

HANSER

Sample Pages

Injection Mold Design Engineering

David O. Kazmer

ISBN (Book): 978-1-56990-891-4

ISBN (E-Book): 978-1-56990-892-1

For further information and order see

www.hanserpublications.com (in the Americas)

www.hanser-fachbuch.de (outside the Americas)

Preface

This 3rd edition of *Injection Mold Design Engineering* reflects changes to address the growing adoption of additive manufacturing and information technologies in order to increase the flow and value of molded products. My intent is to provide a practical yet reasoned approach to the implementation of these new technologies.

This edition seeks to provide guidance on when and how to use additive manufacturing relative to traditional mold design, mold making, and injection molding. While some plastic part designs will transition to additive manufacturing processes for production purposes, injection molding is much more environmentally sustainable as evidenced by much lower materials, processing, energy, and labor costs. As such, a core strategy is the use of additive manufacturing for production of mold inserts to reduce cost and improve performance of production injection molds. Additive manufacturing already enables conformal cooling but we are likely to see even broader adoption with some of the new designs and supporting guidance provided in this edition.

In this post-Covid era, the increasing interest in information technology and the “metaverse” is indicative of the need for engineered mold designs that (i) are developed in a structured manner with a minimum of physical exchanges and engineering revisions, and (ii) provide high-fidelity information that supports the mold design engineering and ongoing mold use with single part tracking of each molding cycle. For these reasons, this edition addresses the use of 3D injection molding simulations throughout the mold design process. New content is also provided about the selection and use of in-mold instrumentation and synthetic data with Industry 4.0. There is little doubt that the use of such instrumentation will provide significant value and provide a means for improved molding performance and competitive differentiation.

I wish you all well and thank you for all your support across the years. Most importantly, I want to thank my wife Nancy and daughters Laura, Julia, Elizabeth, and Catherine for all their patience and love. I am amazed and grateful for all of life's wonders.

Sincerely,

David Kazmer, P.E., Ph.D.

Professor and Past Chair, Department of Plastics Engineering

University of Massachusetts Lowell

July 2022

Contents

Preface	V
Nomenclature	XIX
1 Introduction	1
1.1 Overview of the Injection Molding Process	1
1.2 Mold Functions	4
1.3 Mold Structures	6
1.3.1 External View of Mold	6
1.3.2 View of Mold during Part Ejection	8
1.3.3 Mold Cross-Section and Function	9
1.4 Other Common Mold Types	12
1.4.1 Three-Plate, Multicavity Family Mold	12
1.4.2 Hot Runner, Multigated, Single-Cavity Mold	14
1.4.3 Comparison	16
1.5 The Mold Development Process	16
1.6 Mold Standards	18
1.7 Chapter Review	21
2 Plastic Part Design	23
2.1 The Product Development Process	23
2.1.1 Product Definition	24
2.1.2 Product Design	25
2.1.3 Development	25
2.1.4 Scale-Up and Launch	27
2.1.5 Role of Mold Design in Manufacturing Strategy	27

2.2	Prototyping Strategy	28
2.2.1	3D Printing by Material Extrusion (Fused Deposition Modeling) ..	32
2.2.2	3D Printing by Selective Laser Sintering	33
2.2.3	3D Printing by Stereolithography, Digital Light Processing, and Continuous Liquid Interface Production	34
2.2.4	3D Printing by PolyJet and Multi Jet Fusion	37
2.3	Design Requirements	40
2.3.1	Application Engineering Information	41
2.3.2	Computer-Aided Engineering (CAE)	41
2.3.3	Production Planning	42
2.3.4	End-Use Requirements	43
2.3.5	Design for Manufacturing and Assembly	45
2.3.6	Plastic Material Properties	46
2.4	Design for Injection Molding	46
2.4.1	Uniform Wall Thickness	46
2.4.2	Rib Design	48
2.4.3	Boss Design	49
2.4.4	Corner Design	50
2.4.5	Surface Finish and Textures	51
2.4.6	Draft	53
2.4.7	Undercuts	54
2.5	Sustainability	57
2.6	Chapter Review	57
3	Mold Procurement	61
3.1	Overview	61
3.2	The Procurement Process	63
3.3	Molded Part Cost Estimation	65
3.3.1	Mold Cost per Part	67
3.3.2	Material Cost per Part	69
3.3.3	Processing Cost per Part	70
3.3.4	Defect Cost per Part	72
3.4	Mold Cost Estimation	73
3.4.1	Mold Base Cost Estimation	74
3.4.2	Cavity Cost Estimation	76

3.4.2.1	Insert Cost Estimation	76
3.4.2.2	Inserts Discount Factor	77
3.4.2.3	Insert Cost Machining Factors	78
3.4.2.4	Insert Cost Finishing Factors	79
3.4.3	Mold Customization	81
3.5	Rapid and Additive Manufacturing	86
3.5.1	Common Additively Manufactured Materials	87
3.5.2	Additive Manufacturing Process Performance Metrics	89
3.5.3	Design for Additive Manufacturing Guidelines	91
3.5.4	Preferred Workflow and File Formats	98
3.6	Mold Selection by Breakeven Analysis	99
3.7	Chapter Review	102
4	Mold Layout Design	107
4.1	Parting Plane Design	107
4.1.1	Determine Mold Opening Direction	108
4.1.2	Determine Parting Line	111
4.1.3	Parting Plane	112
4.1.4	Shut-Offs	114
4.2	Cavity and Core Insert Creation	115
4.2.1	Height Dimension	115
4.2.2	Length and Width Dimensions	116
4.2.3	Adjustments	117
4.3	Mold Base Selection	119
4.3.1	Cavity Layouts	119
4.3.2	Mold Base Sizing	121
4.3.3	Molding Machine Compatibility	123
4.3.4	Mold Base Suppliers	124
4.4	Material Selection	126
4.4.1	Strength vs. Heat Transfer	127
4.4.2	Hardness vs. Machinability	128
4.4.3	Material Summary	130
4.4.4	Surface Treatments	131
4.5	Chapter Review	133

5	Cavity Filling Analysis and Design	137
5.1	Overview	137
5.2	Objectives in Cavity Filling	138
5.2.1	Complete Filling of Mold Cavities	138
5.2.2	Avoid Uneven Filling or Over-Packing	139
5.2.3	Control the Melt Flow	140
5.3	Viscous Flow	140
5.3.1	Shear Stress, Shear Rate, and Viscosity	140
5.3.2	Pressure Drop	141
5.3.3	Rheological Behavior	143
5.3.4	Newtonian Model	145
5.3.5	Power Law Model	147
5.4	Cavity Filling Analyses and Designs	149
5.4.1	Estimating the Processing Conditions	149
5.4.2	Estimating the Filling Pressure and Minimum Wall Thickness	152
5.4.3	Estimating Clamp Tonnage	155
5.4.4	Predicting Filling Patterns	157
5.4.5	Designing Flow Leaders	160
5.5	Process Simulation	163
5.5.1	Simulation Pre-Processing	163
5.5.2	Simulation Post-Processing	166
5.5.3	Discussion	169
5.6	Chapter Review	171
6	Feed System Design	175
6.1	Overview	175
6.2	Objectives in Feed System Design	175
6.2.1	Conveying the Polymer Melt from Machine to Cavities	175
6.2.2	Impose Minimal Pressure Drop	176
6.2.3	Consume Minimal Material	177
6.2.4	Control Flow Rates	179
6.3	Feed System Types	179
6.3.1	Two-Plate Mold	180
6.3.2	Three-Plate Mold	182
6.3.3	Hot Runner Molds	187

6.4	Feed System Analysis	190
6.4.1	Determine Type of Feed System	191
6.4.2	Determine Feed System Layout	193
6.4.3	Estimate Pressure Drops	196
6.4.4	Calculate Runner Volume	198
6.4.5	Optimize Runner Diameters	199
6.4.6	Balance Flow Rates	203
6.4.7	Estimate Runner Cooling Times	206
6.4.8	Estimate Residence Time	208
6.5	Feed System Simulation	209
6.5.1	Hot Runners	209
6.5.2	Cold Runners	211
6.6	Practical Issues	213
6.6.1	Color Changes with Hot Runners	214
6.6.2	Runner Cross-Sections	215
6.6.3	Sucker Pins	219
6.6.4	Runner Shut-Offs	220
6.6.5	Standard Runner Sizes	222
6.6.6	Steel Safe Designs	222
6.7	Advanced Feed Systems	223
6.7.1	Insulated Runner	223
6.7.2	Stack Molds	225
6.7.3	Branched Runners	227
6.7.4	Dynamic Melt Control	228
6.8	Chapter Review	231
7	Gating Design	235
7.1	Objectives of Gating Design	235
7.1.1	Connecting the Runner to the Mold Cavity	235
7.1.2	Provide Automatic De-gating	235
7.1.3	Maintain Part Aesthetics	236
7.1.4	Avoid Excessive Shear or Pressure Drop	236
7.1.5	Control Pack Times	237
7.2	Common Gate Designs	238
7.2.1	Sprue Gate	238

7.2.2	Pin-Point Gate	239
7.2.3	Edge Gate	240
7.2.4	Tab Gate	241
7.2.5	Fan Gate	242
7.2.6	Flash/Diaphragm Gate	243
7.2.7	Tunnel/Submarine Gate	244
7.2.8	Thermal Gate	247
7.2.9	Valve Gate	250
7.3	The Gating Design Process	251
7.3.1	Determine Gate Location(s)	251
7.3.2	Determine Type of Gate	253
7.3.3	Calculate Shear Rates	255
7.3.4	Calculate Pressure Drop	257
7.3.5	Calculate Gate Freeze Time	258
7.3.6	Adjust Dimensions	261
7.3.7	Gate Verification by Simulation	262
7.4	Chapter Review	265
8	Venting	269
8.1	Venting Design Objectives	269
8.1.1	Release Compressed Air	269
8.1.2	Contain Plastic Melt	270
8.1.3	Minimize Maintenance	270
8.2	Venting Analysis	270
8.2.1	Estimate Air Displacement and Rate	271
8.2.2	Identify Number and Location of Vents	271
8.2.3	Specify Vent Dimensions	274
8.3	Venting Designs	277
8.3.1	Vents on Parting Plane	277
8.3.2	Vents around Ejector Pins	280
8.3.3	Vents in Dead Pockets	281
8.3.4	Vents with Porous Metals	282
8.3.5	3D Printed Porous Inserts	284
8.4	Venting Best Practices	285
8.4.1	Venting Simulation	285

8.4.2	Vent Sensing	287
8.5	Chapter Review	288
9	Cooling System Design	291
9.1	Objectives in Cooling System Design	291
9.1.1	Maximize Heat Transfer Rates	291
9.1.2	Maintain Uniform Wall Temperature	292
9.1.3	Minimize Mold Cost	292
9.1.4	Minimize Volume and Complexity	293
9.1.5	Maximize Reliability	293
9.1.6	Facilitate Mold Usage	293
9.2	The Cooling System Design Process	294
9.2.1	Calculate the Required Cooling Time	294
9.2.2	Evaluate Required Heat Transfer Rate	300
9.2.3	Assess Coolant Flow Rate	301
9.2.4	Assess Cooling Line Diameter	302
9.2.5	Select Cooling Line Depth	305
9.2.6	Select Cooling Line Pitch	308
9.2.7	Cooling Line Routing	310
9.2.8	Cooling Simulation	313
9.3	Cooling System Designs	318
9.3.1	Cooling Line Networks	318
9.3.2	Cooling Inserts	320
9.3.3	Highly Conductive Inserts	321
9.3.4	Cooling of Slender Cores	323
9.3.4.1	Cooling Insert	323
9.3.4.2	Baffles	324
9.3.4.3	Bubblers	325
9.3.4.4	Heat Pipes	326
9.3.4.5	Conductive Pin	327
9.3.4.6	Interlocking Core with Air Channel	328
9.3.5	One-Sided Heat Flow	328
9.4	Conformal Cooling	331
9.4.1	Spiral and Serpentine Designs	332
9.4.2	Network Designs	335

9.4.3 Lattice and Generative Designs	336
9.4.4 Comparison and Discussion	339
9.5 Advanced Temperature Control	341
9.5.1 Pulsed Cooling	342
9.5.2 Conduction Heating	344
9.5.3 Induction Heating	345
9.5.4 Managed Heat Transfer	347
9.6 Chapter Review	348
10 Shrinkage and Warpage	353
10.1 The Shrinkage and Warpage Analysis Process	355
10.1.1 Estimate Process Conditions	356
10.1.2 Model Compressibility Behavior	356
10.1.3 Assess Volumetric Shrinkage	358
10.1.4 Evaluate Isotropic Linear Shrinkage	361
10.1.5 Evaluate Anisotropic Shrinkage	362
10.1.6 Warpage Estimation	365
10.2 Shrinkage and Warpage Simulation	368
10.2.1 Methodology	369
10.2.2 Pressure and Temperature Prediction	370
10.2.3 Shrinkage Prediction	372
10.2.4 Warpage Prediction	374
10.3 Shrinkage and Warpage Design Practices	375
10.3.1 Gating Dependence	375
10.3.2 Injection Compression Molding	377
10.3.3 Processing Corrections	379
10.3.4 Semicrystalline Plastics	380
10.3.5 Effect of Fillers	381
10.3.6 Shrinkage Range Estimation	382
10.3.7 Mold Commissioning and Shrinkage Validation	383
10.3.8 “Steel Safe” Mold Design	388
10.3.9 Warpage Avoidance and Compensation	391
10.4 Chapter Review	392

