

Brief Contents

List of Contributors *xlv*

Preface *lv*

About the Companion Website *lvii*

Part I Structural Interventions for the Aortic Valve 1

- 1 The Natural History and Hemodynamic Assessment of Aortic Valve Disease 3**
- 2 Pathology Insights of Aortic Valve Disease 11**
- 3 The Top Ten Clinical Trials in Patients Undergoing Transcatheter Aortic Valve Implantation**
The Evolution of a Transformative Therapy into Clinical Practice 19
- 4 Present and Future Generations of Transcatheter Aortic Valves 31**
- 5 Computed Tomography for Transcatheter Aortic Valve Replacement Planning**
Current Perspectives and Future Directions 39
- 6 Optimal Selection of TAVR Devices 51**
- 7 Transcatheter Aortic Valve Replacement**
Step-by-Step Approach 59
- 8 Balloon Aortic Valvuloplasty**
Current Clinical Role and Technical Aspects 69
- 9 Challenging Anatomy Scenarios in TAVR 75**
- 10 TAVR for Bicuspid Aortic Valve 83**
- 11 TAVR for Pure Native Valve Aortic Regurgitation 89**
- 12 Aortic Valve-in-Valve Interventions 95**
- 13 Prevention and Management of Coronary Artery Obstruction in TAVR 103**

14 Coronary Artery Disease and Transcatheter Aortic Valve Replacement

Timing and Patient Selection for Coronary Intervention in Patients Planned for TAVR 109

15 Conduction Disturbances Associated with TAVR

Clinical Impact and Techniques to Minimize 115

16 Management of Conduction Disturbances Post-TAVR 123

17 TAVR Mechanical Complications Prevention and Management 131

18 Pathological Insights of TAVR Degeneration and Thrombosis 139

19 Clinical Implications of Valve Thrombosis and Early Thickening

Management of Antiplatelets and Anticoagulation Post TAVI 151

20 TAVR and Stroke 155

21 Current Evidence of Neuroprotection in TAVR 163

22 Difficult Transfemoral Access for TAVR and Bailout Techniques 169

23 Alternative Access for TAVR 175

24 Vascular Access and Closure Options for TAVR 183

Part II Structural Interventions for the Mitral Valve 191

25 The Natural History of Mitral Valve Disease 193

26 Hemodynamic Assessment of the Mitral Valve 203

27 Echocardiographic Assessment Prior to Mitral Valve Edge-to-Edge Repair 211

28 Intra-procedural Transesophageal Echocardiography for Mitral Valve Structural Interventions 217

29 Surgical Trials in Mitral Valvular Disease 227

30 Surgical Techniques for Mitral Valve Repair 233

31 Structural Interventions for Mitral Stenosis 239

32 Transcatheter Edge-to-Edge Repair Trials

The EVEREST and COAPT Trials 251

33 Mitral Valve TEER

The MitraClip Procedure 257

34 TEER Challenging Anatomy and MitraClip Tips and Tricks 273

35 MitraClip Complications

Prevention and Management 281

36 CT Imaging for TMVR	291
37 Transcatheter Mitral Valve Replacement	
Transcatheter Mitral Valve-in-Valve (ViV), Valve-in-Ring (ViR), and Valve-in-MAC (ViMAC)	301
38 Transseptal Transcatheter Mitral Valve-in-Valve Replacement (TS MViV)	
Technical Considerations and Step-by-Step Procedure	311
39 Transseptal Systems for TMVR and Transcatheter Devices for Mitral Annuloplasty	317
40 Transcatheter Mitral Valve Replacement	
The Tendyne System	325
41 Self-Expanding Transcatheter Mitral Valve Replacement Systems	
Medtronic Intrepid Valve	331
 Part III Structural Interventions for the Tricuspid Valve 335	
42 Natural History and Hemodynamic Assessment of Tricuspid Valve Diseases	337
43 Indications and Outcomes for Surgical Tricuspid Valve Repair	343
44 Intra-Procedural Imaging of Tricuspid Valve Edge-to-Edge Interventions	347
45 Transcatheter Tricuspid Valve Device Landscape	353
46 Progress in Transcatheter Tricuspid Valve Repair and Replacement	363
47 Tricuspid Valve-in-Valve and Valve-in-Ring	383
48 Caval Valve Implantation (CAVI) for the Treatment of Severe Tricuspid Regurgitation	391
 Part IV Structural Interventions for Management of Paravalvular Leaks 395	
49 Aortic Paravalvular Leak Closure	
Techniques and Devices for Surgical and Transcatheter Prostheses	397
50 Mitral Paravalvular Leak: Imaging and Interventional Approaches	403
 Part V Left Atrial Appendage Closure 415	
51 Current Indications for Percutaneous Left Atrial Appendage Occlusion	417
52 Imaging for LAA Interventions	425
53 Devices for Left Atrial Appendage Closure	433
54 LAA Occlusion Technique and Challenging Scenarios	441
55 Preventing and Managing Complications of LAA Closure	449

Part VI Selected Structural Interventions for Cardiomyopathies 457

56 The Natural History of Hypertrophic Cardiomyopathy 459

57 Alcohol Septal Ablation in Hypertrophic Cardiomyopathy 463

58 Transcatheter Edge-to-Edge Repair for Hypertrophic Cardiomyopathy 467

59 Interatrial Shunt Creation 471

Part VII Selected Adult Congenital Structural Interventions 475

60 Shunt Hemodynamics and Calculations 477

61 Persistent Foramen Ovale Closure
Technical Considerations 485

62 Atrial Septal Defects Closure 493

63 Ventricular Septal Defects Closure 499

64 Percutaneous Treatment of Aortic Coarctation 505

65 Percutaneous Pulmonary Valve Replacement (PPVR) 515

Part VIII Miscellaneous 523

66 Hemodynamic Pearls in Adult Structural Heart Disease 525

67 Percutaneous Closure of Coronary Artery Fistulas 535

68 Renal Denervation Therapy
Available Evidence, Catheters, and Techniques 541

69 Acute Pulmonary Embolism Interventions: Data and Indications 547

70 Acute Pulmonary Embolism Intervention: Devices and Techniques 553

71 Transseptal Puncture Technique in the ERA of Structural Heart Disease 561

72 ECMO for Structural Interventions 567

73 Best Practices for Mechanical Circulatory Support with Impella for Acute Myocardial Infarction Cardiogenic Shock and Selected Structural Interventions 571

74 Transcatheter Interventions for Aortic Valve Insufficiency in Patients with Left Ventricular Assist Devices 585

Index 589

Contents

List of Contributors *xlv*

Preface *lv*

About the Companion Website *lvii*

Part I Structural Interventions for the Aortic Valve 1

1 The Natural History and Hemodynamic Assessment of Aortic Valve Disease 3

Aortic Stenosis 3

1. What are the causes of aortic stenosis (AS)? 3
2. How is AS severity graded? 3
3. What are the hemodynamic consequences of AS? 3
4. How are the hemodynamics of AS translated into symptoms? 3
5. How are the hemodynamics of AS translated into physical exam findings? 4
6. How is AS diagnosed (imaging and invasive hemodynamics)? 5
7. What is low-flow AS? 5
8. What are the indications for medical therapy of AS, and what do those therapies consist of? 6
9. What are the indications for mechanical therapy of AS, and what do those therapies consist of? 6
10. What is the prognosis for AS? 6

Aortic Regurgitation 6

11. What are the major etiologies of aortic regurgitation (AR)? 6
12. How is severe AR defined? 7

Chronic AR 7

13. What are the hemodynamics of chronic AR? 7
14. How are chronic AR hemodynamics translated into symptoms? 7
15. How are chronic AR hemodynamics translated into physical signs? 7
16. How is AR diagnosed (imaging and invasive hemodynamics)? 7
17. What are the indications for medical therapy in AR and of what do Those therapies consist? 8
18. What are the indications for mechanical therapy of AR and of what do Those therapies consist? 8
19. What is the prognosis following treatment 8

Severe Acute AR 8

Bibliography 9

2 Pathology Insights of Aortic Valve Disease 11

Introduction 11

1. What is the normal anatomy of the aortic valve? 11
2. What are the etiologies of aortic valve diseases? 11
3. What is the epidemiology of aortic valve disease? 11

4. What is the pathology of tricuspid calcific aortic stenosis? 12
5. What is the etiology of bicuspid aortic valve? 14
6. What is the classification of bicuspid aortic valves? 14
7. What are the pathologic findings of a bicuspid aortic valve? 15
8. What are the classification and pathology of the unicuspid aortic valve (UAV)? 15
9. What are the differences between the pathological findings in tricuspid vs. bicuspid vs. unicuspid aortic valves? 15
10. What are the risk factors for calcific aortic stenosis? 16
11. What are the underlying mechanisms of aortic valve calcification? 16

Conclusion 17

Bibliography 17

3 The Top Ten Clinical Trials in Patients Undergoing Transcatheter Aortic Valve Implantation

The Evolution of a Transformative Therapy into Clinical Practice 19

1. Who invented TAVI, and where were the early studies performed? 19
2. How was TAVI evaluated in the United States? 19

Leon, M.B., Smith, C.R., Mack, M. et al. (2010). Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. *N. Engl. J. Med.* 363 (17): 1597–1607. 20

3. Did PARTNER B affect “clinical equipoise” for randomized trials in non-operable patients? 20

Popma, J.J., Adams, D.H., Reardon, M.J. et al. (2014). Transcatheter aortic valve replacement using a self-expanding bioprosthetic in patients with severe aortic stenosis at extreme risk for surgery. *J. Am. Coll. Cardiol.* 63 (19): 1972–1981. 20

4. When did the Heart Team develop, and what has it meant to TAVI decision-making? 20

Smith, C.R., Leon, M.B., Mack, M.J. et al. (2011). Transcatheter versus surgical aortic-valve replacement in high-risk patients. *N. Engl. J. Med.* 364 (23): 2187–2198. 21

5. Were the initial concerns about stroke with TAVI justified? 21

Adams, D.H., Popma, J.J., Reardon, M.J. et al. (2014). Transcatheter aortic-valve replacement with a self-expanding prosthesis. *N. Engl. J. Med.* 370 (19): 1790–1798. 21

6. What contributed to the differences in one-year mortality between TAVI and surgery patients? 21

Leon, M.B., Smith, C.R., Mack, M.J. et al. (2016). Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. *N. Engl. J. Med.* 374 (17): 1609–1620. 22

Reardon, M.J., Van Mieghem, N.M., Popma, J.J. et al. (2017). Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. *N. Engl. J. Med.* 376 (14): 1321–1331. 22

7. What have we learned about the assessment of valve durability? 22

Feldman, T.E., Reardon, M.J., Rajagopal, V. et al. (2018). Effect of mechanically expanded vs self-expanding transcatheter aortic valve replacement on mortality and major adverse clinical events in high-risk patients with aortic stenosis: the REPRISE III randomized clinical trial. *J. Am. Med. Assoc.* 319 (1): 27–37. 23

Mack, M.J., Leon, M.B., Thourani, V.H. et al. (2019). Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. *N. Engl. J. Med.* 380 (18): 1695–1705. 24

Popma, J.J., Deeb, G.M., Yakubov, S.J. et al. (2019). Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. *N. Engl. J. Med.* 380 (18): 1706–1715. 25

Makkar, R.R., Cheng, W., Waksman, R. et al. (2020). Self-expanding intra-annular versus commercially available transcatheter heart valves in high and extreme risk patients with severe aortic stenosis (PORTICO IDE): a randomised, controlled, non-inferiority trial. *Lancet* 396 (10252): 669–683. 25

