronoi-Based Representations	54
3.8	Strengths and Weaknesses of the Representation	55
4	Simplification and Hierarchical Voronoi Graph Construction	59
4.1	Relevance Measures for Voronoi Nodes	60
4.2	Computation of Relevance Values	64
4.3	Voronoi Graph Simplification	69
4.4	HAGVG Construction	72
4.5	Admitting Incomplete Information	73
4.6	Improving the Efficiency of the Relevance Computation	75
4.7	Incremental Computation	80
4.8	Application Scenarios	82
4.8.1	Incremental HAGVG Construction	82
4.8.2	Removal of Unstable Parts	82
4.8.3	Automatic Route Graph Generation from Vector Data	82
5	Voronoi Graph Matching for Data Association	85
5.1	The Data Association Problem	85
5.1.1	Data Associations and the Interpretation Tree	86
5.1.2	Data Association Approaches	88
5.2	AGVG Matching Based on Ordered Tree Edit Distance	90
5.2.1	Ordered Tree Matching Based on Edit Distance	92
5.2.2	Overall Edit Distance	97
5.2.3	Modeling Removal and Addition Costs	98
5.2.4	Optimizations	99
5.2.5	Complexity	99
5.3	Incorporating Constraints	100
5.3.1	Unary Constraints Based on Pose Estimates and Node Similarity	101
5.3.2	Binary Constraints Based on Relative Distance	104
5.3.3	Ternary Angle Constraints	106
5.4	Map Merging Based on a Computed Data Association	109
6	Global Mapping: Minimal Route Graphs Under Spatial Constraints	113
6.1	Theoretical Problem	114
6.2	Branch and Bound Search for Minimal Model Finding	123
6.2.1	Search Through the Interpretation Tree	124
6.2.2	Best-First Branch and Bound Search Based on Solution Size .	126
6.2.3	Expand and Update Operations	128
6.2.4	Two Variants of the Minimal Model Finding Problem	134
6.3	Pruning Based on Spatial Constraints	136

6.3.1	Checking Planarity	136
6.3.2	Checking Spatial Consistency	139
6.3.3	Incorporation into the Search Algorithm	143
6.4	Combining Minimal Route Graph Mapping and AGVG Representations	144
7	Experimental Evaluation	147
7.1	Relevance Assessment and HAGVG Construction	147
7.1.1	Efficiency of the Relevance Computation Algorithms	147
7.1.2	Combining the HAGVG Construction Methods with a Grid-Based FastSLAM Approach	150
7.2	Evaluation of the Voronoi-Based Data Association	152
7.3	Evaluation of the Minimal Route Graph Approach	156
7.3.1	Solution Quality	157
7.3.2	Pruning Efficiency	160
7.3.3	Absolute vs. Relative Direction Information	163
7.3.4	Overall Computational Costs	166
7.3.5	Application to Real AGVG Data	168
7.4	A Complete Multi-hypothesis Mapping System	170
7.4.1	Local Metric Mapping and Local AGVG Computation	170
7.4.2	Data Association for Node Tracking and History Generation	171
7.4.3	Global Mapping and Post-processing	171
7.4.4	Experiments	171
7.4.5	Discussion	172
8	Conclusions and Outlook	177
8.1	Summary and Conclusions	177
8.1.1	Extraction and HAGVG Construction	178
8.1.2	Data Association and Matching	179
8.1.3	Minimal Route Graph Model Finding	179
8.1.4	Complete Mapping Approaches	180
8.2	Outlook	181
8.2.1	Extensions of the Work Described in Chaps. 3–6	181
8.2.2	Combining Voronoi Graphs and Uncertainty Handling	182
8.2.3	Challenges for Voronoi-Based Representation Approaches	183
8.2.4	Challenges for Qualitative Spatial Reasoning	185
8.2.5	The Future: Towards Spatially Competent Mobile Robots	185
A	Mapping as Probabilistic State Estimation	187
A.1	The Recursive Bayes Filter	188
A.2	Parametric Filters	190
A.2.1	Kalman Filter	190
A.2.2	Extended Kalman Filter	191
A.3	Nonparametric Filters	192

A.3.1	Particle Filter	192
A.3.2	Rao-Blackwellized Particle Filter and FastSLAM	193
B	Qualitative Spatial Reasoning	195
B.1	Qualitative Constraint Calculi	195
B.2	Weak vs. Strong Operations	198
B.3	Constraint Networks and Consistency	198
B.4	Checking Consistency	200
Bibliography		203