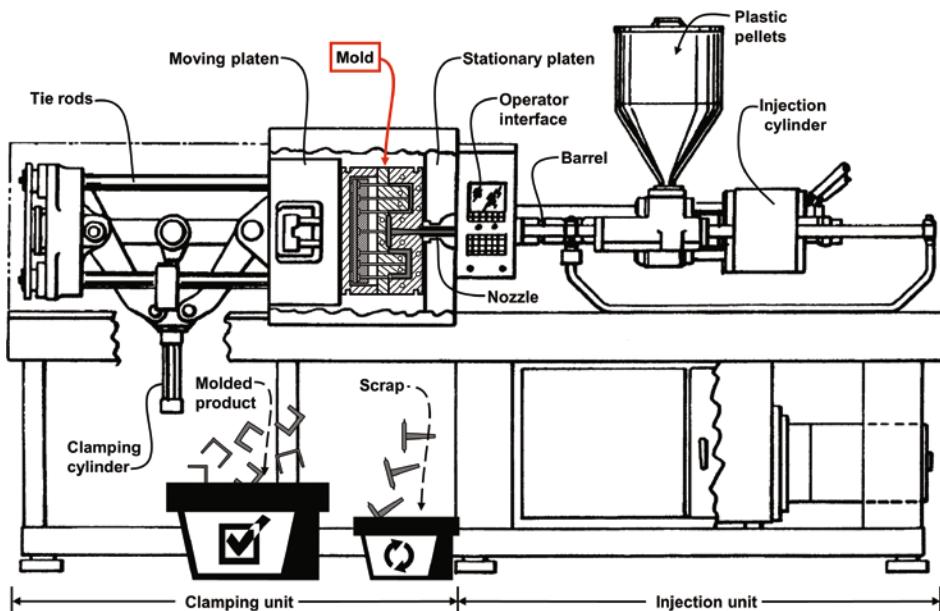
11	Ejection System Design	395
11.1	Objectives in Ejection System Design	398
11.1.1	Allow Mold to Open	398
11.1.2	Transmit Ejection Forces to Moldings	398
11.1.3	Minimize Distortion of Moldings	399
11.1.4	Maximize Ejection Speed	399
11.1.5	Minimize Cooling Interference	400
11.1.6	Minimize Impact on Part Surfaces	400
11.1.7	Minimize Complexity and Cost	401
11.2	The Ejector System Design Process	402
11.2.1	Identify Mold Parting Surfaces	402
11.2.2	Estimate Ejection Forces	402
11.2.3	Determine Ejector Push Area and Perimeter	409
11.2.4	Specify Type, Number, and Size of Ejectors	411
11.2.5	Lay Out Ejectors	413
11.2.6	Detail Ejectors and Related Components	416
11.3	Ejector System Analyses and Designs	418
11.3.1	Ejector Pins	418
11.3.2	Ejector Blades	420
11.3.3	Ejector Sleeves	423
11.3.4	Stripper Plates	424
11.3.5	Elastic Deformation around Undercuts	426
11.3.6	Core Pulls	428
11.3.7	Slides	433
11.3.8	Early Ejector Return Systems	436
11.4	Advanced Ejection Systems	438
11.4.1	Split Cavity Molds	438
11.4.2	Collapsible Cores	440
11.4.3	Rotating Cores	442
11.4.4	Reverse Ejection	444
11.5	Chapter Review	445
12	Structural System Design	449
12.1	Objectives in Structural System Design	450
12.1.1	Minimize Stress	450

12.1.2 Minimize Mold Deflection	455
12.1.3 Minimize Mold Size	456
12.2 Analysis and Design of Plates	456
12.2.1 Plate Compression	457
12.2.2 Plate Bending	460
12.2.3 Support Pillars	463
12.2.4 Shear Stress in Side Walls	470
12.2.5 Interlocks	471
12.2.6 Stress Concentrations	475
12.3 Analysis and Design of Cores	478
12.3.1 Axial Compression	478
12.3.2 Compressive Hoop Stresses	480
12.3.3 Core Deflection	481
12.4 Fasteners	485
12.4.1 Fits	485
12.4.2 Socket Head Cap Screws	489
12.4.3 Dowels	492
12.5 Chapter Review	494
13 Mold Technologies	497
13.1 Introduction	497
13.2 Coinjection Molds	499
13.2.1 Coinjection Process	500
13.2.2 Coinjection Mold Design	501
13.3 Gas Assist/Water Assist Molding	503
13.4 Insert Molds	505
13.4.1 Low Pressure Compression Molding	506
13.4.2 Insert Mold with Wall Temperature Control	507
13.4.3 Lost Core Molding	509
13.5 Injection Blow Molds	511
13.5.1 Injection Blow Molding	511
13.5.2 Multilayer Injection Blow Molding	513
13.6 Multishot Molds	515
13.6.1 Overmolding	516
13.6.2 Core-Back Molding	517
13.6.3 Multi-station Mold	519

13.7	In-Mold Decoration	521
13.7.1	Statically Charged Film	522
13.7.2	Indexed Film	523
13.8	Chapter Review	525
14	Mold Commissioning	529
14.1	Mold Commissioning Objectives	529
14.1.1	Certify Mold Acceptability	529
14.1.2	Optimize Molding Process and Quality	531
14.1.3	Develop Mold Operation and Maintenance Plans	531
14.2	Commissioning Process	532
14.2.1	Mold Design Checklist	533
14.2.2	Component Verification	535
14.2.3	Mold Assembly	535
14.2.4	Mold Final Test	536
14.2.5	Preliminary Molding Recommendations	536
14.3	Molding Trials	539
14.3.1	Filling Stage	540
14.3.2	Packing Stage	542
14.3.3	Cooling Stage	544
14.4	Production Part Approval	545
14.4.1	Gauge and Process Repeatability & Reproducibility	545
14.4.2	Dimensional Metrology	548
14.4.3	Process Capability Evaluation	549
14.5	Process Automation and Industry 4.0 Support	553
14.5.1	Quality Assurance	553
14.5.2	Recommended In-Mold and Machine Instrumentation	554
14.5.3	Definition of Synthetic Data	558
14.5.4	Multivariate Modeling for On-line Control	561
14.6	Mold Maintenance	568
14.6.1	Pre-Molding Maintenance	570
14.6.2	Molding Observation and Mold Map	570
14.6.3	Post-Molding Maintenance	572
14.6.4	Scheduled Regular Maintenance	572
14.6.5	Mold Rebuilding	573
14.7	Summary	574

Appendix	579
Appendix A: Plastic Material Properties	580
Appendix B: Mold Material Properties	588
Nonferrous Mold Materials	588
Commodity Mold Materials	589
Specialty Mold Materials	590
Appendix C: Properties of Coolants	591
Appendix D: Estimation of Melt Velocity for Adiabatic Mold Filling	592
The Author	595
Index	597

Injection molding is a common method for mass production and is often preferred over other processes, given its capability to economically make complex parts to tight tolerances. Injection molding is also one of the most efficient manufacturing processes due to fast cycle times associated with high rates of cooling, low material waste, and the potential for using recycled and sustainable materials [1].

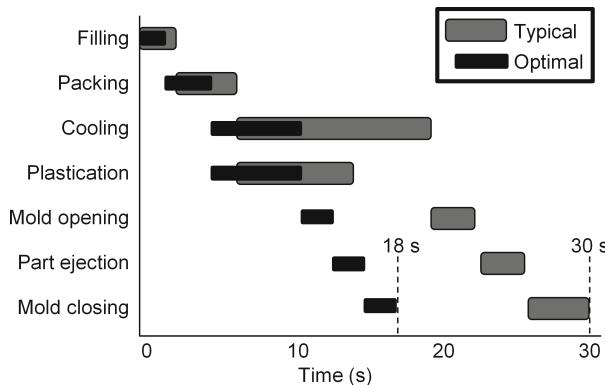

Before any parts can be molded, however, a suitable injection mold must be designed, manufactured, and commissioned. The mold design directly determines the molded part quality and molding productivity. The injection mold is itself a complex system comprised of multiple components that are subjected to many thermal and stress cycles. There are often trade-offs in mold design, with lower-cost molds sometimes resulting in lower product quality or inefficient molding processes. Engineers should strive to design injection molds that are “fit for purpose,” which means that the mold should produce parts of acceptable quality with minimal life cycle cost while minimizing the time, money, and risk to develop.

This book is directed to assist novice and expert designers of both products and molds. In this chapter, an overview of the injection molding process and various types of molds is provided so that the mold design engineer can understand the basic operation of injection molds. Next, the layout and components in three of the more common mold designs are presented. The suggested methodology for mold engineering design is then presented, which provides the structure for the remainder of this book.

■ 1.1 Overview of the Injection Molding Process

Injection molding is sometimes referred to as a “net shape” manufacturing process because the molded parts emerge from the molding process in their final form with no or minimal post-processing required to further shape the product. A sim-

plified injection molding machine is depicted in Figure 1.1. The mold is inserted and clamped between a stationary and a moving platen. The mold is connected to and moves with the machine platens, so that the molded parts are formed within a closed mold, after which the mold is opened so that the molded parts can be removed.


Figure 1.1 Depiction of an injection molding machine and mold, adapted from [2]

The mold cavity is the “heart” of the mold, where the polymer is injected and solidified to produce the molded part(s) with each molding cycle. While molding processes can differ substantially in design and operation, most injection molding processes generally include plastication, injection, packing, cooling, and ejection stages. During the plastication stage, a screw within the barrel rotates to convey plastic pellets and form a “shot” of polymer melt. The polymer melt is plasticized from solid granules, flake pellets, or powder through the combined effect of heat conduction from the heated barrel as well as the internal viscous heating caused by molecular deformation as the polymer is forced along the screw flights. Afterwards, during the filling stage, the plasticated shot of polymer melt is forced from the barrel of the molding machine through the nozzle and into the mold. The molten resin travels down a feed system, through one or more gates, and throughout one or more mold cavities where it forms the molded product(s).

After the mold cavity is filled with the polymer melt, the packing stage provides additional material into the mold cavity as the molten plastic melt cools and con-

tracts. The plastic's volumetric shrinkage varies with the material properties and application requirements, but the molding machine typically forces 1 to 10% additional melt into the mold cavity during the packing stage. After the polymer melt ceases to flow, the cooling stage provides additional time for the resin in the cavity to solidify and become sufficiently rigid for ejection. Then, the molding machine actuates the moving platen and the attached moving side of the mold to provide access to the mold cavities. The mold typically contains an ejection system with moving slides and pins that are then actuated to remove the molded part(s) prior to mold closure and the start of the next molding cycle.

A chart plotting the timing of each stage of the molding process is shown in Figure 1.2 for a molded part approximately 2 mm thick having a cycle time of 30 s. The filling time is a small part of the cycle and so is often selected to minimize the injection pressure and molded-in stresses. The packing time is of moderate duration, and is often minimized through a shot weight stability study to end with freeze-off of the polymer melt in the gate. In general, the cooling stage of the molding process dominates the cycle time since the rate of heat flow from the polymer melt to the cooler mold is limited by the low thermal diffusivity of the plastic melt. However, the plastication time may exceed the cooling time for very large shot volumes with low plastication rates.

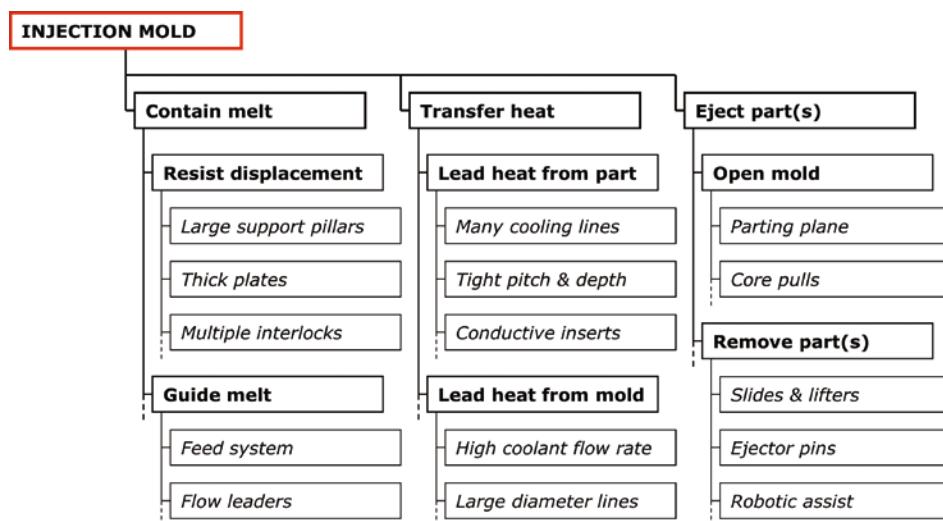
Figure 1.2 Injection molding process timings

The mold reset time is also very important to minimize since it provides negligible added value to the molded product. To minimize the molding cycle time and costs, molders strive to operate fully automatic processes with minimum mold opening and ejector strokes. Process automation including robotics can assist in further reducing the cycle time by precise synchronization of material handling equipment with the movement of the machine platen while also supporting faster take-out than traditional gravity drops. However, the operation of fully automated mold-

ing processes requires careful mold design, making, and commissioning. Not only must the mold operate without any hang-ups, but the quality of the molded parts must consistently meet specification. Multivariate sensing and quality assurance is increasingly common to provide the required process and quality control.