8. What did we learn about subclinical leaflet thrombosis from this study? 25
9. What are other areas of improvement for TAVI? 26
10. What should be considered for the lifetime management of patients undergoing TAVI? 26
11. What patient subsets have yet to be studied? 27
 - Moderate Aortic Stenosis 27
 - Asymptomatic Aortic Stenosis 27
 - Aortic Insufficiency 27

Conclusions 28

Bibliography 28

4 Present and Future Generations of Transcatheter Aortic Valves 31

1. What life-long management is required for patients undergoing TAVR 31
2. How is TAVR used for low-surgical-risk patients? 31
3. Describe the hemodynamics after TAVR 32
4. How durable is TAVR? 32
5. Describe coronary access after TAVR. 33
6. Describe pacemaker implantation after TAVR 33
7. What is the present generation of transcatheter valves? 33
 - SAPIEN 3 Ultra Valve 33
 - Evolut PRO+ Valve 34
 - ACURATE neo2 Valve 34
 - JenaValve 34
 - ALLEGRA Valve 34
8. What is the future generation of transcatheter valves? 35
 - Colibri Valve 35
 - DurAVR Valve 35
 - Navitor 35
 - Triskele UCL Valve 35
- Conclusions 35
- Bibliography 36

5 Computed Tomography for Transcatheter Aortic Valve Replacement Planning**Current Perspectives and Future Directions 39**

Introduction 39

1. What Is the best way to approach pre-procedural CT assessment, patient preparation, contrast administration, scanning protocol, and data-reconstruction techniques in patients undergoing CT evaluation prior to TAVR? 39
2. What is the best way to analyze aortic valve calcium extension, scoring, and its clinical significance? 39
3. What is the best approach for aortic valve annular evaluation and sizing? 40
4. What is the best way to evaluate the aorta on CT scan prior to TAVR, and what is the evaluation's clinical significance? 41
 - Ascending Aorta 41
 - Coronary Ostium, Sinus of Valsalva, and Sinotubular Junction Measurements 42
5. What are the TAVR access sites, and how are they evaluated on a CT scan? 42
 - Transfemoral Access 43
 - Alternative Access 43
6. What is the importance of assessing the suitability of carotid embolic protection devices prior to TAVR? 44
7. What is the best way to evaluate coronary arteries and coronary bypass grafts using CT scan? 44
8. What is the importance of reporting the CT scan functional assessment, and what is the significance of cardiac and non-cardiac incidental findings? 45
9. What is the best way to use myocardial extracellular volume (ECV) as a potential screening for cardiac amyloidosis and myocardial fibrosis? 45
10. What is the best way to perform CT evaluation of valve-in-valve TAVR? 45
 - Sizing 46
 - Risk of Coronary Artery Obstruction 46
11. What are the CT assessments in patients with bicuspid aortic valve prior to TAVR? 47
 - Morphology 47
 - High-Risk Features 47
 - Annulus Size 48
- Bibliography 48

6 Optimal Selection of TAVR Devices 51

1. What types of transcatheter aortic valve replacement devices are commercially available? 51
2. Are other TAVR devices under clinical investigation? 51
3. Is there evidence to claim superiority of one type of TAVR device over the others? 51
4. Are there situations in which one valve should be considered over another? 52
5. Does annular size affect the choice of valve? 53
6. What type of valve should be chosen based on aortic valve calcification? 53
7. How does the risk of conduction abnormalities influence the choice of the TAVR device? 54
8. Why are the risk of coronary occlusion and the need to reaccess the coronaries are important? 55
9. What is the impact of aortic angulation on TAVR outcomes? 56
10. What about bicuspid aortic valves? 56
11. Should any other factors be considered for optimal selection of TAVR device? 56

Clinical Vignette 57

Bibliography 58

7 Transcatheter Aortic Valve Replacement**Step-by-Step Approach 59**

1. What is transcatheter aortic valve replacement (TAVR)? 59

Patient Evaluation 59

2. What are the current indications for TAVR? 59
3. Are there any absolute contraindications to TAVR? 59

Step-By-Step TAVR Approach 59

4. What are the pre-procedural approach to and planning for successful TAVR? 59
5. What are the steps during the TAVR procedure? 60

Vascular Access 60

6. What is the approach for vascular access during TAVR? 60
7. What is the current best practice to establish femoral access safely? 61
8. For patients with inadequate femoral access, what are the potential options for alternative arterial access for transcatheter valve delivery? 61
9. What is the approach to axillary/subclavian artery access? 62
10. What is the approach to carotid artery access? 62
11. What is the approach for transaortic access for TAVR? 62
12. What is the approach to trans caval access for TAVR? 62
13. What is the approach to antegrade, transapical access? 62
14. What is the approach to antegrade, transseptal access? 62
15. What are the optimal vascular closure techniques for large-bore vascular access during TAVR? 63

Balloon-Expandable Transcatheter Aortic Valve Replacement 63

16. What are the components of the Edwards SAPIEN balloon-expandable valve? 63
17. What are the essential considerations during balloon-expandable TAVR? 64

Self-Expanding Transcatheter Aortic Valve Replacement 65

18. What are the components of the self-expanding valve and catheter system? 65
19. What are the essential considerations during self-expandable TAVR? 66
20. Can the Evolut valve be repositioned during deployment? 67
21. After valve implantation, how is adequate valve position confirmed? 67

Conclusion 67**Bibliography 67****8 Balloon Aortic Valvuloplasty****Current Clinical Role and Technical Aspects 69**

1. What are the guideline recommended indications for aortic balloon valvuloplasty (BAV)? 69
2. What are the contra-indications to aortic balloon valvuloplasty? 69
3. What are the goals of BAV and what defines a successful BAV? 69

4. What is the incidence of complications in BAV? 70
5. What are the balloon sizing considerations for BAV? 70
6. Which types of balloons are available for BAV? 70
7. What is the technique used to cross stenotic aortic valve? 70
8. How is the valvuloplasty balloon stabilized across the aortic valve during inflation? 71
9. What is the role of valvuloplasty in patients undergoing TAVR? 71
10. What is the role of BAV in patients with low-flow, low-gradient aortic stenosis? 71
11. What is the role of BAV to reduce cardiac complications of patients requiring non-cardiac surgery? 71
12. What is the post-procedure care of BAV patients? 72
13. What are the options for hemodynamically assisted aortic valvuloplasty? 72

Bibliography 72

9 Challenging Anatomy Scenarios in TAVR 75

Aortic Root 75

1. During transcatheter aortic valve replacement (TAVR), what are important principles for patients with severe aortic leaflet and annular calcification? 75
2. What unique risks exist during TAVR when there is minimal aortic leaflet and annular calcium? 75
3. How does sinotubular junction (STJ) calcification affect valve deployment? 76
4. What does “horizontal aorta” refer to during TAVR, and what techniques are required in this situation? 76
5. How should LVOT calcification affect valve deployment? 76
6. What is the role of TAVR in patients with bicuspid aortic valve disease? 76
7. What can be done for patients with a small aortic annulus? 77
8. How should a valve be correctly sized in an extremely large annulus? 77
9. What are the options for annular sizing in patients who cannot receive computer tomography (CT) with contrast? 77

Coronary Arteries 78

10. For what patient anatomy should you consider protecting the left main coronary artery? 78
11. How should you perform TAVR if a patient will likely need a future percutaneous coronary intervention (PCI)? 78

Aorta 79

12. Is it possible to perform a TAVR in a patient with an ascending aortic aneurysm? 79
13. What techniques allow transfemoral access for patients with a tortuous descending aorta? 79
14. Does the presence of a bovine arch prevent the placement of a cerebral embolic protection device? 80

Femoral Arterial Access 80

15. How can transfemoral TAVR be performed if there is significant iliac artery calcification? 80
16. How can transfemoral TAVR be performed if there is significant femoral artery calcification? 80
17. What can be done if there is only one patent iliofemoral artery? 80
18. If iliofemoral access is not feasible, what are different options for alternate access? 80

Valve-in-Valve (ViV) 81

19. When performing ViV TAVR, how do you choose the correct transcatheter valve? 81
20. What are the relevant considerations when potentially fracturing an existing surgical valve prior to ViV implantation? 81
21. What can be done if there is a high risk of coronary artery obstruction with ViV TAVR? 81

Bibliography 82

10 TAVR for Bicuspid Aortic Valve 83

Epidemiology 83

1. What is the prevalence of bicuspid aortic valves? 83
2. How is BAV identified? 83
3. How do patients with bicuspid AS undergoing transcatheter aortic valve replacement compare to patients with tricuspid AS? 83

Bicuspid Valve Morphology	83
4. Match the illustrated valve morphologies to the correct bicuspid phenotypes according to the conventional Sievers classification and the newly derived CT classification (see figure 10.1).	83
5. What anatomical characteristics commonly associated with BAVs may complicate TAVR?	84
Procedural Planning	84
6. What considerations should be taken into account when choosing a THV type (annular/supra-annular; balloon-expandable/self-expanding)?	84
7. Can computer simulation complement pre-procedural TAVR planning?	85
8. What sizing strategies exist for selecting THV size in bicuspid AS?	85
9. What is recommended for pre-dilatation and post-dilatation?	86
Outcomes	86
10. How do outcomes of TAVR in bicuspid AS compare with tricuspid AS?	86
11. Describe how the different bicuspid phenotypes (see question 4) impact outcome after TAVR.	86
12. What features of the newer-generation THVs significantly improved the outcome of TAVR?	86
Bibliography	87

11 TAVR for Pure Native Valve Aortic Regurgitation 89

1. How common is aortic regurgitation (AR)?	89
2. What are the most common causes of NAVR?	89
3. What are the natural history and prognosis of AR?	89
4. What are the indications and the best timing for intervention of the aortic valve in AR?	89
5. What is the recommended therapy for patients with severe NAVR and indication for intervention?	90
6. What are the challenges of TAVR in pure NAVR?	90
7. What is the available evidence evaluating TAVR for pure NAVR?	90
8. What is the preferred type of THV for TAVR in pure NAVR?	91
9. What are some critical technical considerations?	91

Bibliography	93
--------------	----

12 Aortic Valve-in-Value Interventions 95

1. Why are aortic valve-in-valve procedures needed?	95
2. Why are ViV TAVR outcomes better than native valve TAVR?	95
3. What are the primary limitations of aortic ViV TAVR?	95
4. Why does the mechanism of bioprosthetic valve failure matter?	96
5. How do you plan for a ViV procedure?	97
6. How do you avoid PPM in aortic ViV procedures?	97

Supra-Annular vs. Intra-Annular Design	98
--	----

Implantation Technique (High vs. Low)	98
---------------------------------------	----

High-Pressure Post-Dilation and Balloon Valve Fracture	98
--	----

7. How do you prevent and treat coronary obstruction?	99
---	----

BASILICA Procedure	99
--------------------	----

Chimney Technique	100
-------------------	-----

8. How important is adjunct pharmacology after ViV-TAVI?	100
--	-----

Bibliography	101
--------------	-----

13 Prevention and Management of Coronary Artery Obstruction in TAVR 103

1. What is the incidence of coronary artery obstruction in transcatheter aortic valve replacement (TAVR)?	103
2. What is the mechanism of coronary artery obstruction in TAVR?	103
3. Which coronary artery is most commonly obstructed during TAVR?	103
4. What is delayed coronary obstruction after TAVR?	103

5. What are the symptoms of coronary artery obstruction in TAVR? 104
6. What are the outcomes for patients that have coronary artery obstruction with TAVR? 104
7. What are risk factors for coronary artery obstruction with TAVR? 104
8. How do you prevent coronary artery obstruction with TAVR? 105
9. What is the treatment for coronary artery obstruction with TAVR? 105
10. What is preparatory coronary protection? 106
11. Explain the BASILICA procedure. 106