Figure 1.2 shows likely productivity gains using a more advanced mold design with some additional investment in technology. Hot runner feed systems, for example, allow the use of less plastic material while also reducing injection and pack times. Conformal cooling and highly conductive mold inserts can significantly reduce cooling times. Molds and molding processes can also be optimized to minimize mold opening, part ejection, and mold closing times. The net result of additional engineering is a reduction in the cycle time from 30 to 18 s. While some cycle time improvements are often possible just through careful engineering design, many productivity improvements require additional upfront investment in mold materials, components, or processing. Expertise, judgement, and strategy play a significant role in each mold design application.

There are also many variants of the injection molding process (such as gas assist molding, water assist molding, insert molding, two-shot molding, coinjection molding, injection compression molding, and others discussed later) that can be used to provide significant product differentiation or cost advantages. These more advanced processes can greatly increase the value of the molded parts but at the same time can increase the complexity and risk of the mold design and molding processes while also limiting the number of qualified suppliers. As such, the product design and mold design should be conducted concurrently while explicitly addressing manufacturing strategy and supply chain considerations. The cost of advanced mold designs must be justified either by net cost savings or increases in the customer's willingness to pay for advanced product designs [3]. Cost estimation thus serves an important role in developing appropriate manufacturing strategies and mold designs.


■ 1.2 Mold Functions

The injection mold is a complex system that must simultaneously meet many demands imposed by the injection molding process. The primary function of the mold is to contain the polymer melt within the mold cavity so that the mold cavity can be completely filled to form a plastic component whose shape replicates the mold cavity. A second primary function of the mold is to efficiently transfer heat from the hot polymer melt to the coolant flowing through the mold, such that injection molded products may be produced as uniformly and rapidly as possible.

A third primary function of the mold is to eject the part from the mold in an efficient and consistent manner without imparting excessive stress to the moldings.

These three primary functions—contain the melt, transfer the heat, and eject the molded part(s)—also place secondary requirements on the injection mold. Figure 1.3 provides a partial hierarchy of the functions of an injection mold. For example, the function of containing the melt within the mold requires that the mold:

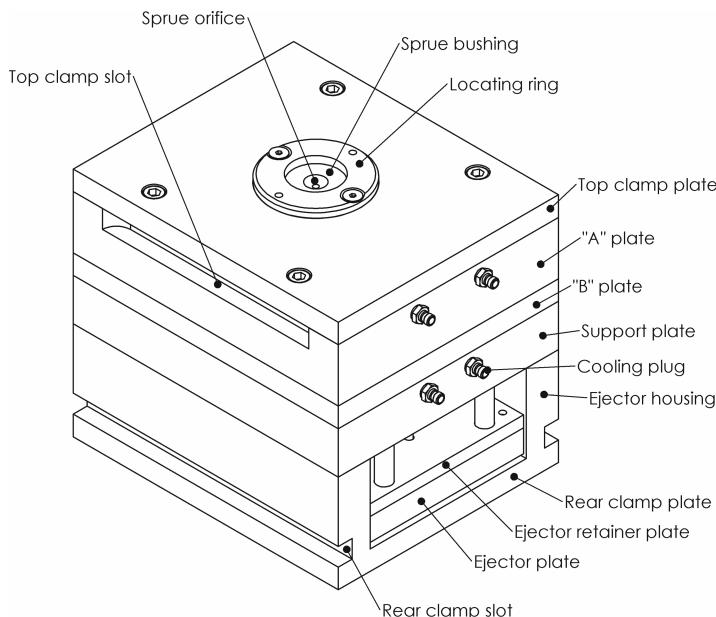
- *resist displacement* under the enormous forces that will tend to cause the mold to open or deflect. Excessive displacement can directly affect the dimensions of the moldings or allow the formation of flash around the parting line of the moldings. This function is typically achieved through the use of rigid plates, support pillars, and interlocking components.
- *guide the polymer melt* from the nozzle of the molding machine to one or more cavities in the mold where the product is formed. This function is typically fulfilled through the use of a feed system and flow leaders within the cavity itself to ensure laminar and balanced flow.

Figure 1.3 Function hierarchy for injection molds

It should be understood that Figure 1.3 does not provide a comprehensive list of all functions of an injection mold, but just some of the essential primary and secondary functions that must be considered during the engineering design of injection molds. Even so, a skilled designer might recognize that conflicting requirements are placed on the mold design by various functions. For instance, the desire for efficient cooling may be satisfied by the use of multiple tightly spaced cooling lines that conform to the mold cavity. However, the need for part removal may require

the use of multiple ejector pins at locations that conflict with the desired cooling line placement. It is up to the mold designer to consider the relative importance of the conflicting requirements and ultimately deliver a mold design that is satisfactory.

There are significant compromises and potential risks associated with mold design. In general, smaller and simpler molds may be preferred since they use less material and are easier to operate and maintain. Conversely, it is possible to under-design molds such that they may deflect under load, wear or fail prematurely, or require extended cycle times to operate. Because the potential costs of failure are often greater than the added cost to ensure a robust design, there is a tendency to over-design with the use of conservative estimates and safety factors when in doubt. Excessive over-designing should be avoided since it can lead to large, costly, and inefficient molds.


■ 1.3 Mold Structures

An injection mold has many structures to accomplish the functions required by the injection molding process. Since there are many different types of molds, the structure of a simple “two-plate” mold is first discussed. It is important for the mold designer to know the names and functions of the mold components, since later chapters will assume this knowledge. Basic and more complex mold structures will be analyzed and designed in subsequent chapters.

1.3.1 External View of Mold

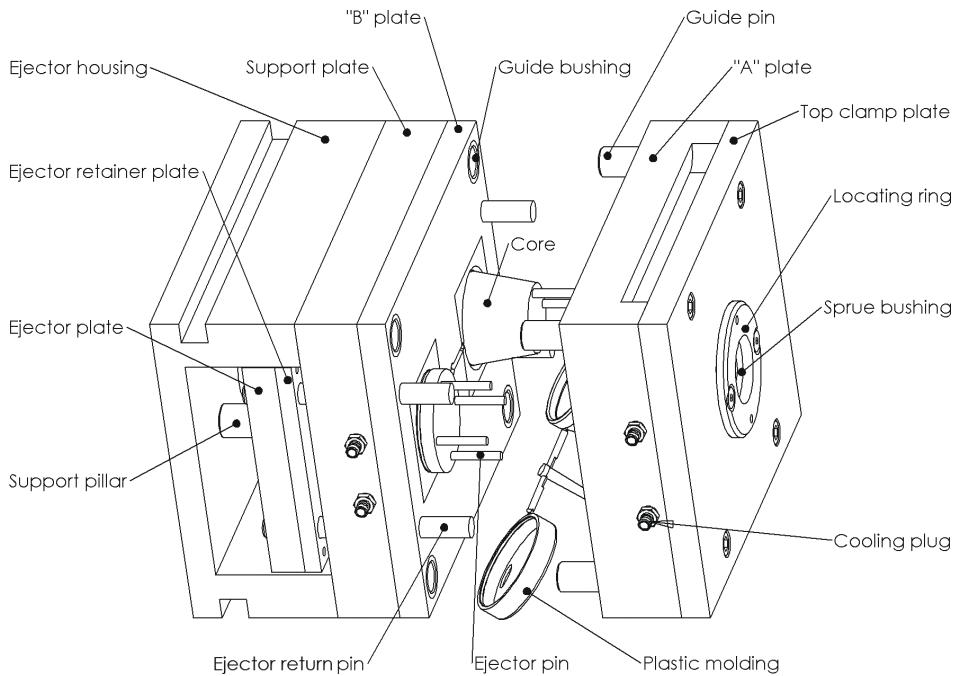
An isometric view of a two-plate mold is provided in Figure 1.4. From this view, it is observed that a mold is constructed of a number of plates bolted together with socket head cap screws. These plates commonly include the top clamp plate, the cavity insert retainer plate or “A” plate, the core insert retainer plate or “B” plate, a support plate, and a rear clamp plate or ejector housing. Some mold components are referred to with multiple names. For instance, the “A” plate is sometimes referred to as the cavity insert retainer plate, since this plate retains the cavity inserts. As another example, the ejector housing is also sometimes referred to as the rear clamp plate, since it clamps to the moving platen located towards the rear of the molding machine. In some mold designs, the ejector housing is replaced with a separable rear clamp plate of uniform thickness and two parallel ejector “rails” that replace the side walls of the integral “U”-shaped ejector housing. This alterna-

tive rear clamp plate design requires more components and mold-making steps, but can provide material cost savings as well as mold design flexibility.

Figure 1.4 View of a closed two-plate mold

The mold depicted in Figure 1.4 is referred to as a “two-plate mold” since it uses only two plates to contain the polymer melt. Mold designs may vary significantly while performing the same functions. For example, some mold designs integrate the “B” plate and the support plate into one extra-thick plate, while other mold designs may integrate the “A” plate and the top clamp plate. As previously mentioned, some mold designs may split up the ejector housing, which has a “U”-shaped profile to house the ejection mechanism and clamping slots, into a rear clamp plate and tall rails (also known as risers). The use of an integrated ejector housing as shown in Figure 1.4 provides for a compact mold design, while the use of separate rear clamp plate and rails provides for greater design flexibility.

To hold the mold in the injection molding machine, toe clamps are inserted in slots adjacent to the top and rear clamp plates and subsequently bolted to the stationary and moving platens of the molding machine. A locating ring, usually found at the center of the mold, closely mates with an opening in the molding machine’s stationary platen to align the inlet of the mold to the molding machine’s nozzle. The opening in the molding machine’s stationary platen can be viewed in Figure 1.1 around the molding machine’s nozzle. The use of the locating ring is necessary for at least two reasons. First, the inlet of the melt to the mold at the mold’s sprue


bushing must mate with the outlet of the melt from the nozzle of the molding machine. Second, the ejector knockout bar(s) actuated from behind the moving platen of the molding machine must mate with the ejector system of the mold. Molding machine and mold suppliers have developed standard locating ring specifications to facilitate mold-to-machine compatibility, with the most common locating ring diameter being 100 mm (4 in).

When the molding machine's moving platen is actuated, all plates attached to the rear clamp plates will be similarly actuated and cause the mold to separate at the parting plane between the "A" and "B" plates. When the mold is closed, guide pins and bushings are used to closely locate the "A" and the "B" plates on separate sides of the parting plane, which is crucial to the primary mold function of containing the melt. Improper design or construction of the mold components may cause misalignment of the "A" and "B" plates, poor quality of the molded parts, and accelerated wear of the injection mold.

1.3.2 View of Mold during Part Ejection

Another isometric view of the mold is shown in Figure 1.5, oriented horizontally for operation with a horizontal injection molding machine. In this depiction, the plastic melt has been injected and cooled in the mold such that the moldings are now ready for ejection. To perform ejection, the mold is opened by at least the height of the moldings. Then, the ejector plate and associated pins are moved forward to push the moldings off the core. From this view, many of the mold components are observed, including the "B" or core insert retainer plate, two different core inserts, feed system, ejector pins, and guide pins and bushings.

Figure 1.5 indicates that the plastic molding consists of two different molded parts (like a cup and a lid) attached to a feed system. This mold is called a two-plate, cold-runner, two-cavity family mold. The term "family mold" refers to a mold in which multiple components of varying shapes and/or sizes are produced at the same time, most commonly to be used in a product assembly. The use of the family mold ensures that the material comprising the molded components is the same, which can be important with respect to color, strength, size, and other properties. The term "two-cavity" refers to the fact that the mold has two cavities to produce two moldings in each molding cycle. Such multicavity molds are used to rapidly and economically produce high quantities of molded products. Molds with eight or more cavities are common. The number of mold cavities is a critical design decision that impacts the technology, cost, size, and complexity of the mold; a cost estimation method is provided in Chapter 3 to provide design guidance.