Bibliography 107

14 Coronary Artery Disease and Transcatheter Aortic Valve Replacement

Timing and Patient Selection for Coronary Intervention in Patients Planned for TAVR 109

1. How common is coronary artery disease (CAD) in patients with severe aortic stenosis (AS)? 109
2. What is the clinical impact of CAD on TAVR outcomes? 109
3. How do you assess for CAD prior to TAVR? 109
4. Can you use the instantaneous wave-free ratio (iFR) in patients with severe AS? 109
5. What is the role of percutaneous revascularization in TAVR? 110
6. What is the recommendation for the management of left main (LM) disease prior to TAVR? 111
7. What is the optimal timing for revascularization in patients being evaluated for TAVR? 111
8. What about completeness of revascularization in patients undergoing TAVR? 111
9. Are there technical considerations in patients undergoing PCI post-TAVR? 112
10. What is the current guideline for revascularization in patients undergoing TAVR? 113

Bibliography 113

15 Conduction Disturbances Associated with TAVR

Clinical Impact and Techniques to Minimize 115

1. What is the relationship between the aortic valve structures and the conduction system? 115
2. What is the incidence of conduction disturbances associated with TAVR? 115
3. What is the clinical impact of conduction disturbances after TAVR? 116
4. What are the predictors of conduction disturbances and PPI associated with TAVR? 117
5. What strategies can be implemented to prevent or minimize conduction disturbances associated with TAVR? 117

MIDAS Approach 118

Cusp Overlap Technique 118

Advantages of the Cusp Overlap Technique 119

Disadvantages of the Cusp Overlap View 119

High-implantation Technique for the Balloon-Expandable SAPIEN 3 Valve 119

6. Describe post-procedural monitoring and electrophysiological assessment after TAVR. 120

Bibliography 120

16 Management of Conduction Disturbances Post-TAVR 123

1. What are the components of normal conduction from sinus node to ventricular tissue? 123
2. Match the components of the conduction system to the following intervals 123
3. What components of the conduction system are susceptible to injury during transcatheter aortic valve replacement (TAVR) implantation? 123
4. At what operative stage can AV conduction abnormalities be encountered? 124
5. What changes to the EKG can be anticipated after TAVR? 124
6. What pre-operative EKG finding is the strongest predictor of post-TAVR conduction disturbances and pacemaker requirement? Why? 124
7. What procedural factors have been associated with higher risk of post-TAVR conduction disturbances? 124
8. At what point should a 12-lead EKG be performed to determine the duration of temporary pacing wire and post-operative telemetry? 125

9. A patient with the pre-operative EKG shown here undergoes TAVR. No change in EKG is seen at the end of the procedure. What is recommended for the duration of temporary pacing and telemetry monitoring? 125
10. What is the likelihood that a patient with this EKG will require a pacemaker implant after TAVR? 125
11. The patient in question 10 has no change in the 12-lead EKG at the end of the procedure. How long after the TAVR procedure is temporary pacing recommended? 126
12. A patient who undergoes TAVR has the pre-operative EKG shown in (a) and the post-procedure EKG shown in (b). What management decisions are recommended for this scenario? 126
13. The patient from question 12 develops the following EKG 10 hours after LBBB was noticed after TAVR. What pacemaker configuration will maintain atrioventricular synchrony? 126
14. A patient with severe aortic stenosis and moderately reduced systolic function receives TAVR and develops the rhythm shown here, associated with dizziness, post-TAVR. What kind of pacing configuration is less likely to result in persistent systolic dysfunction? 127
15. Pre-operatively, an 88-year-old man has the EKG shown in (a); 48 hours after TAVR, he has the EKG shown in (b). An electrophysiology study is performed. The intra-cardiac electrocardiograms are shown in (c). Does this patient require a pacemaker? 128

Bibliography 129

17 TAVR Mechanical Complications Prevention and Management 131

Annular Rupture 131

1. What constitutes annular rupture in TAVR? 131
2. How do you classify annular rupture after TAVR? 131
3. How often does annular rupture occur? 131
4. Why does annular rupture happen with TAVR? 131
5. What are the risk factors for annular rupture with TAVR? 131
6. What are the outcomes of annular rupture? 132
7. How do you diagnose annular rupture? 132
8. How do you treat annular rupture? 132
9. How do you prevent annular rupture? 133

Perforation and Tamponade 133

10. How does cardiac tamponade occur in TAVR? 133
11. Why does ventricular perforation occur? 133
12. How common is ventricular perforation in TAVR? 133
13. How do you diagnose and manage perforation? 133
14. What are the outcomes after perforation? 133
15. How can you prevent cardiac perforations in TAVR? 134

Bioprosthetic Valve Infolding 134

16. What is prosthetic valve infolding? 134
17. What are the consequences of prosthetic valve infolding? 134
18. Why does valve infolding occur? 134
19. What are risk factors for valve infolding? 134
20. How common is valve infolding? 134
21. How can you diagnose valve infolding? 134
22. How do you treat valve infolding? 134

Valve Embolization 135

23. What is transcatheter valve embolization? 135
24. How common is valve embolization? 135
25. What is the cause of TVEM? 136
26. How do you treat TVEM? 136
27. How can you prevent TVEM? 137

Bibliography 137

18 Pathological Insights of TAVR Degeneration and Thrombosis 139

Introduction 139

Bioprosthetic Valve Failure (BVF) 139

1. What types of valve failure modes are observed in TAVR bioprostheses? 139

Infective Endocarditis 139

2. What are the incidence and causative microorganisms of IE after TAVR? 139

3. What are the pathological findings of IE? 140

Leaflet Thrombosis 140

4. What are the clinical relevancies of leaflet thrombosis? 140

5. What are the pathological findings of valve thrombosis? 141

Neointimal Coverage and Pannus Formation 141

6. Is pannus formation seen in the TAVR valve? 141

7. What are the pathological findings of pannus formation and leaflet endothelialization in TAVR bioprostheses? 141

Leaflet Calcification 142

8. What is the cause of leaflet calcification? 142

9. When is leaflet calcification seen after implantation? 143

10. What are the pathological findings of leaflet calcification? 143

Structural Changes (Non-calcific Structural Valve Deterioration) 145

11. What are the other causes of SVD besides calcification? 145

Durability of Bioprosthetic Valves 146

12. Is the durability of TAVR bioprostheses similar to that of SAVR bioprostheses? 146

13. Is the long-term durability the same in both TAVR and SAVR bioprostheses? 147

Conclusion 147

Bibliography 147

19 Clinical Implications of Valve Thrombosis and Early Thickening

Management of Antiplatelets and Anticoagulation Post TAVI 151

1. What are the risk factors for transcatheter heart valve (THV) thrombosis? 151

2. What is the role of the routine use of anticoagulation post-transcatheter aortic valve implantation (TAVI) in the absence and a concurrent anticoagulation indication (such as atrial fibrillation)? 151

3. For bioprosthetic TAVI patients who do not have other indications for anticoagulation, is it appropriate to use a single antiplatelet agent, or is dual antiplatelet always necessary? 151

4. In the setting of bioprosthetic TAVI, for whom would dual antiplatelet therapy be indicated? 151

5. For bioprosthetic TAVI patients who have a stroke while on antiplatelet therapy, would it be reasonable to start on oral anticoagulation in place of antiplatelet therapy? 152

6. For bioprosthetic TAVI patients who have suspected valve thrombosis and are clinically stable, what would be the initial anticoagulation choice? 152

7. In the setting of bioprosthetic TAVI, what regimen would be indicated for a patient with concurrent atrial fibrillation and a CHA₂DS₂-Vasc Score of 4, but no other indication for antiplatelet therapy? 152

8. In the setting of bioprosthetic TAVI, what regimen would be indicated for a patient with concurrent atrial fibrillation and a CHA₂DS₂-Vasc Score of 4, as well as a recent coronary artery stent? 152

9. Which bioprosthetic TAVI patients should be on concurrent dual antiplatelet therapy as well as anticoagulation (i.e. triple therapy)? 152

10. For bioprosthetic TAVI patients with a concurrent indication for anticoagulation, are DOACs a reasonable alternative to VKAs? 152

11. What are the clinical implications of subclinical valve thrombosis, also called hypoattenuating leaflet thrombosis (HALT)? 152

Bibliography 153

20 TAVR and Stroke 155

Introduction 155

1. Describe the evidence for TAVR. 155

Stroke Following TAVR 156

2. What is the incidence of stroke following TAVR? 156

3. What are the predictors and impact of stroke associated with TAVR? 157

Management of TAVR-Related Stroke 157

4. How can you prevent stroke related to TAVR? 157

5. What is the best way to treat stroke related to TAVR? 158

Conclusions 159

Bibliography 159

21 Current Evidence of Neuroprotection in TAVR 163

Peri-Procedural Stroke 163

1. Is the occurrence of peri-procedural strokes still the Achilles' heel of TAVR? 163

2. What is the underlying mechanism of stroke in TAVR patients? 163

3. What are the consequences of debris embolizing to the brain? 163

The Rationale for Cerebral Embolic Protection Devices 163

4. How many TAVR patients are affected by embolized debris? 163

5. What kind of EPDs are currently available for TAVR? 164

6. Are other technologies in the pipeline? 164

Characteristics of Dislodged Debris 164

7. What kind of debris may embolize toward the brain? 164

8. What is the captured debris size? 165

9. Are there any predicting factors for the dislodgement of debris? 165

10. Who might benefit most from protected TAVR? 165

Clinical Evidence of Neuroprotection In TAVR 165

11. Is there a proven clinical benefit from randomized controlled trials (RCTs) to underpin the systematic use of cerebral embolic protection in TAVR? 165

12. What will the future bring? 167

Bibliography 167

22 Difficult Transfemoral Access for TAVR and Bailout Techniques 169

1. What are the benefits of transfemoral access? 169

2. What is considered "high-risk" vascular anatomy for transfemoral TAVR? 169

3. How common is severe peripheral arterial disease in severe aortic stenosis patients? 169

4. How do you plan for a successful transfemoral TAVR procedure? 170

5. What are the most important technology developments for TF access success? 170

Size and Design of TAVR Delivery Systems 170

Ultrasound-Guided Vascular Access 170

Shockwave Intravascular Lithotripsy 171

How to Approach High-Risk Vascular Anatomies 171

6. How do you approach small vessels? 171

7. Can endovascular pretreatment of iliofemoral atherosclerotic disease be performed? 172

8. How do you approach significant calcific peripheral disease? 172

9. How do you approach severe vascular tortuosity? 172

10. Can TF TAVR be performed in patients with abdominal aortic aneurysms? 173

Bibliography 173

23 Alternative Access for TAVR 175

1. Why is TF access the gold standard for TAVR? 175
2. How are transapical and direct aortic access performed? 175
3. What are the important considerations when selecting transaxillary (TAX) access for TAVR? 176
4. How is TAX TAVR performed? 176
5. What are the advantages and important considerations of transcarotid (TC) access? 177
6. What is the physiology that allows for trans caval (TCV) access and prevents a life-threatening retroperitoneal bleed? 178
7. How is TCV access for TAVR performed? 178
8. How is TCV access closure performed? 179

Conclusion 180

Bibliography 181

24 Vascular Access and Closure Options for TAVR 183

1. What constitutes pre-procedural vascular access evaluation? 183
2. What is the gold standard imaging technique for the anatomic evaluation of arterial access sites before TAVR? 183
3. What is the optimal arterial puncture technique for common femoral artery access? 183
4. What is the best technique for fluoroscopic confirmation of vascular sheath insertion in the common femoral artery? 184
5. What are the technical considerations to obtain optimal carotid and axillary artery access? 184
6. What are the technical considerations to obtain optimal trans caval access, and what techniques are helpful to achieve hemostasis after removal of large-caliber sheaths following trans caval approach? 185
7. What vascular closure devices are currently recommended after transfemoral interventions with large-caliber vascular sheaths? 185
8. What accounts for vascular access-site and access-related complications? 185
9. What is the incidence of vascular access complications? 187
10. What is the most appropriate management of an arterial dissection? 187
11. What is the most appropriate management of an arterial perforation? 187
12. What is the most appropriate management of retroperitoneal bleeding? 187
13. What is the most appropriate management of acute limb ischemia? 187
14. What methods can be used to prevent ischemic limbs when large bore access is occlusive? 188

Bibliography 188

Part II Structural Interventions for the Mitral Valve 191**25 The Natural History of Mitral Valve Disease 193**

Mitral Stenosis 193

1. What are the causes of mitral stenosis (MS)? 193
2. What are the hemodynamic consequences of MS? 193
3. How are the hemodynamics of MS translated into symptoms? 193
4. How are the hemodynamics of MS translated into physical exam findings? 193
5. How is MS diagnosed (imaging and invasive hemodynamics)? 194
6. What are the indications for medical therapy of MS, and what do those therapies consist of? 195
7. What are the indications for mechanical therapy of MS, and what do those therapies consist of? 195
8. What is the prognosis of MS? 195

Mitral Regurgitation	195
9. What are the two major classes of MR? How do they differ in prognosis and therapy?	195
Primary Mitral Regurgitation	196
10. What are the major etiologies of PMR?	196
11. What are the hemodynamics of PMR?	196
12. How are PMR hemodynamics translated into symptoms?	197
13. How are PMR hemodynamics translated into physical signs?	197
14. How is PMR diagnosed (imaging and invasive hemodynamics)?	197
15. What are the indications for medical therapy in PMR, and what do those therapies consist of?	198
16. What are the indications for mechanical therapy of PMR, and what do those therapies consist of? What is the prognosis following treatment?	198
Secondary Mitral Regurgitation	198
17. What are the major etiologies of SMR?	198
18. What are the hemodynamics of SMR?	199
19. What are common myths about the hemodynamics of SMR?	199
20. How are SMR hemodynamics translated into symptoms?	199
21. How are SMR hemodynamics translated into physical signs?	199
22. How is SMR diagnosed (imaging and invasive hemodynamics)?	199
23. What are the indications for medical therapy in SMR, and what do those therapies consist of?	199
24. What are the indications for mechanical therapy of SMR, and what do those therapies consist of?	199
25. What is the prognosis of SMR?	200
Bibliography	200

26 Hemodynamic Assessment of the Mitral Valve 203

Mitral Stenosis	203
1. Why is it important to distinguish between rheumatic and nonrheumatic calcific mitral stenosis?	203
2. What is the pathophysiology leading to the hemodynamic consequences of MS?	203
3. When is it reasonable to consider intervention for MS?	203
4. What are the findings on invasive hemodynamic assessment to suggest severe MS?	203
5. What are the pitfalls of using PCWP as surrogate for LA pressure?	204
6. What can cause an elevated transmural gradient?	204
7. What are the expected hemodynamics before and after PMBV?	205
8. What is a dreaded immediate complication to monitor for during PMBV?	206
Mitral Regurgitation	206
9. What are the common causes of primary and secondary MR?	206
10. What is the difference in pathophysiology leading to the hemodynamic consequences of acute vs. chronic MR?	206
11. What are mimickers that lead to a prominent <i>v</i> wave on PCWP or LA pressure tracings?	206
12. When is it reasonable to consider percutaneous intervention for MR?	206
13. What is the concept of <i>proportionately</i> and <i>disproportionately</i> severe secondary MR?	207
14. Alternatively, what is the difference between atrial and ventricular functional MR (AFMR vs. VFMR)?	207
15. What are the percutaneous MV interventions currently available and under investigation?	208
16. What are the expected hemodynamic changes after the most common percutaneous edge-to-edge repair with MitraClip?	208
Bibliography	208

27 Echocardiographic Assessment Prior to Mitral Valve Edge-to-Edge Repair 211

1. What is edge-to-edge mitral valve repair?	211
2. What is the role of pre-procedural transthoracic echocardiography (TTE) prior to edge-to-edge mitral valve repair?	211

3. How is MR classified? 211
4. Which patients with primary MR would benefit the most from percutaneous edge-to-edge repair? 211
5. Which patients with secondary MR would benefit the most from percutaneous edge-to-edge repair? 211
6. Which are the most important views in the pre-procedural TTE? 212
7. Why is pre-procedure transesophageal echocardiography (TEE) important? 212
8. Which are the most important pre-procedural TEE views to assess for edge-to-edge mitral valve repair? 213
9. What are the applications of 3D pre-procedural TEE for edge-to-edge repair? 213
10. What are the differences between real-time 3D and multi-beat 3D acquisition, and how does this affect edge-to-edge mitral valve repair? 213
11. Does 3D TEE add any information to the quantification of MR? 213
12. From the EVEREST trial, which anatomy is considered suitable? 214
13. Pair the figures with the appropriate measurements: (a) coaptation length, (b) coaptation depth, (c) flail gap, and (d) flail width. 215
14. Which is the appropriate location for transseptal puncture? 215

Bibliography 215

28 Intra-procedural Transesophageal Echocardiography for Mitral Valve Structural Interventions 217

1. Who is “qualified” to perform intra-procedural transesophageal echocardiography (TEE) for structural interventions on the mitral valve (MV)? 217
2. Which structural mitral interventions is TEE most used for? 217
3. What are the major views in 2D TEE used for MV structural interventions? 217
4. Are there any advanced 2D imaging techniques that are useful in guiding structural heart interventions? 218
5. What are the major views in 3D TEE used for MV structural interventions? 219
6. Which 3D imaging modalities are most used in structural mitral interventions? 219

Septal Puncture 220

7. How is TEE used to guide TSP? 220
8. What are the procedural-specific considerations for the echocardiographer during TSP? 220

Edge-to-Edge Repair 220

9. What measurements are commonly made by echocardiography prior to an edge-to-edge repair? 220
10. What are the steps and imaging considerations for edge-to-edge repair? 221
11. What are the unique features of the different generations of MitraClip devices that echocardiographers should be familiar with? 222
12. What are some common “tricks” that can be used to help with leaflet grasp during the clip procedure? 222
13. What are the key complications during MitraClip that echocardiographers need to consider? 222

TMVR 222

14. What is the role of the echocardiographer in TMVR? 222
15. How do echocardiographers assist in sizing a valve during valve-in-valve and native valve TMVR? 223
16. How do echocardiographers aid in valve deployment? 223
17. Which echocardiographic parameters can predict LVOTO in native valve TMVR? 223

Balloon Valvuloplasty 223

18. Are there any special considerations the echocardiographer should be aware of during balloon valvuloplasty? 223
19. What echocardiographic guided procedures are on the horizon? 224
20. What are the health system implications of a growing field of structural heart interventions, as it relates to echocardiography? 224

Paravalvular Leak Closure 225

Bibliography 225

29 Surgical Trials in Mitral Valvular Disease 227

1. Describe the surgical therapy for acute MR. 227
2. Discuss recent publications on mitral valve reconstruction being superior to replacement in chronic structural MR. 227
3. Discuss recent publications about MV replacement having similar and non-inferior results in patients with secondary MR. 228
4. Describe two published randomized trials assessing the outcome of percutaneous MV repair using the MitraClip for therapy of secondary MR. 228
5. What are the surgical indications for MV repair? 228
6. Describe the “double-orifice” surgical repair technique described by Alfieri et al. 228
7. What are the surgical details of performing mitral ring annuloplasty? 229
8. Should you resect the entire leaflet when replacing the valve? 229
9. What is the ideal vascular access for VA extracorporeal membrane oxygenation (ECMO) implantation in patients undergoing mitral clip implantation? 229
10. What are the possible surgical complications during and/or post surgical MV insertion? 229
11. What size of surgical MV prosthesis placement enables later valve-in-valve implantation? 229
12. Is persistent MR a negative predictive factor for patients requiring left ventricular assist device (LVAD) insertion? 229
13. Why should the Heart Team discuss structural cases in detail before the procedure? 230
14. The Heart Team is consulted on a case with persistent atrial septal defect (ASD) and a left-to-right shunt following mitral clip placement. What is the therapeutic intervention? 230

Bibliography 230

30 Surgical Techniques for Mitral Valve Repair 233

1. What are the stages of primary mitral regurgitation (MR)? 233
2. When should patients be considered for surgical repair of their MR? 233
3. Should mitral valves (MVs) be repaired or replaced? What are the advantages? 233
4. What is SAM, and what are the risk factors for developing it? 233
5. What is the best initial step when SAM is identified while coming off cardiopulmonary bypass? 234
6. What should a surgeon do if SAM is still present after initial conservative measures to slow the heart rate and reduce inotropic support? 234
7. Describe standard surgical approaches to the MV 234
8. Which patients should be considered for MitraClip or other transcatheter edge-to-edge repair? 235
9. When should a surgeon consider a MV replacement? What techniques should be used? 235
10. What is a papillary muscle sling, and when may it be of benefit? 235
11. How much MR is acceptable following a mitral repair? 235
12. When is the appropriate time to assess the success of MV repair? 236
13. What are the advantages of a Heart Team and center of excellence? 236

Bibliography 236

31 Structural Interventions for Mitral Stenosis 239

1. What are the current classification criteria for mitral stenosis (MS)? 239
2. What are the current indications and contraindications for percutaneous MV intervention in rheumatic MS? 239
3. What are the predictors of successful/failed PMV? 239
4. What are the techniques for PMV? 240

Mitral Balloon Valvuloplasty 242

5. What are the steps to perform PMV with the Inoue technique? 242

Equipment List 242

Balloon Selection 242

Procedure Detail 242

6. What are the steps to perform PMV with the antegrade double-balloon technique? 244

Balloon Selection	244
Procedure Detail	244
7. What is the follow-up protocol after PMV?	244
8. What are the potential complications of PMV?	244
Hemopericardium	246
Mitral Regurgitation	246
Iatrogenic Interatrial Septal Defect	246
9. What is the role of transcatheter therapy for rheumatic MS in women who are pregnant or contemplating pregnancy?	246
Before Pregnancy	246
During Pregnancy	246
10. What is the role of PMV in patients with aortic regurgitation?	246
11. What is the role of PMV in patients with concomitant severe tricuspid regurgitation?	246
12. Should PMV be attempted in patients with MV calcification?	247
13. Can PMV be done in patients with previous PMV?	247
14. What are the roles of transcatheter intervention in patients with nonrheumatic calcific MS?	247
15. What are the current and future transcatheter therapies for nonrheumatic MS?	247
Transcatheter Mitral Valve Replacement (TMVR) Using Balloon-Expandable Transcatheter Aortic Valves in Mitral Position	247
Future Directions of TMVR in Non-rheumatic MS	248
Bibliography	248