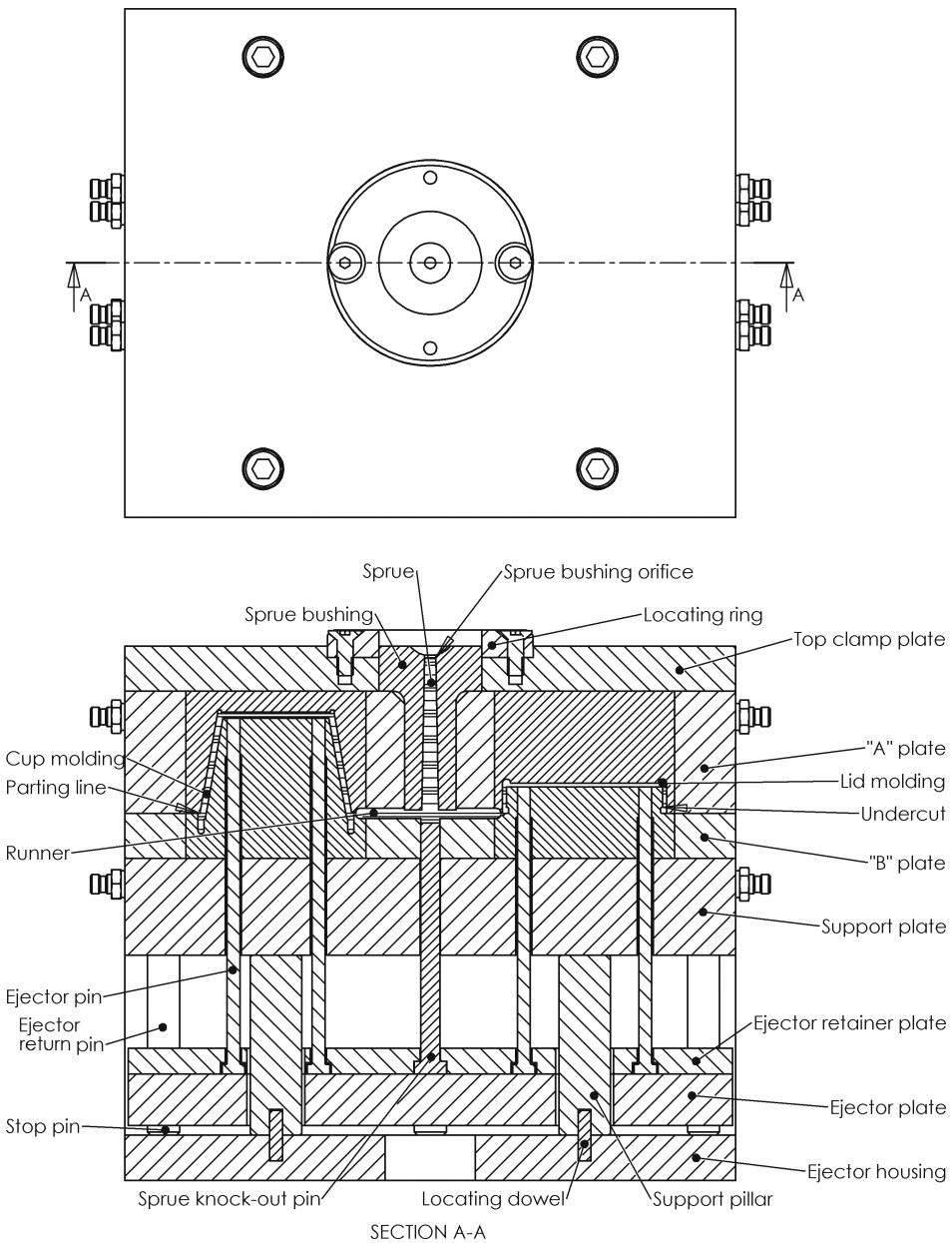


Figure 1.5 View of cup and lid moldings ejected from injection mold

In a multicavity mold, the cavities are placed across the parting plane to provide room between the mold cavities for the feed system, cooling lines, and other components. It is generally desired to place the mold cavities as close together as possible without sacrificing other functions such as cooling, ejection, etc. Tight spacing of the cavities usually results in a smaller mold that is not only less expensive but also easier for the molder to handle while being usable in more molding machines. The number of mold cavities in a mold can be significantly increased by not only using a larger mold but also using different types of molds such as a hot runner mold, three-plate mold, or stack mold as later discussed with respect to mold layout design in Chapter 4.

1.3.3 Mold Cross-Section and Function

Figure 1.6 shows the top view of the mold, along with the view that would result if the mold was physically cut along the section line A-A and viewed in the direction of the arrows. Various hatch patterns have been applied to different components to facilitate identification of the components. It is important to understand each of these mold components and how they interact with each other and the molding process.

Figure 1.6 Top and cross-section views of a two-plate mold

Consider now the stages of the molding process relative to the mold components. During the filling stage, the polymer melt flows from the nozzle of the molding machine through the orifice of the sprue bushing. The melt flows down the length of the sprue bushing and into the runners located on the parting plane. The flow

then traverses across the parting plane and enters the mold cavities through small gates. The melt flow continues until all mold cavities are completely filled. Chapters 5, 6, and 7 provide analysis and design guidelines for flow in the mold cavity, feed system, and gates. As the polymer melt fills the cavity, the displaced air must be vented from the mold. Some analysis and design guidelines are provided in Chapter 8.

After the polymer melt flows to the end of the cavity, additional material is packed into the cavity at high pressure to compensate for volumetric shrinkage of the plastic as it cools. The estimation of shrinkage and guidelines for steel safe design are described in Chapter 9. Typically, the injection molding pressure, temperature, and timing are adjusted to achieve the desired part dimensions. The duration of the packing phase is typically controlled by the size and freeze-off of the gate between the runner and the cavity. During the packing and cooling stages, heat from the hot polymer melt is transferred to the coolant circulating in the cooling lines. The heat transfer properties of the mold components, together with the size and placement of the cooling lines, determine the rate of heat transfer and the cooling time required to solidify the plastic. At the same time, the mold components must be designed to resist deflection and stress when subjected to high melt pressures. Chapters 10 and 11 respectively describe the analysis and design of the mold's cooling and structural systems.

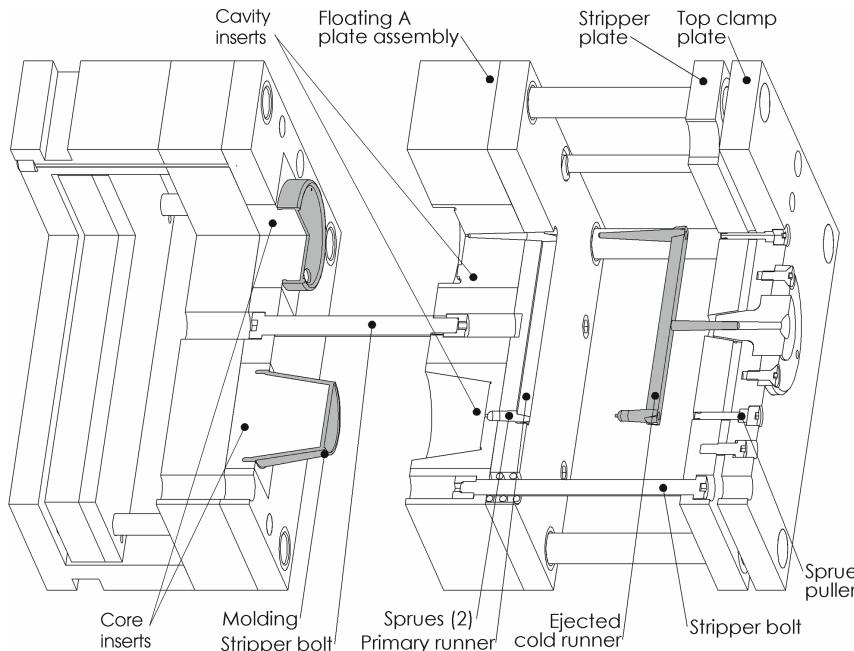
After the part has cooled, the molding machine's moving platen is actuated and the moving half of the mold (consisting of the "B" plate, the core inserts, the support plate, the ejector housing, and related components) moves away from the stationary half (consisting of the top clamp plate, the "A" plate, the cavity inserts, and other components). Typically, the moldings stay with the moving half since they have shrunken onto the core. This shrinkage results in residual tensile stresses, like a rubber band stretched around a cylinder or box, that will tend to keep the moldings on the core.

After the mold opens, the ejector plate is pushed forward by the molding machine. The ejector pins are driven forward and push the moldings off the core. The moldings may then drop out of the mold or be picked up by an operator or robot. Afterwards, the ejector plate is retracted and the mold closes to receive the melt during the next molding cycle. The ejector system design is analyzed in Chapter 12.

■ 1.4 Other Common Mold Types

A simple two-plate mold has been used to introduce the basic components and functions of an injection mold. About half of all molds closely follow this design since it is simple to carry out and economical to produce. However, the two-plate mold has many limitations, including:

- restriction of the feed system route to the parting plane;
- limited gating options from the feed system into the mold cavity or cavities;
- restriction on the tight spacing of cavities;
- additional clamping forces imposed on the mold by the melt flowing through (and being pressurized within) the feed system;
- increased material waste incurred by the solidification of the melt in the feed system; and
- increased cycle time related to the plastication and cooling of the melt in the feed system.


For these reasons, molding applications requiring high production quantities often do not use two-plate mold designs but instead rely on more complex designs that provide lower-cost production of the molded parts. Such designs include three-plate molds, hot runner molds, stack molds, and others. Three-plate molds and hot runner molds are the next most common types of injection molds, and so are introduced next.

1.4.1 Three-Plate, Multicavity Family Mold

The three-plate mold is so named since it provides a third plate that floats between the mold cavities and the top clamp plate. Figure 1.7 shows a cut section of a three-plate mold that is fully open with the moldings still on the core inserts. As shown in Figure 1.7, the addition of the third plate provides a second parting plane between the “A” plate assembly and the top clamp plate for the provision of a feed system that traverses parallel to the parting plane. During molding, the plastic melt flows out the nozzle of the molding machine, down the sprue bushing, across the primary runners, down the sprues, through the gates, and into the mold cavities. The feed system then freezes in place with the moldings.

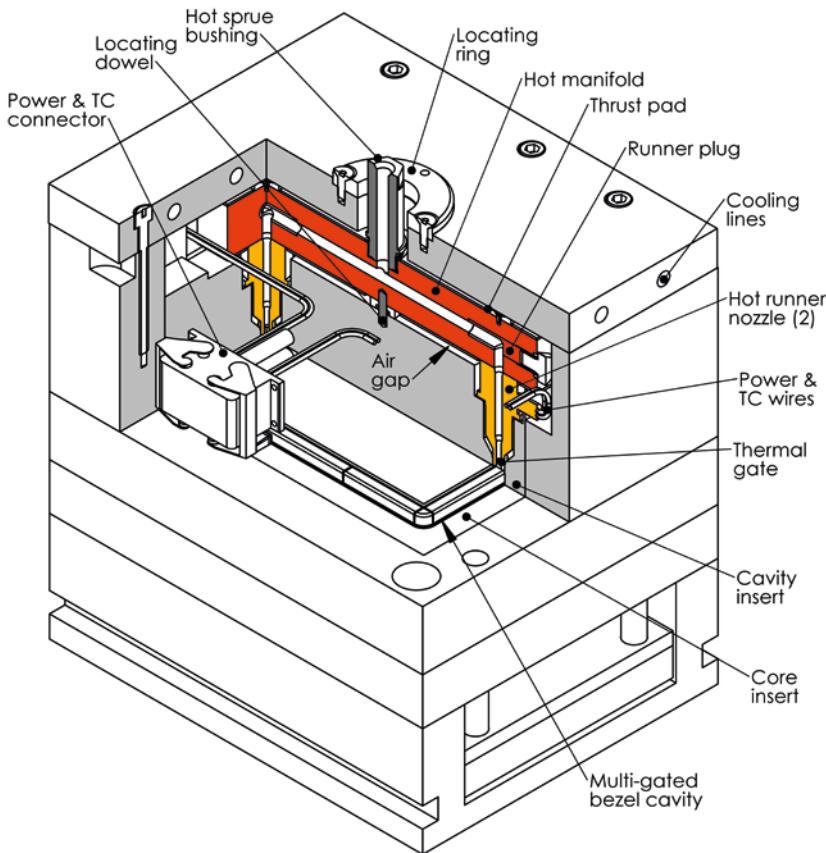
When the mold is opened, the molded cold runner will stay on the stripper plate due to the inclusion of sprue pullers that protrude into the primary runner. As the mold continues to open, the stripper bolt connected to the “B” plate assembly will pull the “A” plate assembly away from the top clamp plate. Another set of stripper

bolts will then pull the stripper plate away from the top clamp plate, stripping the molded cold runner off the sprue pullers. The ejector plate may be designed and actuated as in a traditional two-plate mold to force the moldings off the core.