32 Transcatheter Edge-to-Edge Repair Trials

The EVEREST and COAPT Trials 251

Edge-to-Edge Mitral Valve Repair (EVEREST Trials)	251
1. What is the difference between primary and secondary mitral regurgitation?	251
2. What is the basis of edge-to-edge mitral valve (MV) repair?	251
3. What was the purpose of the EVEREST Phase I clinical trial?	251
4. What were the results of EVEREST Phase 1?	251
5. What was the basis of the EVEREST II trial?	253
6. Describe the patient population in EVEREST II	253
7. What were the endpoints for comparison used in EVEREST II?	253
8. What were the results of EVEREST II?	253
9. What are the takeaway messages of EVEREST II?	253
Secondary MR and Transcatheter Repair (COAPT Trial)	253
10. What was the purpose of the COAPT trial?	253
11. Describe the patient population of the COAPT trial.	254
12. What were the endpoints of the COAPT trial?	254
13. What were the results of the COAPT trial?	254
14. What are the takeaway messages from the COAPT trial?	255
15. What are the guidelines for transcatheter MV repair in secondary MR?	255
Bibliography	255

33 Mitral Valve TEER

The MitraClip Procedure 257

Introduction	257
1. What are the anatomical and pathophysiologic considerations of the mitral valve in evaluating patients for TEER?	257
2. What is the difference between primary mitral valve insufficiency related to degenerative mitral valve disease and secondary functional mitral insufficiency?	258

3. What is the Heart Team approach to evaluation for mitral valve therapies? 258
4. What patients are appropriate to consider for surgical mitral valve repair vs. the TEER procedure using the MitraClip device? 259
5. What are the current indications for the TEER procedure using the MitraClip device? 259
6. Are there any absolute contraindications to TEER? 259
7. Aside from the absolute contraindications, what are the relative contraindications to be aware of for TEER? 259
8. Is the presence of a transcatheter atrial septal defect (ASD) occlusion device a contraindication for TEER? 259
9. What are the important aspects and key questions in the pre-procedural imaging during the pre-operative evaluation for TEER? 259
10. In degenerative valve disease including mitral valve prolapse and/or flail mitral valve leaflets, what are the important aspects to assess during the pre-procedural TEE? 260
11. What are the anatomical considerations for percutaneous TEER? 260
12. What are the minimal MVA requirements for TEER? 260
13. What are the important aspects in the assessment of the atrial septum for adequate transseptal access? 260
14. What are the current literature and trial results using TEER for the treatment of degenerative mitral valve insufficiency? 260
15. What are the current data for the treatment of functional mitral valve insufficiency? 261
16. Why do the results from the MITRA-FR and COAPT studies differ so significantly? 261
17. What are the real-world experience and outcomes using the MitraClip for TEER? 262

The MitraClip Device 262

18. What are the components of the MitraClip catheter system? 262
19. What are the differences between the currently available clips? 262
20. Are there any evidence-based recommendations for using the NTR vs. XTR clips? 262

Echocardiographic Imaging 263

21. What is the role of echocardiography and TEE during TEER? 263
22. What are the essential TEE views to obtain during TEER? 263

Procedure 263

23. What are the steps involved in TEER? 263
24. What are the preferred access site and vascular closure approaches during TEER? 263
25. What equipment is necessary for transseptal puncture for TEER? 264
26. What is the procedure for transseptal puncture for TEER? 264
27. What are the optimal TEE views during transseptal puncture? 264
28. What is the optimal positioning for transseptal puncture for TEER? 264
29. How is the delivery system advanced into the LA? 265
30. How is the delivery system advanced into the LA and directed toward the mitral valve leaflets? 265
31. What are the steps for grasping the leaflets with the MitraClip? 266
32. Prior to deployment, how is the MitraClip assessed to ensure adequate position, grasp, and results? 266
33. How do you assess mitral valve stenosis during clip deployment? 266
34. What should you do if the device becomes entrapped in the chordal apparatus during TEER? 266
35. After deployment, how is the adequacy of the edge-to-edge repair assessed? 266
36. If there is residual MR after the initial MitraClip, can additional clips be placed? How does the operator decide when and how to deliver additional clips during TEER? 269

Special Patient Subgroups and Considerations 269

37. Can TEER still be used in patients with complex mitral valve pathology? 269
38. Can TEER still be used in patients with mitral valve and/or mitral annular calcification? 270
39. What are the applications and limitations of TEER in patients with restricted posterior mitral valves, mitral valve clefts, and/or flail mitral valve leaflets? 270

Conclusion 270

Bibliography 270

34 TEER Challenging Anatomy and MitraClip Tips and Tricks 273

Introduction 273

1. What are the Alfieri stitch and transcatheter edge-to-edge repair techniques? 273

2. What is the MitraClip system? 273

MitraClip for the Myxomatous Mitral Valve 273

3. What are the anatomical findings of myxomatous mitral valve disease? 273

4. Where are some key strategies to increase success in TEER treatment of DMD? 274

5. When should an additional clip be placed? 275

MitraClip for Wide Flail Leaflets 276

6. What is considered a wide flail MV prolapse? 276

7. What are the technical considerations when treating wide flail mitral leaflets? 276

Noncentral and Commissural Lesions 276

8. How common is noncentral MR, and can it be treated using TEER? 276

9. Where should the transseptal puncture be positioned for medial mitral regurgitant lesions? 276

10. How is the optimal MitraClip arm angle determined? 277

11. What are the strategies to avoid and deal with entanglement? 277

12. How can vascular plugs and cardiac occluders be used to treat commissural lesions? 277

Calcified Mitral Valve 277

13. Did the EVEREST and COAPT trials include patients with calcification of the MV? 277

14. Is TEER feasible in patients with calcified MV apparatus? 277

Secondary Mitral Regurgitation 278

15. What are the anatomical considerations of secondary MR? 278

16. What are the key strategies to success in treating secondary MR? 278

17. When should an additional clip be placed? 278

Bibliography 279

35 MitraClip Complications

Prevention and Management 281

Introduction 281

1. What is the incidence of vascular complications from the MitraClip procedure? 281

2. How can you prevent vascular complications during the MitraClip procedure? 282

Transseptal Puncture Complications 282

3. What are the complications of a transseptal puncture during the MitraClip procedure? 282

Complications from Device Navigation in the Left Atrium: Air Embolism and Thrombus Formation 283

4. What are the complications of device navigation in the LA? 283

Complications from Leaflet Grasping 284

5. What complications may occur during leaflet grasping? 284

6. What is a single leaflet device attachment? 284

7. How is SLDA treated? 285

8. How is SLDA prevented? 286

9. What is the incidence of MitraClip embolization? 286

10. How can you manage clip embolization? 286

Complications from Device Deployment 286

11. What is the incidence of residual MR after the MitraClip procedure? 286

12. How is residual MR treated? 287

13. What is the incidence of iatrogenic MS after MitraClip implantation? 287

14. What are the complications of elevated mean MV gradients post-MitraClip implantation? 288

15. How can you prevent iatrogenic MS? 288
16. What is the incidence of iatrogenic atrial septal defects post-MitraClip procedure? 288
17. What are the clinical implications of persistent iASD? 288
18. What are the indications for device closure of persistent iASD? 288

Bibliography 289

36 CT Imaging for TMVR 291

1. What are the important components of the mitral valve apparatus that are important to know for TMVR planning? 291
2. What is the role of echocardiography in TMVR? 291
3. What are the advantages of utilizing multi-detector computed tomography (MDCT) in TMVR planning? 292
4. What are the basic CT scanner image acquisition concepts and technical protocols required for obtaining a usable mitral CT? 293
5. How is the TMVR landing zone sized and evaluated? 294
6. What is the neo-LVOT? 294
7. How can neo-LVOT be predicted? 295
8. What factors make neo-LVOT prediction modeling complex? 295
9. Which type of TMVR is at greatest risk of LVOT obstruction: valve-in-valve, valve-in-ring, or valve-in-MAC? 297
10. How can CT imaging estimate the coplanar fluoroscopic angle? 297
11. What are other relevant adjacent structures to consider in CT planning for TMVR? 298
12. What are the important measurements and characteristics to define prior to the transseptal approach for TMVR? 298
13. What are the important measurements and characteristics to define prior to the transapical approach for TMVR? 299
14. What is the role of CT in post-procedural imaging? 299

Conclusion 300

Bibliography 300

37 Transcatheter Mitral Valve Replacement

Transcatheter Mitral Valve-in-Valve (ViV), Valve-in-Ring (ViR), and Valve-in-MAC (ViMAC) 301

1. What is the best way to approach a patient with a failing bioprosthetic mitral valve? 301
2. What are the important anatomic variables on cardiac computerized tomography to consider when evaluating a patient for TMVR suitability? 302
3. What is the best way to approach and evaluate a patient with a failing mitral ring in preparation for a ViR procedure? 302
4. What are the ideal rings in the market for ViR procedures? 303
5. What fluoroscopic landmarks are important for positioning THVs for ViV and ViR procedures? 303
6. What are the available treatment options for severe mitral annular calcification? 303
7. What are favorable characteristics for transcatheter valve anchoring in severe mitral annular calcification? 303
8. What is the ideal location for a transseptal puncture for TMVR? 304
9. What are the indications to close the transseptal septostomy site after TMVR? 304
10. What are the steps taken to perform the procedure? 304
11. What are potential complications associated with TMVR and the solutions to managing them? 304
12. What are the contraindications for ViV or ViR procedures? 305
13. What are the procedural success rates and complications associated with TMVR? 305
14. What factors are responsible for left ventricular outflow tract obstruction (LVOTO) after ViV and ViR? 305
15. What is the anticoagulation/antiplatelet strategy after TMVR? 306
16. What cases are better performed transseptal vs transapical? 307

Conclusion 308

Bibliography 308

38 Transseptal Transcatheter Mitral Valve-in-Value Replacement (TS MViV)**Technical Considerations and Step-by-Step Procedure 311**

1. What are the important pre-procedural considerations in transseptal mitral valve-in-valve replacement? 311
2. What are the important recommendations for patient preparation and the room setting for the TS MViV procedure? 311
3. What steps should be followed for a successful TS MViV procedure? 311
4. What is important for vascular access during TS MViV? 311
5. Should the femoral vein access be pre-closed? 311
6. How do you obtain baseline LVOT hemodynamics during TS MViV? 312
7. How do you perform a safe transseptal puncture at an optimal location for TS MViV? 312
8. When do you insert the Edwards E sheath? 312
9. How do you cross the surgical mitral valve into the LV? 312
10. How do you perform atrial septostomy dilation? 312
11. How do you prepare the transcatheter valve for the TS MViV? 313
12. Should the surgical mitral valve be pre-dilated? 314
13. How do you advance and position the delivery system? 314
14. How do you cross the septum and the mitral valve with the delivery system and THV? 314
15. How do you position and implant the THV during TS MViV? 314
16. What is important in the post-valve deployment assessment? 314
17. When should atrial septostomy closure be considered? 314
18. How do you obtain adequate hemostasis at the vascular access site? 315

Potential Obstacles and Bailout Strategies 315

19. What can be done if the THV is not crossing the septum? 315
20. What can be done if the THV is not crossing the mitral orifice? 315

Bibliography 315

39 Transseptal Systems for TMVR and Transcatheter Devices for Mitral Annuloplasty 317

1. Is there any role for percutaneous treatment of mitral valve disease? 317
2. What are the different transcatheter MV techniques? 317
3. What is transcatheter mitral valve replacement (TMVR), and how does it differ from transcatheter aortic valve replacement (TAVR)? 318
4. What TMVR devices are available? 319
5. What is transcatheter MV repair? 320
6. What is transcatheter MV annuloplasty? 320
7. What are some devices for transcatheter indirect MV annuloplasty? 321
8. What are some devices for transcatheter direct MV annuloplasty? 322
9. What are some other devices for transcatheter MV repair? 323
10. What is the future of transcatheter treatment of MV disease? 323

Bibliography 324

40 Transcatheter Mitral Valve Replacement**The Tendyne System 325**

1. What is the rationale for the Tendyne transcatheter mitral valve replacement system? 325
2. What are the indications and contraindications for considering TMVR with the Tendyne system? 327
3. What are the anatomic variables to consider on pre-operative imaging when evaluating a patient for TMVR using Tendyne? 327
4. What is the approach to Tendyne valve implantation, and what are the unique features? 327
5. What are specific challenges and potential complications of TMVR with the Tendyne system? 328

Conclusions 329

Acknowledgments 329

Bibliography 329

41 Self-Expanding Transcatheter Mitral Valve Replacement Systems**Medtronic Intrepid Valve 331**

1. What are the key features of the Medtronic Intrepid transcatheter mitral valve replacement (TMVR) valve? 331
2. How does the Medtronic Intrepid valve achieve fixation and sealing? 331
3. How does the Medtronic Intrepid valve heal in the heart? 331
4. What are the available delivery systems for the Medtronic Intrepid valve? 332
5. How is the Medtronic Intrepid valve deployed via transapical delivery? 332
6. What has been the experience with the Medtronic Intrepid transapical delivery system? 332
7. What has been the experience with the Medtronic Intrepid transseptal delivery system? 333

Conclusions 334

Bibliography 334

Part III Structural Interventions for the Tricuspid Valve 335**42 Natural History and Hemodynamic Assessment of Tricuspid Valve Diseases 337**

Epidemiology, Natural History, and Prognosis 337

1. How prevalent is tricuspid regurgitation? 337
2. What is the significance of TR? 337

Anatomy 337

3. What are the four components of the tricuspid valve? 337
4. How do we classify TR, and what diseases fall into each category? 337
5. What are the signs and symptoms of TR? 338

Evaluation/Diagnosis 338

6. What are the major imaging modalities used to assess the tricuspid valve? 338
7. What are the advantages of each of these imaging modalities? 338
8. How is the tricuspid valve evaluated with echocardiography? 339
9. What are the characteristics of severe TR? 339

Management 340

10. What are the broad categories of TR management? 340
11. When is surgery considered the preferred option? 340
12. What are the surgical methods for TR management? 340
13. Which patients are considered for TTVI? 340
14. What challenges are associated with TTVI? 340
15. What are the major categories of TTVI? 340

Bibliography 340

43 Indications and Outcomes for Surgical Tricuspid Valve Repair 343

Tricuspid Regurgitation (Tricuspid Valve Insufficiency) 343

1. What are known etiologies associated with TR? 343
2. What is the reported mortality rate for surgical repair of TR? 343
3. Are there better clinical results using transcatheter tricuspid valve intervention (TTVI)? 343
4. Describe a surgical assessment and repair technique to repair a tricuspid valve 344
5. Which transcatheter annuloplasty technique resembles the surgical DeVega and Kay techniques? 345
6. What are some of the most frequently described surgical annuloplasty systems in the literature? 345
7. What is the outcome of TR repair and LVAD implantation in patients not responding to advanced medical heart failure therapy? 345

Bibliography 345

44 Intra-Procedural Imaging of Tricuspid Valve Edge-to-Edge Interventions 347

Introduction 347

1. Is it important to understand the structures adjacent to the tricuspid valve? 348
2. What should the transesophageal imaging protocol be? 348
3. Why is Tricuspid valve imaging challenging? 349
4. What are the steps in TV imaging? 349
5. How is TR graded? 350
6. How should post-procedural imaging be graded? 351

Bibliography 352

45 Transcatheter Tricuspid Valve Device Landscape 353

1. What is the magnitude of tricuspid regurgitation disease and its impact on patient outcomes? 353
2. What is the pathophysiology of TR? 353
3. What are the current medical and surgical recommendations for managing TR? 353
4. What are the main surgical TV repair techniques? 354
5. What are the main challenges associated with transcatheter TV interventions? 354
6. What transcatheter repair and replacement options are available? 354

Leaflet-Directed Therapies 355

Annular-Reshaping Therapies 357

Direct Ring Annuloplasty Therapies 357

Indirect Ring Annuloplasty Therapies 358

Direct Suture Annuloplasty Therapies 358

Heterotopic Caval Valve Implantation (CAVI) 359

Bibliography 359

46 Progress in Transcatheter Tricuspid Valve Repair and Replacement 363

1. Describe the anatomy of the tricuspid valve. 363
2. What are the causes and pathophysiology of tricuspid regurgitation? 363
3. What are the signs and symptoms of TR? 364
4. What are the indications of treatment of TR in the current guidelines? 365
5. What constitutes the pre-procedural planning for tricuspid valve intervention? 365
 - Echocardiography 365
 - Multi-detector Computed Tomography 367
6. What are the indications of transcatheter tricuspid valve replacement? 368
7. What are different types, outcomes, and complications of transcatheter tricuspid valve replacement devices? 370
 - Coaptation Devices 370
 - Suture Annuloplasty Systems 371
 - Ring Annuloplasty Systems 372
 - Heterotopic Devices 373
 - Orthotopic Devices 373
 - Complications 374
 - Future Development of Devices 374
8. What are the limitations of transcatheter tricuspid valve replacement? 374

Bibliography 379

47 Tricuspid Valve-in-Valve and Valve-in-Ring 383

Tricuspid Regurgitation 383

1. How is tricuspid regurgitation classified? 383
2. When should TR be treated? 383

Surgical TV Annuloplasty	383
3. What is the rationale behind TV annuloplasty?	383
4. What are the most common suture-based annuloplasty techniques?	384
5. What are the properties of prosthetic rings?	384
6. What are the outcomes of TV annuloplasty?	384
7. How can the results of TV annuloplasty be predicted?	384
8. What is the role of imaging after a failed surgical TV annuloplasty?	385
9. What information can be obtained from computed tomography?	385
10. How do you manage a failed tricuspid annuloplasty?	385
Transcatheter Tricuspid Valve-in-Ring Procedure	386
11. Can you always perform a TTViR?	386
12. What does the literature say about TTViR procedures?	386
Transcatheter Tricuspid Valve-In-Valve Procedure	387
13. What is the rate of bioprosthetic TV failure?	387
14. What does the literature say about TTViV procedures?	387
Conclusions	387
Bibliography	388

48 Caval Valve Implantation (CAVI) for the Treatment of Severe Tricuspid Regurgitation 391

1. What is the concept behind caval valve implantation (CAVI)?	391
2. What is the initial data to support CAVI as a treatment for TR?	391
3. Who is a candidate for CAVI?	391
4. What information is needed to perform CAVI?	391
5. What are the steps in CAVI?	391
6. What are the current data with CAVI?	392
7. What is the future of CAVI?	393
8. What are the unknowns of CAVI?	393

Bibliography	393
--------------	-----

Part IV Structural Interventions for Management of Paravalvular Leaks 395

49 Aortic Paravalvular Leak Closure

Techniques and Devices for Surgical and Transcatheter Prostheses	397
1. What are the indications for percutaneous aortic paravalvular leak (PVL) closure?	397
2. What are the contraindications for percutaneous aortic PVL closure?	397
3. How do you plan an aortic PVL closure procedure?	397
4. How do you cross the aortic PVL defect?	397
5. What are the techniques to deliver occluder devices?	397
6. How to negotiate an uncrossable defect?	399
7. What are the device choices for aortic PVL closure?	399
8. What are the mechanisms and treatments for post-transcatheter aortic valve replacement (TAVR) PVL?	399
9. What are the specific anatomical challenges to close post-transcatheter aortic valve PVLs?	399
10. What are some tips and tricks while closing post-TAVR PVLs?	399
11. What are the potential complications of aortic PVL closure?	400

Bibliography	400
--------------	-----

50 Mitral Paravalvular Leak: Imaging and Interventional Approaches 403

Imaging	403
Echocardiography	403
1. What imaging modality should be considered first with suspicion of mitral PVL following repair?	403

2. What are the limitations of TTE in assessing mitral PVL? What are adjunctive quantitative measures used to ascertain mitral PVL? 403
3. What is the next study considered after screening TTE for better visualization of the MV? 403
4. What nomenclature is used to anatomically define the PVL location? Where are severe mitral PVLs most often found? 404
5. What echocardiographic parameters exist for grading the severity of mitral PVLs? 404
6. What role does 3D TEE play in evaluating mitral PVLs? 406
7. What role does cardiac MRI play in evaluating mitral PVLs? 406
8. What role does cardiac CT play in evaluating mitral PVLs? What are some of its limitations? 407
9. What are the potential benefits of using intracardiac echocardiography in percutaneous leak closure? 407
10. What combination imaging modalities are useful when evaluating and intervening in mitral PVLs? 408

Transcatheter Closure of Mitral PVLs 408

11. What is the most common approach to mitral PVL closure? 408
 - Anterograde Transseptal Approach 408
 - Transseptal Puncture 408
12. Describe the approach an interventionalist should take with transseptal puncture. How does this change with (a) posterior defects, (b) anterior defects, and (c) medial defects? 408
13. In what position should the fluoroscopic gantries be oriented for transseptal puncture? What techniques or equipment should be considered when performing transseptal puncture? 409
14. Describe the retrograde transapical approach to mitral PVL closure 410
15. Describe the retrograde femoral approach to mitral PVL closure 411
 - Retrograde Femoral Approach 411
 - Hybrid Anterograde-Retrograde Approach 411

Defect Crossing and Telescoping Catheters 411

16. Describe the steps required to cross a mitral PVL 411
17. Describe the concept of telescoping catheters for mitral PVL closure 412

Device Selection 412

18. What are common devices used for mitral PVL closure? 412

Device Deployment 413

19. What technique should be used for single-device deployment? 413
20. What techniques should be considered with multiple-device deployment? 413
 - Simultaneous Deployment Technique (Double Wire) 413
 - Sequential Deployment Technique (Anchor Wire) 413

21. What technique can be used to increase stability for catheter passage across a serpiginous defect that is difficult to cross? 413
 - Sequential Deployment Technique Using Arteriovenous or Transapical Rail 413

Conclusion 413

Bibliography 414

Part V Left Atrial Appendage Closure 415

51 Current Indications for Percutaneous Left Atrial Appendage Occlusion 417

1. Is there a rationale for left atrial appendage occlusion (LAAO)? 417
2. Left atrial appendage occlusion: why percutaneous? 418
3. What is the level of evidence supporting percutaneous LAAO? 418

RCTs for Percutaneous LAAO 418

Registries for Percutaneous Left Atrial Occlusion 418

4. What are the current US society recommendations for percutaneous LAAO? 420
5. Are there additional considerations related to LAAO? 420

Bibliography 421

52 Imaging for LAA Interventions 425

Cardiac CT Pre-procedural Planning 425

1. What are the main objectives of pre-procedural cardiac tomography in left atrium appendage occlusion? 425
2. How should the patient be prepared before CT? 425
3. What is the technical protocol for imaging acquisition? 425
4. Explain how to exclude the presence of thrombus in the LAA with CT 426
5. How is anatomic feasibility of LAAO assessed by CT? 426

TEE Pre-procedural Planning 427

6. What is the role of transthoracic echocardiography (TTE) before LAA closure procedure? 427
7. What are the objectives of TEE in pre-procedural planning for LAAO? 427
8. How should the measurements of the LAA be performed during pre-procedural TEE? 427
9. What is the advantage of using 3D TEE compared with 2D TEE? 427
10. Apart from LAA sizing, what other information is relevant during pre-procedural planning with TEE? 427
11. Which imaging technique is preferred for pre-procedural planning for LAAO? 427