Figure 1.7 Section of an open three-plate mold

The three-plate mold eliminates two significant limitations of two-plate molds. First, the three-plate mold allows for primary and secondary runners to be located in a plane above the mold cavities so that the plastic melt in the cavities can be gated at any location. Such gating flexibility is vital to improving the cost and quality of the moldings, especially for molds with a high number of cavities or applications requiring careful control of the mold filling patterns. Second, the three-plate mold provides for the automatic separation of the feed system from the mold cavities. Automatic de-gating facilitates the operation of the molding machine with a fully automatic molding cycle to reduce molding cycle times.

There are at least three significant potential issues with three-plate molds, however. First and most significantly, the cold runner is still molded and ejected with each molding cycle. If the cold runner is large compared to the molded parts, then the molding of the cold runner may increase the material consumption and cycle time, thereby increasing the total molded part cost. Second, the three-plate mold requires additional plates and components for the formation and ejection of the cold runner, which increases the cost of the mold. Third, a large mold-opening


stroke is needed to eject the cold runner. The large mold-opening height (from the top of the top clamp plate to the back of the rear clamp) may be problematic and require a molding machine with greater “daylight” between the machine’s stationary and moving platens than would otherwise be required for a two-plate or hot runner mold. Given these limitations, usage of three-plate molds has declined, with an increasing usage of hot runner molds.

1.4.2 Hot Runner, Multigated, Single-Cavity Mold

Hot runner molds provide the benefits of three-plate molds without their disadvantages. The term “hot runner” denotes that the feed system is heated and so the material remains in a molten state throughout the entire molding cycle. As a result, the hot runner does not waste any material in the forming of a feed system or add any cycle time related to plasticating and cooling the material in the hot runner.

A section of a multigated single-cavity mold is provided in Figure 1.8. This mold contains a single cavity, which is designed to produce the front housing or “bezel” for a laptop or tablet computer. The hot runner system includes a hot sprue bushing, a hot manifold, and two hot runner nozzles as well as heaters, cabling, and other related components for heating. The hot runner system is carefully designed to minimize the heat transfer between the hot runner system and the surrounding mold through the use of air gaps and minimal contact area. Like the three-plate mold design, the primary and secondary runners are routed in the manifold above the mold cavities to achieve flexibility in gating locations. Since the polymer melt stays molten, hot runners can be designed to provide larger flow bores and excellent pressure transmission from the molding machine to the mold cavities. As such, a hot runner system can facilitate the molding of thinner parts with faster cycle times than either two-plate or three-plate molds, while also avoiding the scrap associated with cold runners.

During the molding process, the material injected from the machine nozzle into the hot sprue bushing pushes the existing material in the hot runner system into the mold cavity. When the mold cavities fill, the hot runner’s thermal gates are designed to solidify and prevent the leakage of the hot polymer melt from inside the hot runner system to the outside of the mold when the mold is opened. The melt pressure developed inside the hot runner system at the start of the next molding cycle will cause these thermal gates to rupture and allow the flow of the polymer melt into the mold cavity.

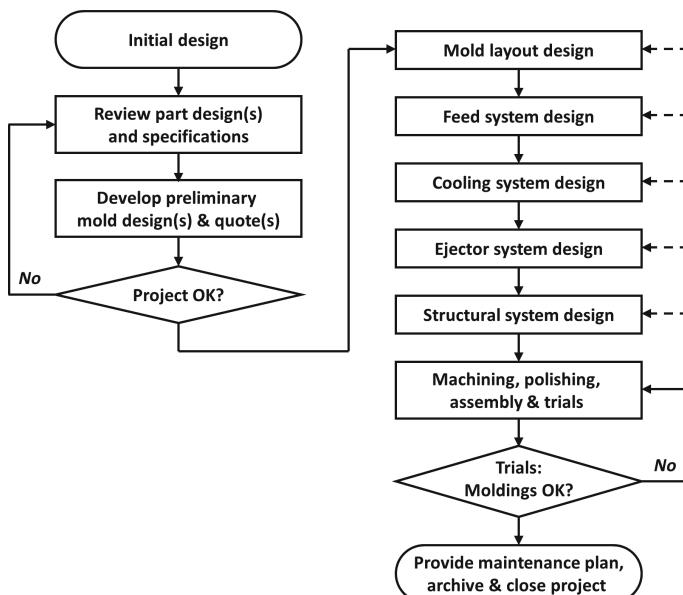
Figure 1.8 Section of hot runner mold

There are many different hot runner and gating designs that can provide advantages that include gating flexibility, improved pressure transmission, reduced material consumption, and increased molding productivity. However, there are also at least two significant disadvantages. First, hot runner systems require added investment for the provision and control of the hot runner temperature. The added investment can be a significant portion of the total mold cost, and not all molders have the auxiliary equipment or expertise to operate and maintain hot runner molds. The second disadvantage of hot runner systems is extended changeover times associated with the purging of the contained polymer melt. In short-run production applications having aesthetic requirements, the number of cycles required to start up or change resins or even color may be unacceptable. To address these issues, many molding machine suppliers offer options to integrate the hot runner controls into the machine to simplify cabling and process setup.

1.4.3 Comparison

The type of feed system is a critical decision that is made early in the development of the mold design. From a mold designer's perspective, the choice of feed system has a critical role in the design of the mold, the procurement of materials, and the mold making, assembly, and commissioning. From the molder's perspective, the choice of feed system largely determines the purchase cost, molding productivity, and operating cost of the mold.

Table 1.1 compares the different types of molds with respect to several performance measures. In general, hot runner molds are excellent with respect to molding cycle performance but poor with respect to initial investment, start-up, and ongoing maintenance. By comparison, two-plate molds have lower costs but provide limited molding cycle productivity. The evaluation of three-plate molds in Table 1.1 warrants some further discussion. Specifically, three-plate molds do not provide as high a level of molding productivity compared to hot runner molds, and at the same time have higher costs than two-plate molds. For this reason, there has been a trend away from three-plate molds with the penetration of lower-cost hot runner systems.


Table 1.1 Feed System Comparison

Performance measure	Two-plate	Three-plate	Hot runner
Gating flexibility	Poor	Excellent	Excellent
Material consumption	Good	Poor	Excellent
Cycle times	Good	Poor	Excellent
Pressure transmission	Poor to Good	Poor to Good	Excellent
Initial investment	Excellent	Good	Poor
Start-up times	Excellent	Good	Poor
Maintenance cost	Excellent	Good	Poor

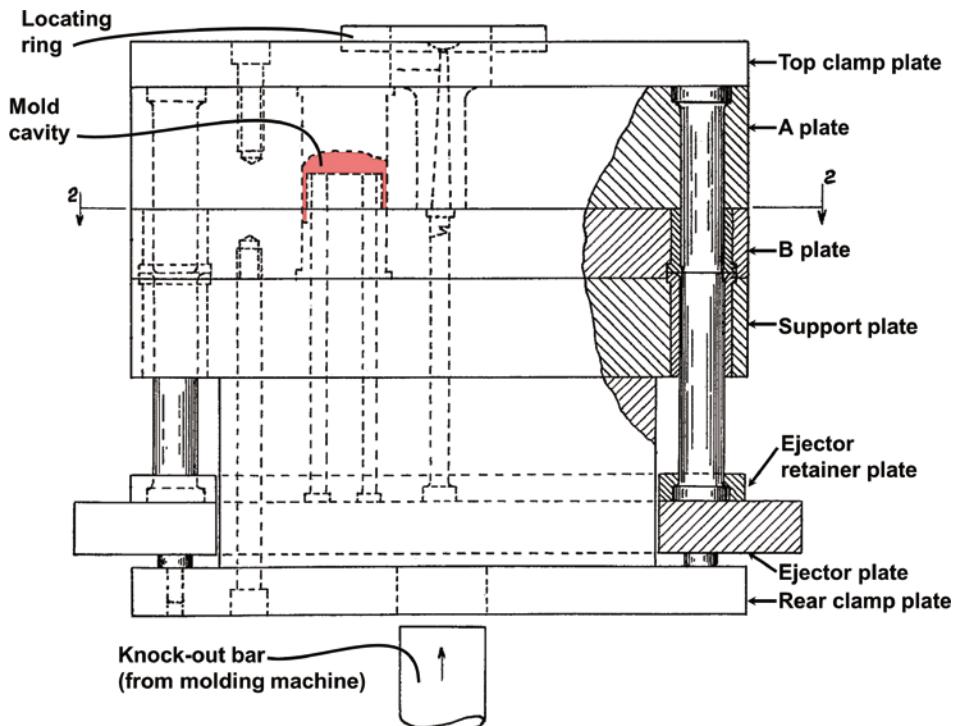
■ 1.5 The Mold Development Process

Given that there is substantial interplay between the product design, mold design, and the injection molding process, an iterative mold development process is common, such as shown in Figure 1.9. To the extent possible, the product design should follow standard design for injection molding guidelines as described in Chapter 2. To reduce the product development time, the product design and mold design are often performed concurrently. In fact, a product designer may receive a

reasonable cost estimate for a preliminary part design given only the part's overall dimensions, thickness, material, and production quantity. Given this information, the mold designer develops a preliminary mold design and provides a preliminary quote as discussed in Chapter 3. This preliminary quote requires the molder and mold maker to not only develop a rough mold design but also estimate important processing variables such as the required clamp tonnage, machine hourly rate, and cycle times.

Figure 1.9 A mold development process

Once a quote is accepted, the detailed engineering design of the mold can begin in earnest as indicated by the listed steps on the right side of Figure 1.9. First, the mold designer will lay out the mold design by specifying the type of mold, the number and position of the mold cavities, and the size and thickness of the mold. Afterwards, each of the required subsystems of the mold is designed, which sometimes requires the redesign of previously designed subsystems. For example, the placement of ejector(s) may require a redesign of the cooling system while the design of the feed system may affect the layout of the cavities and other mold components. Multiple design iterations are typically conducted until a reasonable compromise is achieved between size, cost, complexity, and function.


To reduce the development time, the mold base, insert materials, hot runner system, and other components may be ordered and customized as the mold design is being fully detailed. Such concurrent engineering should not be applied to uncer-

tain aspects of the design. However, many mold makers do order the mold base and plates upon confirmation of the order once the mold layout design is known. As a result of concurrent engineering practices, mold development times are now typically measured in weeks rather than months [4]. Customers can place a premium on quick mold delivery, and mold makers have traditionally charged more for faster service. With competition, however, customers are increasingly requiring guarantees on mold delivery and quality, with penalties applied to missed delivery times or poor quality levels.

After the mold is designed, machined, polished, and assembled, molding trials are performed to verify the basic functionality of the mold. If no significant deficiencies are present, the moldings are sampled and their quality assessed relative to specifications. Usually, the mold and molding process are sound but must be adjusted to improve the product quality and reduce the product cost. However, sometimes molds include “fatal flaws” that are not easily correctable and may necessitate the scrapping of the mold and a complete redesign. Some guidelines for mold commissioning and first article inspection are provided in Chapter 13.

■ 1.6 Mold Standards

The designs depicted in this chapter were created from computer-aided design (CAD) files of a Milacron DME brand mold base. A “mold base” is essentially a blank mold or template design that includes all the plates, pins, bushings, and other components that may be purchased as a fully assembled system and modified for a specific molding application. Figure 1.10 depicts the prototypical mold base. This particular design [5] was made in 1944 by Ivar Quarnstrom, the founder of Detroit Mold Engineering (DME Company). It is remarkable how similar the design of Figure 1.10 is to that of Figure 1.6 and other designs commonly observed today.

Figure 1.10 Mold base

There are many benefits for mold designs that rely on the use of the standard mold bases. These include:

- First and foremost, the design of the mold base includes many detailed fits and tolerances that would require extensive analysis and care in manufacturing. In other words, most mold designers and mold makers would have difficulty designing as good a mold base at as low a cost as a standard product that could be purchased off the shelf with minimal risk and lead time.
- Second, the use of standards provides for potential interoperability of mold bases and mold base components across molding applications as well as different molding facilities. For example, a mold designer may wish to provide six identical molds so that two copies of each mold are operable in Europe, the Americas, and Asia. The use of a mold base not only supports the mold design with respect to a CAD library, but also the provision of the replacement components using the mold base supply chain should mold components need replacement.
- Third, the use of a standard mold base provides a standard interface with typical molding machine designs. For example, consider the use of a mold base with a sprue bushing compared to a molding machine with a threaded nozzle

directly attached to a mold cavity. The use of the sprue bushing may increase the component count, but supports ready replacement and works with standard nozzle tips for a variety of molding machines. Conversely, the directly threaded nozzle eliminates the sprue altogether and so may provide better molding productivity, but requires more skill in design and operation. There is certainly the opportunity for mold designers, mold makers, and molders to outperform mold bases using custom mold designs from scratch. Such masters need significant experience and insight into their molding applications to motivate their custom designs and outperform their competitors.

For these reasons, most mold designers and mold makers in developed countries, where labor is relatively expensive compared to the mold materials and components, will typically use standard mold bases. There are many suppliers of mold bases who compete with different strategies including material technology, quality, lead time, cost, size, breadth of product line, unit systems, regional distribution, and others. Product designers, mold designers, mold makers, and molders should verify what mold base and system of suppliers are to be used in a given application.