Intra-procedural TEE and ICE Guided Intervention 428

12. Which imaging modalities can be used for intra-procedural guidance in LAA closure? 428
13. What are the main objectives of intra-procedural TEE during LAAO? 428
14. What are the best perspectives for each of the steps of the procedure? 429
15. Explain how transseptal puncture is guided with TEE 429
16. When is the device considered to be correctly placed within the LAA? 430
17. When intracardiac echocardiography is used to guide TEE, where should the probe be placed? 430
18. What are the advantages of double transseptal puncture for ICE probe transseptal crossing? 431
19. Is ICE a safe and effective alternative to TEE for intra-procedural LAAO guidance? 431

Bibliography 431

53 Devices for Left Atrial Appendage Closure 433

1. LAA occlusion: does one device fit all? 433
2. What are the main differences among LAA occlusion device designs? 433
3. What are the characteristic of the WATCHMAN FLX device? 434
4. What are the characteristics of the Amulet device? 435
5. What are the characteristic of the LAmbre device? 436
6. Lobe and disc vs. plug: is one approach superior to the other? 436
7. What is in the pipeline? 437

Bibliography 438

54 LAA Occlusion Technique and Challenging Scenarios 441

1. What are the main prerequisites for left atrial appendage occlusion (LAAO)? 441
2. What are the main imaging techniques employed to guide LAAO? 441
3. What are the mains steps of LAAO? 441
4. What features of femoral venous access are most relevant for LAAO? 441
5. What are the keys steps for TSP? 441
6. Can LAAO be performed through a patent foramen oval (PFO) or atrial septum defect (ASD)? 443
7. What steps are required to position the delivery system at the LAA? 443
8. How is device sizing performed? 443
9. What are the anatomical landmarks for LAAO device implantation? 444

Device Deployment 444

10. What specific considerations must be taken into account with each dedicated LAAO device? 444

WATCHMAN FLX 444

Amulet 445

LAmbre 446

Ultraseal 446
11. What are the main steps to perform a “sandwich technique”? 446
12. What other LAA anatomies can pose a challenge for LAAO? 447
13. Can LAAO be performed in the presence of LAA thrombus? 447
References 447

55 Preventing and Managing Complications of LAA Closure 449

1. What is the relevance of this topic? 449
Pericardial Effusion (PE) 449
2. What is the current incidence of PE? 449
3. What are the causes of PE, and how can they be prevented? 449
4. How do you manage a LAAC-related PE? 450
Device Embolization 450
5. What is the current incidence of device embolization (DE)? 450
6. What are the causes of DE, and how can it be prevented? 450
7. What can be clinical manifestations of DE? 450
8. How can you perform a device retrieval? 450
Air Embolism (AE) 451
9. What are the manifestations of AE? 451
10. What are the causes of AE, and how can it be prevented? 451
11. How do you treat AE? 451
Periprocedural Ischemic Stroke 451
12. What is the current incidence of periprocedural ischemic stroke (PIS)? 451
13. What are the causes of PIS, and how can it be prevented? 451
Complications Related to Vascular Access 452
14. What are the complications related to access, and how can they be prevented? 452
Peri-device Leaks (PDLs) 452
15. What are the clinical relevance and incidence of PDLs? 452
16. What are the related factors or mechanisms? 452
17. What are the treatment options for PDL? 452
Device-Related Thrombus (DRT) 452
18. What are the incidence and clinical relevance of DRT? 452
19. What factors predispose patients to DRT, and how can it be prevented? 452
20. How do you diagnose DRTs? 453
21. How do you treat DRTs? 453
22. What other complications have been described? 454
Bibliography 454

Part VI Selected Structural Interventions for Cardiomyopathies 457

56 The Natural History of Hypertrophic Cardiomyopathy 459

1. What is hypertrophic cardiomyopathy? 459
2. What is the prevalence of HCM? 459
3. Is left ventricular outflow tract obstruction a common occurrence in patients with HCM? 459
4. What is the prognosis of an individual with HCM? 459
5. Are there predictors of sudden cardiac death? 459
6. How is a diagnosis of HCM made? 459
7. Is genetic testing helpful? 460

8. Are there multiple HCM-related genes? 460
9. Are all individuals with HCM affected similarly? 460
10. What kind of symptoms does HCM cause? 460
11. Are there measures that should be undertaken in all individuals with HCM, even those with no symptoms? 460
12. What treatment is available for individuals with symptoms? 460
13. What medical therapy is recommended? 460
14. Does medical therapy “cure” the problem of HCM? 461
15. What is alcohol septal ablation? 461
16. What is septal myectomy? 461
17. What is permanent pacing, and how is it helpful to the symptomatic HCM patient? 461

Bibliography 461

57 Alcohol Septal Ablation in Hypertrophic Cardiomyopathy 463

1. In the group of patients with hypertrophic cardiomyopathy (HCM) who fail medical therapy, what proportion are candidates for alcohol septal ablation? 463
2. Are there patients with drug-refractory obstructive HCM who are not excellent candidates for alcohol ablation? 463
3. What specific baseline conduction system abnormalities are a problem, and why? 463
4. Are there other conduction system abnormalities that are caused by alcohol septal ablation? 463
5. What is the time interval for which patients who developed procedural-related conduction system abnormalities must be observed to avoid unnecessary permanent pacemaker insertion? 463
6. Did the European group reporting AV block with alcohol ablation have a recommendation regarding the length of time patients should be observed before inserting a permanent pacemaker? 464
7. Are there strategies that may reduce the rate of occurrence of AV block? 464
8. What complications can be expected in patients undergoing alcohol septal ablation? 464
9. Subsequently, have long-term studies been reported? 464
10. What is the first step that the operator takes in performing alcohol ablation? 464
11. Does this arterial branch always originate from the LAD? 464
12. Must the septal artery selected for alcohol ablation be of a certain size? 464
13. How does the operator confirm that the septal artery selected is the correct one? 464
14. Describe how the proper size of the balloon catheter is determined. 465
15. What is the consequence of alcohol being injected into the LAD? 465
16. Is the usual contrast media suitable for alcohol septal ablation? 465
17. How does the operator determine when the procedure has been successful and should be terminated? 465
18. Is reduction of LVOT pressure gradient to <20 mm Hg a reliable indicator of a “successful” alcohol ablation procedure? 466

Bibliography 466

58 Transcatheter Edge-to-Edge Repair for Hypertrophic Cardiomyopathy 467

1. Why is the mitral valve important in hypertrophic cardiomyopathy? 467
2. Are mitral valve abnormalities in HCM a primary or secondary phenomenon, or is there primary mitral valve pathology? 467
3. What are the options for treatment of patients with HCM who fail medical therapy? 467
4. Is percutaneous mitral valve repair with the MitraClip an option in HCM? 468
5. What are the potential benefits of percutaneous mitral valve repair compared to traditional techniques used in HCM? 468
6. What are the technical considerations if the MitraClip is selected as therapy for HCM? 469
7. What are future venues for the percutaneous treatment and repair of the mitral valve with the MitraClip or other technologies in HCM? 470

Bibliography 470

59 Interatrial Shunt Creation 471

1. What is the rationale for the creation of interatrial shunts? 471
2. Which populations may benefit from interatrial shunt devices? 471
3. How is net shunt volume quantified? 471
4. What is the role of shunt creation via atrial septostomy for patients with refractory cardiogenic shock? 471
5. What are the principal steps in performing bedside AS? 471
6. What are the primary interatrial shunt devices currently under investigation? 472
7. Outline the steps involved in atrial shunt device implantation 472
8. Do interatrial shunt devices increase PA pressure and the risk of RV overload? 472
9. What are other long-term concerns with interatrial shunt devices? 472
10. What is the recommended antithrombotic therapy after implantation? 473
11. What are shunt devices that do not create an ASD? 473

Bibliography 473

Part VII Selected Adult Congenital Structural Interventions 475**60 Shunt Hemodynamics and Calculations 477**

1. What is a shunt, and how do we classify shunts? 477
2. What is a diagnostic shunt study? 477
3. During a routine left- or right-heart catheterization, what should prompt an interventional cardiologist to look for an intracardiac shunt? 478
4. Does it matter if the patient is on oxygen while doing a diagnostic shunt study in the catheterization laboratory? 478
5. What are the basic principles and equations required for shunt hemodynamics calculation? 479
6. How does right-heart catheterization (RHC) data help in the decision-making for ASD closure? 479
7. What are the criteria for a significant step up to diagnose a left-to-right shunt (assuming $Q_s = 3L/min/m^2$)? 480
8. What are the criteria for a significant step up to diagnose a right-to-left shunt, and how do you localize it? 480
9. What is a bidirectional shunt, and how do you calculate it? 481
10. What are the implications of peripheral AV shunts like an AV fistula (AVF) for dialysis access? 482
11. How can you differentiate between high-output heart failure and other types of heart failure? 482
12. What is Nicoladoni-Branham sign? 482

Bibliography 482

61 Persistent Foramen Ovale Closure**Technical Considerations 485****Devices and Techniques 485**

1. What is the rationale behind the closure of a patent foramen ovale (PFO)? 485
2. What devices are available in the United States for the closure of PFOs? 485
3. What is the appropriate technique for crossing the PFO? 486
4. Are there differences in technique for PFO closure between both approved devices? 486
5. What is the technique for device retrieval? 488
6. What is the goal of anticoagulation throughout the procedure? 488
7. How do you size the device? 488
8. How should multiple shunts associated with a PFO be approached? 488
9. Should the device size be modified in the presence of an atrial septal aneurysm? 489
10. Should transseptal puncture be considered when negotiating difficult anatomies? 489
11. Are there special considerations when closing a PFO associated with a lipomatous atrial septum? 489
12. Can the PFO closure be performed in the presence of an inferior vena cava (IVC) filter? 489
13. Can the procedure be performed from other access sites if the femoral access cannot be used? 489

Complication Prevention and Management 489
14. Are there complications related to device preparation? 489
15. How should you manage a device migration? 490
16. What types of complications can you encounter when treating a PFO in association with multiple atrial septal defects? 490
17. How can device thrombosis be prevented? 490
18. Are there any electrical complications from PFO closure? 490
Bibliography 490

62 Atrial Septal Defects Closure 493

1. What are the indications to close an atrial septal defect (ASD)? 493
2. What are the contraindications to close ASD? 493
3. What kind of occluding devices are there? 493
Self-Centering Devices 493
Non-self-Centering Devices 494
4. What imaging tests should be done before the procedure? 494
5. What are the steps in a conventional procedure? 495
6. What can you do if you cannot get a proper device orientation in relation to the IAS? 496
7. What should you do when there is more than one defect? 497
8. What should you do when the device embolizes? When should you try to remove it percutaneously, and when should you send the patient to the operating room? 497
9. What late complications may occur? 498
Bibliography 498

63 Ventricular Septal Defects Closure 499

Muscular VSDs 499
1. What muscular ventricular septal defects (MVSD) patients should you think about closing percutaneously? 499
2. What are the contraindications for percutaneous closure of MVSDs? 499
3. What devices are available? 499
4. What are the steps during the procedure? 500
5. What are the possible complications of percutaneous closure of MVSDs? 501
Perimembranous VSDs (PMVSDs) 501
6. In which patients is percutaneous closure of PMVSDs indicated? 501
7. What types of devices can be used to close PMVSDs? 502
8. What are the steps of the procedure? 502
9. What complications may occur in the closure of PMVSDs? 503
Bibliography 503