It should be noted that the costs of fully realized molds will vary greatly, and not solely as a function of design and quality. The author has conducted research into mold quoting [6], and so is aware of instances where fully designed, machined, and finished molds have been purchased for less than the cost of just the mold base in the United States. These occurrences are often the result of inferior designs, materials, and labor practices that require extensive rework and still perform at marginally acceptable levels. With further globalization of industry, labor rates and material costs will continue to equilibrate, so product and mold designers may expect to best compete on the innovation and efficiency of their designs [7].

Adherence to standards and good engineering practices are vital to long-term competitiveness. The Society of the Plastics Industry (SPI) has provided specifications for Class 101, 102, and 103 molds intended for production of more than 1,000,000 cycles, 500,000 cycles, and 250,000 cycles, respectively. Some of the specifications are quantified. For example, Class 101 and 102 molds are required to have a Brinell Hardness Number (BHN) of 280 while Class 103 molds only require a BHN of 165. Other specifications are not quantitatively specified. For example, Class 101 molds are to have adequate channels for temperature control. Meanwhile, other specifications (like melt flow balancing and energy efficiency) are completely omitted. The engineering design and analysis methodologies presented throughout this book will assist product and mold designers to attain the best possible molds and molded products.

■ 1.7 Chapter Review

After reading this chapter, you should understand:

- the basic stages of the injection molding process,
- the primary functions of an injection mold,
- the most common types of injection molds (two-plate, three-plate, hot runner, single-cavity, multicavity, and multigated mold),
- the key components in an injection mold,
- the mold development process, and
- the motivation for standards in mold design and mold making.

In the next chapter, the typical requirements of a molded part are described along with design for injection molding guidelines. Afterwards, the mold layout design and detailed design of the various systems of a mold are presented.

References

- [1] Kazmer, D.O., D. Masato, L. Piccolo, K. Puleo, J. Krantz, V. Venoor, A. Colon, et al., *Multivariate Modeling of Mechanical Properties for Hot Runner Molded Bioplastics and a Recycled Polypropylene Blend*, Sustainability (2021) 13(14): p. 8102
- [2] Catanzaro, J.C. and R.M. Sparer, *Clamp force control*, U.S. Patent No. 5,149,471, Sept. 22 (1992)
- [3] Poprawe, R., W. Bleck, F.T. Piller, G. Schuh, S. Barg, A. Bohl, S. Bremen, et al., *Direct, mold-less production systems*, in *Integrative Production Technology*, Springer, Cham (2017) pp. 23-111
- [4] Huang, R., M. E. Riddle, D. Graziano, S. Das, S. Nimbalkar, J. Cresko, and E. Masanet, *Environmental and economic implications of distributed additive manufacturing: the case of injection mold tooling*, J. Ind. Ecol. (2017) 21(S1): pp. S130-S143
- [5] Quarnstrom, I.T., *Mold Base*, U.S. Patent No. 2,419,089, filed 6/9/44 (1947)
- [6] Fagade, A.A. and D.O. Kazmer, *Early cost estimation for injection molded components*, J. Injection Molding Technol. (2000) 4(3): pp. 97-106
- [7] Kazmer, D.O., *Manufacturing outsourcing, onshoring, and global equilibrium*, Business Horizons (2014) 57(4): pp. 463-472

2

Plastic Part Design

■ 2.1 The Product Development Process

Mold design is one significant activity in a much larger product development process. Since product and mold design are interdependent, it is useful for both product and mold design engineers to understand the plastic part development process and the role of mold design and mold making. A typical product development process is presented in Figure 2.1, which includes different stages for product definition, product design, business and production development, ramp-up, and launch.

How long does a product development process like that shown in Figure 2.1 take? Typically, a few months to years, depending on the complexity of the product and the number of design iterations required to develop functional components in an assembly. The most significant roadblock is the changes to the concept or layout design that impact the shape, thickness, or number of components that ripple through multiple mold design and qualification plans. To avoid such costly iterations, most product development processes share two critical attributes:

- a structured development plan [1] to coordinate concurrent design activities to ensure tracking and completeness of the design and manufacturing according to schedule and performance requirements, and
- a gated management process [2] to mitigate risk by allocating larger budgets only after significant reviews confirm expectations at project milestones.

The product development process shown in Figure 2.1 is split into multiple stages separated by approval toll-gates. An overview of each stage is next provided.

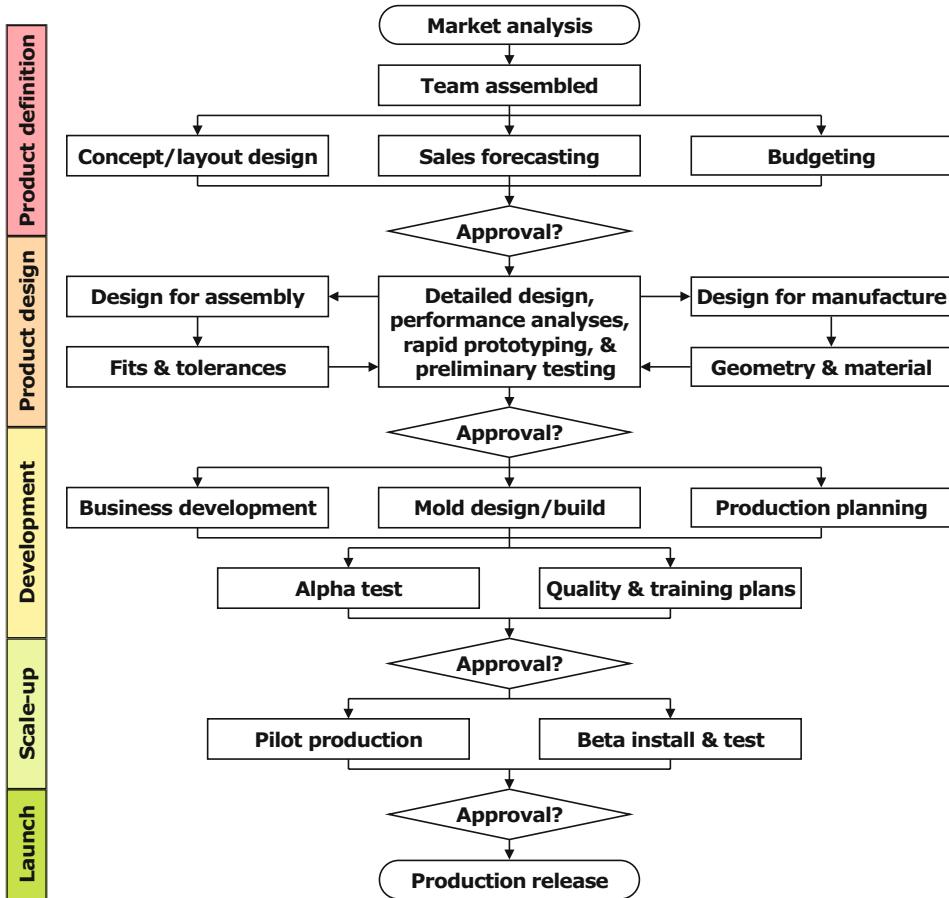


Figure 2.1 A product development process

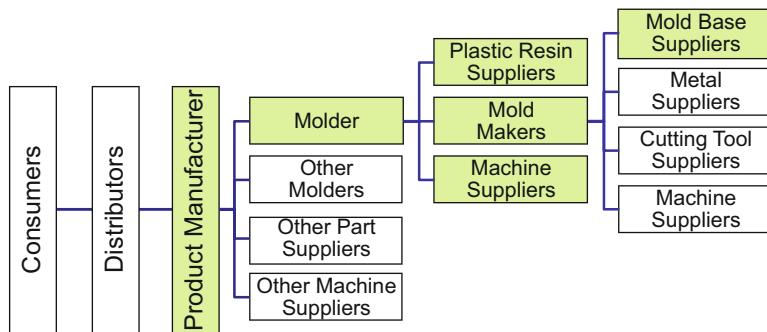
2.1.1 Product Definition

The product development process typically begins with product definition [3, 4], which includes a formal analysis of the market, benchmarking of competitors, definition of the product specifications, and assessment of potential profitability. If management agrees that a new product is to be developed, then an appropriate team is assembled to perform the early concept design and business development. During this first stage, the approximate size, properties, and cost of the product are estimated. Concept sketches, layout designs, and prototypes are produced to assess the viability of the product concept.

With respect to profitability, market studies during the early product development stage will strive to predict the potential sales at varying price points. At the same time, labor and project cost estimates will establish the budget required to develop

and bring the product to market. A management review of the concept design, sales forecast, and budget is usually performed to assess the likelihood of the commercial success of continued product development. At this time, the proposed product development project may be approved, declined, shelved, or modified accordingly.

2.1.2 Product Design


If the project is approved and a budget is allocated, then the product development process continues, usually with additional resources to perform further analysis and design. During this second stage, each component in the product is designed in detail. The design of plastic components may include the consideration of aesthetic, structural, thermal, manufacturing, and other requirements. Design for manufacturing methods [5] are used to identify issues that would inhibit the effective manufacturing of the components. Design for assembly methods [6] may be used to reduce the number of components, specify tolerances on critical dimensions, and ensure the economic assembly of the finished product.

The outcome of this product design stage (through the second management approval in Figure 2.1) is a detailed and validated product design. The term “detailed design” implies that every component is fully specified with respect to material, geometric form, surface finish, tolerances, supplier, and cost. If a custom plastic component is required, then quotes for the molded parts are often requested during this stage. These costs are presented to management along with the detailed design for approval. If the product design and costs are acceptable, then the required budget is allocated and the product development now focuses on manufacturing.

2.1.3 Development

While mold design is the focus of this book, all this content is encompassed by the single activity titled “Mold design/build” in Figure 2.1. At the same time, vital business development and production planning are being performed. Specifically, business development is required to fully define the supply chain as shown in Figure 2.2. A product manufacturer will typically work with multiple qualified molders that are typically supplied by plastic resin suppliers, mold makers, and machine suppliers. While not required, established product manufacturers often specify the suppliers to the molder to not only reduce risk but also develop strategic partnerships and potential cost or time advantages. The mold maker is a crucial supplier in this supply chain and works closely with the molder for the mainte-

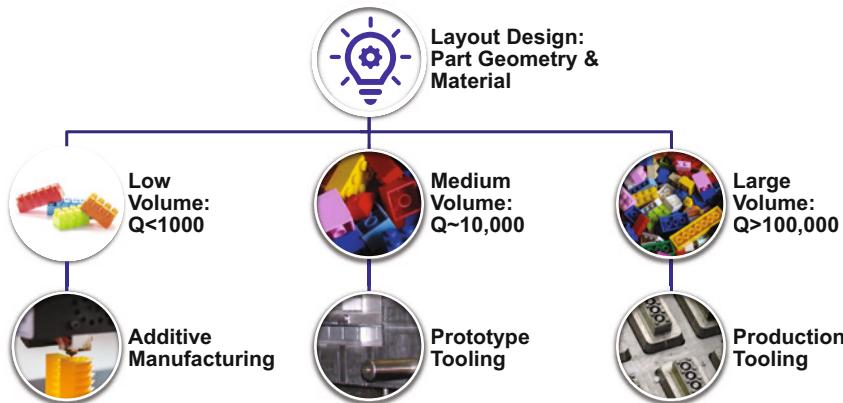
nance of the molds. However, the suppliers to the mold maker are rarely specified by the product manufacturer, though the choice of mold base supplier and mold standards are often specified in order to ensure consistent maintenance. As indicated at left in Figure 2.2, the business development must also consider the upstream supply chain including the distribution network and initial customer orders to support the product launch.

Figure 2.2 Product manufacturer supply chain

Concurrent with the mold design and making, production planning is required to lay out assembly lines, define labor requirements, and develop the manufacturing infrastructure. When the mold tooling is completed, “alpha” parts are produced, tested, and assembled. This “first article inspection” includes a battery of tests to verify performance levels, regulatory compliance, and user satisfaction. If the individual components or assembled alpha product are not satisfactory, then the manufacturing processes, associated tooling, and detailed component designs are adjusted as appropriate. Typical issues discovered at this stage include [7]:

- inappropriate performance with respect to stiffness, impact, thermal, color, assembly fits, or other attributes. These issues are often due to uncertain material properties, unidentified customer preferences that require changes to the design specification, or errors in analysis or simulation of the product performance.
- production of defective product due to mold design or tooling issues. Common examples include dimensions that are outside of specification due to shrinkage and warpage, as well as poor product aesthetics due to knit-lines, poor gating, or surface finish.
- excessive production costs related to material consumption or processing time. When quality issues are encountered, it is often possible to provide remedies through processing strategies that include increasing the temperatures, pressures, or cycle times, which then increase processing cost. Similarly, it is pos-

sible that only a fraction of the sampled products are acceptable, which results in increased material and inspection costs.


Mold designers will work with product designers and injection molders to optimize the molded product quality. Concurrently, the operations staff develops detailed plans governing quality control and worker training.

2.1.4 Scale-Up and Launch

A management review is often conducted to verify that the developed product designs and production plans are satisfactory. Prior to commercial sale, a pilot production run may be implemented at each manufacturing site to produce a moderate quantity of products to verify quality and define standard operating processes [8]. These manufactured “beta” products are frequently provided to the marketing department, sales force, and key customers to ensure product acceptability. As before, the design and manufacturing of the product may be revised to address any remaining issues. When all stakeholders (marketing, sales, manufacturing, critical suppliers, and critical customers) are satisfied, the pilot production processes are ramped up to build an initial inventory of the product (referred to as “filling the channels”), after which the product is released for sale.

2.1.5 Role of Mold Design in Manufacturing Strategy

Mold quoting, mold design, and mold making support this larger product development process. Requests for mold and/or part cost quotes are usually made towards the end of the concept design stage or near the beginning of the detailed design stage. The mold development process (first introduced in Figure 1.9) often begins with a preliminary design that is lacking in detail and would result in an unsatisfactory product if used directly. Still, the critical part design information required to begin the mold concept design includes the part size, wall thickness, and expected production quantity. Given just this information, a determination must be made as to the most appropriate manufacturing strategy as suggested in Figure 2.3 [9]. For applications requiring low production volumes, typically less than a hundred or a thousand parts, the lowest monetary and environmental costs and total production time can often be minimized through additive manufacturing [10]. Additive manufacturing is a slow and energy-efficient process compared to injection molding, however. As the production volume increases into the thousands of parts, injection molding with prototype tooling often made of CNC aluminum or other rapid prototyping materials is preferable. At large production volumes, injection molding with hardened production tooling is often most efficient.

Figure 2.3 Manufacturing strategy


If prototype or production tooling are planned, the mold designer can begin to develop initial mold layouts, cost estimates, and product design improvements [11]. To accelerate the product development process, mold design can be performed concurrently with the procurement and customization of the mold components. For better or for worse, mold making and commissioning occurs near the end of the product development process. For this reason, there can be significant pressure on mold suppliers and molders to provide high-quality moldings as soon as possible. This task can be extremely challenging given potential mistakes made earlier in the product design process. As such, mold designers may be required to redesign and change portions of the mold and work closely with molders to qualify the mold for production. To minimize such issues, product prototypes can be produced to verify function as next discussed.

■ 2.2 Prototyping Strategy

Innovative products often require many iterations to design and validate. Prototypes early in the new product development effort are useful to check the feasibility of a concept with respect to size, aesthetics, stiffness, and fits in assemblies, and to validate product function. While prototype molds can be used to provide high-quality prototypes and low volume production of molded products, 3D printing by additive manufacturing has enabled functional prototypes and even low to medium volume production in many applications.

The two primary performance measures for process selection (injection molding versus additive manufacturing processes) are cost and quality. Of these two deter-

minants, cost is easier to assess. Manufacturing services (such as Materialise, Protolabs, Shapeways, Xometry, and others) provide instant quoting for 3D printed products as well as near-instant quoting for injection molding. To investigate prototyping strategy, a bezel part design shown in Figure 2.4 is considered. The bezel is essentially a five-sided part that is roughly 240 mm long, 160 mm wide, and 11.5 mm high with a nominal wall thickness of 1.5 mm and volume of 27.5 cm³. Internal ribs and bosses are provided for stiffening and attachment. Multiple openings are provided on different sides along with an undercutting window and transverse bosses on one of the sides.

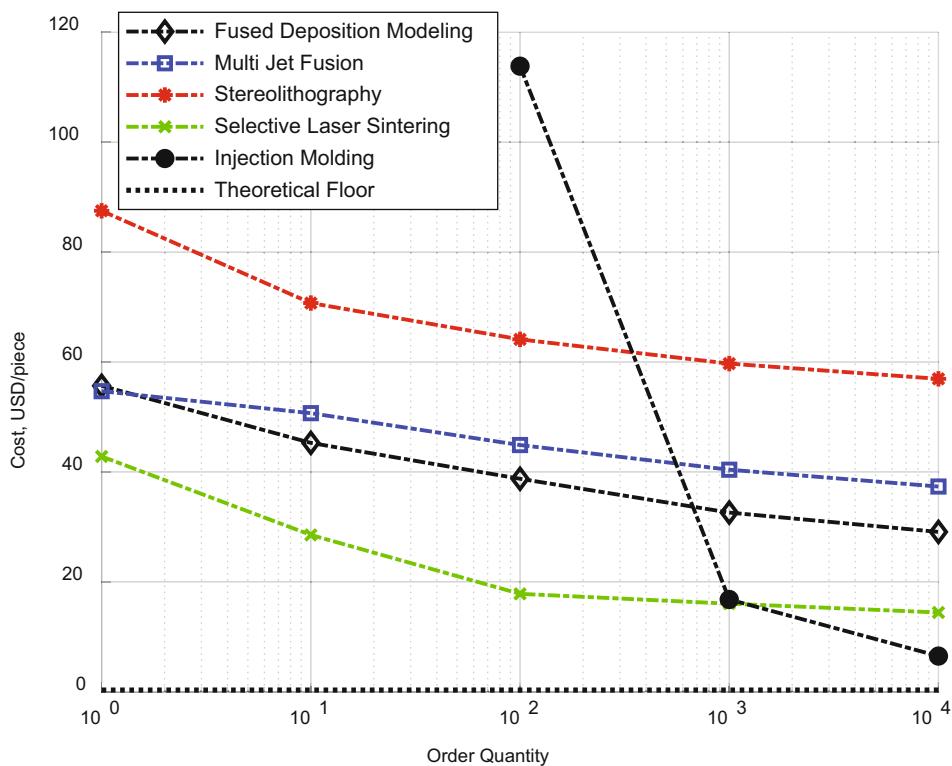


Figure 2.4 Bezel design

There are several types of 3D printing that may be used for rapid prototyping as well as cost-effective small- to medium-sized production runs. This section provides an overview of the most common processes along with cost estimates as of December, 2021. The quotes for 3D printing were provided from Xometry (<https://www.xometry.com/>) for the described bezel design that is also later used throughout the book; Xometry was selected as a representative provider of the most common processes. Other well-known services used by the author include 3DHubs, Hubs, Materialise, Protolabs, Shapeways, and others; aggregator sites such as CraftCloud also serve as a gateway to provide quotes from multiple service providers. The quote for the injection molded parts was provided by Protolabs and includes the side-action for forming the undercutting features on the side of the part. Please note that working closely with a service provider will lead to lower costs when requesting custom quotes for higher quantities of printed parts.

The quotes for producing the bezel design by the four popular 3D printing processes as well as injection molding are plotted in Figure 2.5; a semi-log scale is applied given that the production volume spans a large range. There are several important items of note. First, the cost per piece varies significantly as a function of the production volume—most spectacularly with injection molding. The reason is that there is an upfront cost for the mold, which thereafter allows for lower material and processing costs. Second, the additive manufacturing processes have quite different cost curves. Selective Laser Sintering (SLS) currently provides the

lowest cost, while stereolithography (SLA) has the highest cost. The reason for these cost behaviors is related to fundamental processes and quality trade-offs as subsequently explained. Third, it is important to compare the costs with the theoretical minimum cost floor. This floor is reasonably estimated as twice the bulk material cost according to industry experience that approximates the processing, amortized tooling cost, and other costs as equal to the material cost. If the material costs \$4/kg and the part weighs 25 g, the theoretical minimum cost is around \$0.20 per part. Only injection molding can approach this cost, typically at production volumes above 100,000 units when using a well-designed mold.

Figure 2.5 Average part production cost

The cost data of Figure 2.5 is important, but certainly production time and product quality are also significant. Clearly, 3D printing processes can provide the shortest production time for low volume production. The bezel is a medium-sized part that would take several hours to produce by 3D printing. By using many printers in parallel, it is possible to rapidly produce multiple parts. For the procured quotes, Xometry indicated 2-day delivery for up to 10 pieces and 3-day delivery for up to 100 pieces. By comparison, injection molded parts typically require 15 days given

Index

Symbols

- 3D printing 62
 - porous vent inserts 284
- 3D printing, Continuous Liquid Interface Production (CLIP) 36
- 3D printing, Digital Light Processing (DLP) 35
- 3D printing, Fused Deposition Modeling 32
- 3D printing, fused filament fabrication 32
- 3D printing, material extrusion 32
- 3D printing, Selective Laser Sintering (SLS) 33
- 3D printing, stereolithography (SLA) 34

A

- acceptable quality levels 531, 550, 553
- acceptance sampling 553
- actuation 535
- actuation force 430
- additional draft 54
- additive manufacturing 62, 86, 334, 348
 - binder jet printing of metals 88
 - common mold insert materials 87
 - complexity 91
 - Continuous Liquid Interface Production, CLIP 88
 - design guidelines 91
 - Direct Metal Laser Sintering, DMLS 88, 96, 341
 - fillet radius 96
- finish machining 97
- Fused Deposition Modeling, FDM 88
- investment casting 87
- material properties 88
- minimum feature size 92
- minimum gap and wall thickness 93
- performance metrics 89
- Selective Laser Melting, SLM 341
- Selective Laser Sintering, SLS 88
- service providers 98
- surface roughness 95
- vat photopolymerization 87
- adiabatic mold filling 150, 592
- aesthetic defect 140
- aesthetics 45, 509
- aesthetic surface 444
- air channel 328
- allowance 116
- aluminum 309
- aluminum 6061-T6 454
- amorphous 380
- amortized cost 67
- angle pins 433, 438, 572
- anisotropic shrinkage 362
- anisotropy 382
- annealing 132
- anodizing 132
- A plate 6, 122, 183
- apparent shear rate 146
- application programming interface (API) 337
- artificial balancing 193
- automatic de-gating 13, 235, 246

automatic molding 441
Automotive Industry Action Group (AIAG)
 545
auxiliaries 71
auxiliary equipment 15
auxiliary systems 102
avoid uneven filling 139
axial compression
 - of cores 478
axial mold opening direction 110

B

baffles 316, 324
banana gate 247
barrel temperature 379
beam bending 462
bending 465
bill of materials 533, 535
binder jet printing 284
binder jet printing of metals 88
blush 72
bolt strength
 - ultimate stress 490
bore diameter 432
boss 49, 423
boss design 49
boundary conditions 314
B plate 6, 122
branched runners 227
breakeven analysis 99
Brinell Hardness Number 20, 128, 129
bronze gib 433
bubbler 325, 440
buckling 367, 391, 392
 - ejector pins 418
buckling constraint 420
buckling modes 374
bulk temperature 169
burn marks 72, 149, 159, 269
business development 25

C

CAD, computer-aided design 18
cam 439, 441
carbon black 382
carburizing 132
case hardening 132
cashew gate 247
cavities
 - shutting off during molding 569
cavity cost estimation 76
cavity discount factor 76, 77
cavity insert 107, 109, 115
cavity insert retainer plate 6
cavity layout 119
cavity pressure sensors 561
cavity pressure transducer 555
cavity retainer plate 439
chamfers 51, 416
changeover times 15
checklist
 - for mold design inspection 533
 - for mold layout design 134
cheek 116, 439, 470
circular layout 120
clamp force 225
clamp tonnage 70, 107, 124, 138,
 155
class 86
Class 101 mold 20, 126
Class 103 mold 20
clean room 433
clearance 424
closed-loop control 228
CNC machining 87
coefficient of friction (COF) 132
coefficient of linear thermal expansion
 358
coefficient of thermal expansion 353,
 381
coefficient of volumetric thermal
 expansion 358
coinjection 499
coinjection mold design 501
coinjection molding 499, 500

cold runner 8, 69, 70, 176, 178, 211, 219, 223
collapsible cores 440
color change 15, 102, 208, 214, 248
color matching 45
color streaking 249
common defects 72
compressibility 353, 356, 358
compression 465
compression molding 506
compression spring 436
compressive stress 409, 457, 488
- on cores 479
computational fluid dynamics (CFD) 315, 333
computational fluid dynamics, CFD 370
computed tomography system 549
computer-aided design 18
computer-aided engineering, CAE 41
computer simulation 541
concurrent engineering 17
conduction heating 344
conductive inserts 321
conductive pin 327
conformal cooling 331
- design methodologies 337
- heat transfer constraints 340
- lattice designs 336
- network designs 335
- risk 340
- serpentine designs 332
- spiral designs 332
conformal cooling lines
- surface roughness 95
constraints 494
contamination 72
continuous improvement 576
Continuous Liquid Interface Production, CLIP 88
contoured ejector pins 415
convective boundary 299
coolant 11
- properties 591
coolant manifolds 318
coolant temperature 316, 379
cooling 358
- air channel 328
- baffle 324
- complexity 293
- conductive pin 327
- conformal 331
- coolant flow rate 301, 332
- cooling line depth 305, 332
- cooling line pitch 308, 333
- cooling line routing 310, 333
- cooling power 300
- cooling time estimate 298
- heat pipe 326
- heat transfer 291
- heat transfer coefficient 298
- insulating layer 330
- internal manifold 319
- minimum time 296
- mold-making cost 292
- parallel setup 318
- post-mold 354
- reliability 293
- required coolant flow rate 301
- series setup 318
- shrinkage 354
- system design 291, 294, 318
- temperature distribution 312
- turbulent flow 302
- wall temperature 292
cooling circuit 318
cooling insert 320, 323
cooling line 11, 115
- layout 119
- maintenance 573
- networks 318
cooling plugs 304
cooling simulation 313
cooling stage 3
cooling system 70, 82, 291
cooling system cost 83
cooling time 3, 11, 206, 291, 299, 315, 345, 379, 515, 544
- estimate 294