64 Percutaneous Treatment of Aortic Coarctation 505

1. What is coarctation of the aorta? 505
2. What other conditions is coarctation of the aorta associated with? 505
3. What is the clinical presentation? 505
4. What diagnostic imaging is recommended? 505
5. What are the types of transcatheter interventions in a patient with coarctation? 506
6. How is balloon angioplasty performed? 508
7. Should a low-pressure balloon or high-pressure balloon be used? 509
8. How is stent implantation performed? 509
9. Should a bare-metal or covered stent be used? 511
10. What are the most common complications? 512

- 11. What is the follow-up for patients who undergo percutaneous intervention? 512
- 12. What are the short- and long-term results? 513
- Conclusion 513
- Bibliography 513

65 Percutaneous Pulmonary Valve Replacement (PPVR) 515

- 1. In what anatomical settings can we perform percutaneous pulmonic valve replacement (PPVR)? 515
- 2. When is PPVR indicated? 516
- 3. What diagnostic tests should be performed before doing the PPRV? 516
- 4. What kind of valves are available? 516
- 5. How is the procedure performed? 517
- 6. What technical differences do you have to consider depending on the type of dysfunctional RVOT? 519
- PPVR in Dysfunctional Prosthetic Conduits 519
- PPVR in Dysfunctional Native RVOT 519
- PPVR in Dysfunctional Biological Valves 519
- 7. What do you do if you cannot advance the prosthesis to the implant area? 519
- 8. What complications are associated with the procedure? 520
- 9. What is the result of PPVR during follow-up? 520
- 10. What technical innovations in PPVR are available in clinical practice? 520
- Bibliography 522

Part VIII Miscellaneous 523

66 Hemodynamic Pearls in Adult Structural Heart Disease 525

- Hemodynamic Assessment of the Aortic Valve 525
- 1. When is an invasive hemodynamic assessment required? 525
- 2. How do you calculate the aortic valve area using invasive hemodynamics? 525
- 3. Does the Hakki formula accurately estimate the valve area when compared to the more complex Gorlin formula? 525
- 4. How do you accurately measure cardiac output? 525
- 5. How do you appropriately measure the transvalvular gradient? 526
- 6. How do you assess the transvalvular aortic valve gradient in atrial fibrillation? 526
- 7. Can a single-catheter pullback from the LV into the aorta be used to assess the transvalvular gradient? 526
- 8. Can the left ventricular and femoral pressures be used to evaluate the gradient? 526
- 9. How can you use the pressure waveforms to better understand the degree of aortic valve stenosis? 527
- 10. What other features suggest that the pressure gradient is due to a static or dynamic obstruction? 527
- 11. What is low-flow, low-gradient AS? 527
- 12. How do you differentiate true low-flow AS from pseudo-AS or a severe cardiomyopathy without contractile reserve? 528
- 13. How does hypertension affect the invasive hemodynamic assessment of AS? 528
- 14. What are the expected hemodynamic changes that occur post-transcatheter aortic valve replacement? 529
- 15. What hemodynamic findings are concerning post-TAVR? 529
- Hemodynamics of the Mitral Valve 529
- 16. What are the main hemodynamic principles of the left atrium (LA)? 529
- 17. How do you adequately evaluate the pressure across the mitral valve (MV)? 530
- 18. Can you use the pulmonary capillary wedge pressure (PCWP) to measure the left atrial pressure and transmitral gradient? 530
- 19. How do you correct the phase lag between the LV pressure tracing and PCWP tracing? 530

Mitral Stenosis 530
20. When should you do invasive hemodynamic measurements for MS? 530
21. What invasive hemodynamic findings are suggestive of severe MS? 531
22. How are the hemodynamics affected in patients with atrial fibrillation? 531
23. What is considered a successful percutaneous mitral balloon valvuloplasty (PMBV) via hemodynamic measurements? 531
24. How can you detect worsening MR during the procedure if you cannot get an adequate echocardiographic assessment? 531
Mitral Regurgitation 531
25. How can you differentiate between acute and chronic MR? 531
26. What else can cause an elevated v wave on PCWP or LA pressure tracings? 531
27. How does atrial fibrillation affect the hemodynamics of MR? 531
28. How does the MitraClip affect LA pressure, and should continuous pressure measurement be used? 532
Hypertrophic Cardiomyopathy and Septal Ablation 532
29. What is the adequate way to measure gradient in patients with left ventricular outflow tract (LVOT) obstruction? 532
30. The gradient of LVOT obstruction remains <50 mmHg at rest. What should you do next? 532
31. How does atrial fibrillation affect the gradient in hypertrophic cardiomyopathy? 532
32. How do you determine success after alcohol septal ablation? 532
33. There was intra-procedural relief of obstruction after septal ablation, but the echocardiogram two days post-procedure showed an increase in the LVOT gradient. Does this mean the procedure was a failure? 532
Bibliography 533

67 Percutaneous Closure of Coronary Artery Fistulas 535

1. What is the incidence of coronary artery fistulas? 535
2. Describe how coronary artery fistulas are currently classified 535
3. What is the coronary steal phenomenon? 535
4. What diagnostic modalities are used in establishing the diagnosis of CAF? 535
5. Describe the clinical presentation of hemodynamically significant CAFs 536
6. What are the indications and contraindications for device closure of a CAF? 536
7. Describe the devices currently available for occlusion of CAF 536
8. Describe the technical principles for device occlusion of CAFs: surgical vs. percutaneous approach 536
9. Describe the technical principles for device occlusion of CAFs: retrograde arterial vs. antegrade venous approach 537
10. What are the results of device closure of CAFs? 537
11. What other coronary problems involving a steal flow phenomenon can be treated using these occlusion devices? 537

Bibliography 538

68 Renal Denervation Therapy

[Available Evidence, Catheters, and Techniques 541](#)

1. What is renal denervation? 541
2. What did first-generation trials on RDN show? 541
3. What did second-generation trials on RDN show? 541
4. What are other RDN ablation systems? 542

RDN Procedure: Technique and Steps 544

5. Describe the use of antiplatelet therapy and anticoagulation 544
6. What is the preferred vascular access? 544
7. How do you engage the renal artery? 544

8. Should you use vasodilators before RDN? 544
9. What additional medication may be needed? 544
10. How do you deliver the RDN catheter? 544
11. How do you deliver the RDN therapy? 544
12. What are some of the potential complications of RF RDN? 545

Bibliography 545

69 Acute Pulmonary Embolism Interventions: Data and Indications 547

1. How do you risk-stratify patients with acute pulmonary embolism? 547
2. Is anticoagulation alone enough for patients with high-risk submassive PE? 547
3. What is the role of catheter-directed thrombolysis in submassive PE? 548
4. Does CDL-US improve outcomes compared to standard CDL? 548
5. What is the role of mechanical thrombectomy in patients with submassive PE? 550
6. What is the role of catheter-directed therapy in massive PE? 550
7. What is the role of PE response teams in the interventional management of patients with acute PE? 551

Bibliography 551

70 Acute Pulmonary Embolism Intervention: Devices and Techniques 553

1. What devices are currently available to treat acute pulmonary embolism? 553
2. How do you choose between the different treatment options? 554
3. Is acute PE treatment similar to chronic PE treatment? 554
4. How safe is the interventional treatment of acute PE? 555
5. What patient and what artery do you treat? 555
6. What is the most efficient technique for catheter placement for directed thrombolysis? 555
7. How long do you infuse TPA? 556
8. What are the safe techniques to perform large-bore aspiration? 556
9. What are the endpoints for percutaneous thrombectomy? 557
10. How do you manage hemodynamically unstable patients? 557
11. How do you manage thrombus in transit? 558
12. How do you manage anticoagulation around treatment? 558
13. What outpatient follow-up is needed? 558

Bibliography 559

71 Transseptal Puncture Technique in the ERA of Structural Heart Disease 561

Introduction 561

1. What constitutes the fossa ovalis and the interatrial septum? 561
2. What are the current indications for accessing the left atrium 561
3. Why is it relevant to access specific locations of the interatrial septum? 562
4. What are the typical site-specific locations for the most common procedures requiring transseptal puncture? 562
5. How is a site-specific transseptal puncture performed? 562
6. What transseptal needles are commercially available? 564
7. What recent advances in imaging can assist with transseptal puncture? 565
8. What are the most common complications associated with transseptal puncture? 565
9. What is the stitch puncture complication? 566
10. Is it always required to close the interatrial communication after every transseptal procedure? 566
11. Is it feasible to cross the interatrial septum in the presence of a percutaneous septal occluder (PFO/ASD)? 566

Bibliography 566

72 ECMO for Structural Interventions 567

1. What is the ideal access strategy to initiate VA-ECMO in TAVR patients? 567

2. What is the anticoagulation goal following VA-ECMO insertion and initiation? 567
3. What VA-ECMO flow goal should be maintained in adult patients? 568
4. Following VA-ECMO insertion, is flow >5.5 liters/min indicated in adult patients? 568
5. Following balloon aortic valvuloplasty (BAV), the patient goes into extensive cardiogenic shock and requires CPR. How high should VA-ECMO flows be maintained? 568
6. Will emergency sternotomy and open cardiac massage improve survival in case of cardiac arrest? 568
7. What is the preferred cannula size used for peripheral ECMO cannulation in CPR patients (ECPR)? 568
8. What can be done in emergency situations during TAVR when no arterial access is easily available? 568
9. What is the inotropic management following VA-ECMO insertion? 569
10. A TAVR patient with patent foramen ovale (PFO) presents with low cardiac output and hypoxia. What should be done? 570

Bibliography 570

73 Best Practices for Mechanical Circulatory Support with Impella for Acute Myocardial Infarction Cardiogenic Shock and Selected Structural Interventions 571

1. What is the historical background of acute myocardial infarction shock intervention? 571
2. What hemodynamic variables help diagnose and optimize the treatment of cardiogenic shock? 572
3. What types of Impella devices are available for mechanical circulatory support? 573
4. What are the hemodynamic benefits of Impella devices? 573
5. What are the invasive hemodynamic variables to identify right ventricular cardiogenic shock? 574
6. How is cardiogenic shock with right ventricular infarction and failure clinically managed? 575
7. Is mechanical circulatory support an option for cardiogenic shock related to right ventricular failure? 575
8. What is the role of right-heart catheterization in the management of cardiogenic shock? 576
9. What is the optimal approach for a cardiogenic shock patient in the emergency room? 577
10. What is the optimal approach for a cardiogenic shock patient in the cardiac catheterization laboratory? 577
11. What is the optimal approach for a cardiogenic shock patient in the ICU? 577
12. What is the survival of cardiogenic shock? 577
13. What is the impact on survival of vasopressors for cardiogenic shock? 579
14. Describe the National Cardiogenic Shock Initiative. 580
15. What is the role of multivessel PCI in cardiogenic shock? 580
16. What is the SCAI classification of cardiogenic shock? 581
17. What is the role of the Impella during aortic balloon valvuloplasty? 581
18. What is the utility of the Impella in transcatheter aortic valve replacement (TAVR)? 581
19. What is the utility of the Impella in transcatheter edge-to-edge mitral valve repair (TEER)? 582

Bibliography 582

74 Transcatheter Interventions for Aortic Valve Insufficiency in Patients with Left Ventricular Assist Devices 585

1. Describe LVADs and the current devices encountered in clinical practice 585
2. What is the underlying mechanism for AI in patients with LVAD, and how often is it seen? 585
3. Is post-LVAD AI preventable? 586
4. What interventions are available for LVAD-related AI? 586
5. Which percutaneous interventions are available? 586
6. What technical considerations are important and differ from non-LVAD TAVR? 587

Bibliography 588

Index 589