- copper 309
- core 11, 478
 - minimum wall thickness 480
 - slender 482
- core back 515
- core-back molding 517
- core bending 481
- core deflection 481
- core height 482
- core insert 107, 109, 115
 - with stripper plate 424
- core insert retainer plate 6
- core pull 398, 428
 - actuators 398
 - electric linear actuator 433
 - hydraulic 433
 - pneumatic 433
- corner design 50
- corrosion
 - in cooling lines 573
- cost drivers 66
- cost estimates 24
- cost plus 63, 531
- cracks 453, 476
 - in molds 574
- critical milestones 41
- critical stress 143
- Cross-WLF model 143
- CTE. See coefficient of thermal expansion
- Cu 940 321
- cycle efficiency 70
- cycle efficiency factor 70, 72
- cycle time 3, 16, 42, 70, 291, 334, 345, 515, 518
 - reduction 542, 545
- cycle time estimate 299
- cyclic stresses 453

- D**
- data automation 558
- daylight 14, 124, 187, 396
- dead pockets 273, 281
- deep cores 323, 478

- defect
 - race-tracking 160
- defect cost per part 72
- defects 370
 - burn marks 149
 - flash 149
 - hesitation 140
 - jetting 140
 - short shot 140, 171
 - warpage 140
- defects per million opportunities 549, 550
- deflection 439, 457, 462
 - side walls 471
- deflection temperature under load 295
- degradation 124
- delivery terms 64
- density 294, 382
- design changes 391
- design for additive manufacturing 91
- design for assembly 25, 45
- design for injection molding 46
- design for manufacturing 25, 45
- design for manufacturing and assembly 353
- design iterations 17
- design of experiments, DOE 384, 552, 562
- design requirements 40
- design standards 43
- detailed design 25
- development time 16
- diaphragm 243
- diaphragm gate 244
- dieseling 269
- die set for mold stack height 536
- differential shrinkage 46, 291, 313, 365
- dimensional adjustments 117
- dimensional consistency 378, 379
- dimensional metrology 548
 - computer tomography (CT) 548
 - coordinate measurement machines 548
 - optical image recognition 548
- dimensions 43

Direct Metal Laser Sintering, DMLS 88, 284
discount factor 76, 77
dispute
- during mold commissioning 530
documentation
- of mold design 533
double domain 356
dowels 485, 492
draft angle 53
drawings
- layout of subsystems 533
- of mold design 533
drive-interference fit 486
drops 187
dry cycle 536, 540, 570
DTUL. See deflection temperature under load
dynamic melt control 228
Dynisco 555

E

early ejector return 436
edge gate 240
effective area 404, 405
efficiency 70
ejection 53, 354
- coefficient of friction 403
- internal stresses 402
- molding machine setup 398
- normal force 402
- part removal system 399
- surface roughness 403
ejection force 402, 406, 413
- hoop stress 405
- pin-to-pin variations 420
- unbalanced 428
- undercuts 427
ejection stage 398
ejection system 395, 438
- cooling interference 400
- cost 401
- ejection forces 398
- mold opening 398

- part aesthetics 400
- part distortion 399
- positive return 438
- reverse ejection 401
- speed 399
ejection temperature 296, 404
ejector
- layout 413
- positive return 436
ejector assembly 395
ejector blade 420
- buckling 422
ejector housing 6, 122, 444
ejector knock-out rod 396, 436, 464
ejector locations 138
ejector pad 414
ejector pin 220, 272, 280, 395, 418, 464
- buckling 419
- clearance 280
- contoured 55
- stepped 420
ejector plate 11, 180, 395, 436, 444
ejector retainer plate 395, 417
ejectors
- alignment 417
- clearance 417
- compressive stresses 410
- detailing 416
- interference 415
- number 411
- placement 413
- push area 409
- push-pin 410
- shear stress 410
- size 411
- sliding bearing 416
- stripper plate 424
- total required perimeter 410
ejector sleeve 415, 423
ejector system 82
- design process 402
- design strategies 411
ejector system cost 83
ejector travel 122
elastic deformation 426

first article inspection 18, 532, 545
fit for purpose 1
fits 485
- apparent diameter 486
- clearance 485
- insertion force 487
- interference 486
- locational-clearance 492
- locational-interference 492
- locational-transitional 492
- retention force 486
- unilateral hole basis 486
- using dowels 492
fixed core pin 423
flash 72, 111, 149, 270, 543
flash gate 243
flashing 455
flow channel 152, 505
flow leaders 5, 160, 162, 484
flow length 251
flow rate 176
fluid assist 500
fluid assisted molding 503
foam 500
fountain flow 362
freeze-off 11
fully automatic 70, 220
fully automatic molding 13
Fused Deposition Modeling, FDM 88

G

gantry robots 399
gas assist 500
gas assist molding 503
gas traps 159, 179, 272, 281
gate 11, 180, 235
- ring 484
gate freeze-off 555
gate freeze time 258, 317, 539, 542
gate types 254
gate well 239
gating
- automatic de-gating 235
- comparison 254

- design recommendations 255
- diaphragm gate 243
- direct sprue 238
- edge gate 240
- fan gate 242
- film gate 243
- fine-tuning 261
- flash gate 243
- gating location 251
- objectives 235
- pack time 237
- pin-point gate 239
- pressure drops 257
- shear rates 236, 255
- submarine gate 247
- tab gate 241
- thermal gate 247
- thermal sprue gate 249
- tunnel gate 245
- vestige 236
gating design 235, 251
gating flexibility 13, 15, 16
gating location 137, 152
gauge repeatability and reproducibility 387, 546
generative design 336
geometric distortion 46
gibs 438
glass bead 382
glass fiber 382
glass-filled 363
gloss 341, 345, 347
gloss level 45
grid layout 120
grinding 78
guide pins and bushings 8
guides
- for ejector blades 421
gusset 49

H

H13 steel 130
Hagen-Poiseuille 197, 262, 305
hardness 128

HDT 295
heat conduction 294
heat content
– of moldings 300
heat deflection or distortion temperature
295
heat deflection temperature (HDT) 317
heater resistance 536
heat flux 308
heating element 509
heat load 345
heat pipes 326
heat transfer 11
– insulating layer 348
heat transfer coefficient 298
heel block 434
height allowance 116
height dimension 115
helix 442
hesitation 140
hoop stress
– in cores 480
hot runner 67, 81, 176, 187, 209, 214,
223, 247
– color change 178
– maintenance 572, 573
– residence time 178
– turnover 178
hot runner mold 14, 16
hot runner system
– configurations 189
– H manifold 189
– stacked manifolds 189
– straight-bar 189
– X manifold 189
hot spots 321
hot sprue bushing 14, 187
hourly rate 70
hybrid layout 120, 121
hydraulic actuators 431
hydraulic diameter 216

I

improper color match 72
increased molding productivity 15
indexing head 513
indirect costs 66
induction heating 345
Industry 4.0 553, 566
initial investment 16
injection blow molding 511
injection blow molds 511
injection compression 440, 500, 503
injection compression molding, ICM 377
injection decompression 503
injection mold 6
– cavities 11
– functions 4
– hot runner 14
– three-plate 12
– two-plate 6
injection molding
– cooling stage 544
– filling stage 540
– fully automatic molding 570
– packing stage 542
– process capability 549
– semiautomatic mode 570
injection molding process 1, 2, 16
injection molding process timings 3
injection molding simulations 285
injection pressure 124
– maximum 138, 541
injection velocity 541
injection velocity profiling 541
ink
– after mold rebuilding 574
– to check fits 536
in-mold data 554
in-mold decoration 521
in-mold film
– indexed 523
– statically charged film 522
in-mold instrumentation 556
– process data 557
in-mold sensors 383

insert cost finishing factors 79
insert cost machining factors 78
insert creation 115
insertion force 485
insert mold 505, 506, 507
insert sizing guidelines 115
inspections 68
instrumentation 287, 554
insulated runner 223
intellectual property 65, 98
interlock 429
interlocking 483
interlocking core 328
interlocking features 113
internal corners 322
internal threads 56, 441
internal voids 48
intrusive thermocouple 555
investment casting 87
isothermal boundary 297
isotropic 361

J

jetting 149, 237, 538

K

key product characteristics 529, 553
keyway 428
Kistler 555
knit-line 179
knit-line location 509

L

laminar flow 196
lay flat 138, 152, 157
layout design
– conflict 121
lean manufacturing 102, 319
length dimension 116
liability
– mold designer/maker 532
– molder 569

life cycle cost 1, 525
lifter 56
lights out 561, 564
limit stress 127, 452, 454
limit switches 433
linear flow velocity 146
linear melt flow 242
linear melt velocity 191
linear shrinkage 361
linear velocity 141
locating dowel 424
locating pins 485
locating ring 7
locational-interference fit 486
lofted surfaces 113
lost core molding 56, 509
lubricity 132

M

machine capability factor 70
machining and wear performance 129
machining rate 129
maintenance 64
– venting 270
maintenance cost 16, 68
maintenance plan 531
managed heat transfer 347
manifold 187, 226, 511
– cooling 319
manufacturing strategy 27, 102
– for purchasing molds 530
marginal cost 100
master unit die 62
material consumption 16
material cost per part 67, 69
materials cost 66
material supplier 388
material waste 69
Matlab 562
maximum cavity pressure 138
maximum deflection 466
maximum diameter 303
maximum shear stress 470

- maximum stroke 421
- mechanisms 536, 572
- Melt Flipper 194, 227, 228
- melt flow
 - pressure drop 148
 - velocity profile 147
- melt flow index, MFI 214
- melt front advancement 138
- melt front velocity 538
- melt pressure 137, 176
 - injection limit 177
 - maximum, due to endurance stress 306
- melt pressure transducer 555
- melt temperature 356
- melt velocity 592
- mesh 315
- MeshMixer 338
- metrology 553
- MFI, melt flow index 143
- mica 382
- microfinish 52
- micro-machining 78
- minimum cooling line diameter 303
- minimum draft angle 54
- minimum wall thickness 154
- Minitab 562
- mirror finish 51
- modulus 404
- mold acceptance 529
- mold base 18, 73, 107, 121, 124
- mold base cost estimation 74
- mold base selection 119
- mold base sizing 121
- mold base suppliers 124
- mold cavity 2, 108
- mold commissioning 18, 45, 383, 529
 - component verification 535
 - general process 532
 - mold assembly 535
 - mold map 571
 - mold verification 532
 - process 532
 - recommissioning 574
 - saving the last molding 572
- mold cost estimation 73
- mold cost per part 67
- mold customer 63
- mold customization 81
- mold defect codes 571
- mold design 16, 23, 27
- mold development process 16, 17, 27
- mold dimensions 75
- molded-in stresses 354
- molded part cost estimation 65
- Moldex3D 314, 338, 369, 378, 392, 406
- mold filling analysis 137
- mold filling simulation 138, 163
 - lay-flat analysis 152
- Moldflow 369, 375, 392
- mold flow analysis 137
- mold functions 4
- molding cycle 358
- molding machine 70
- molding machine capability 71
- molding machine compatibility 123
- molding processes
 - strategic advantages 497
- molding process instabilities 538
- molding process setup sheet 537
- molding productivity 16
- molding simulation 313, 452.
 - see also* simulation
 - ejection force prediction 406
 - shrinkage 373
 - warpage 391, 392
- molding trial methodology 540
- molding trials 18, 64, 540
- mold insert 428
- mold inspection checklist 534
- mold instrumentation 287
- mold interlocks 472
- mold layout design 75, 107
- mold log and maintenance checklist 569
- mold maintenance 52, 124, 568
 - post-molding 568, 572
 - pre-molding 568, 570
 - rebuilding 568
 - regular preventive 568, 572

mold manual 533
mold map 570
mold material
- commodity 589
- nonferrous 588
- properties 588
- specialty 590
mold materials
- A2 128, 130
- aluminum 6061-T6 126
- aluminum 7075-T6 126
- aluminum QC10 126
- C-18200 128
- D2 128
- digital ABS 130
- grain structure 131
- H13 128
- SS420 126
- Ultem (PEI) 130
mold material selection 126, 135
mold opening direction 107, 108
mold opening distance 184
mold-opening height 14
mold operating log 571
mold procurement 61
mold purchase agreement 64
mold quoting 27, 63
mold rebuilding 68, 573
mold reset time 3
mold sensors 554
mold setup time 319
mold structures 6
mold supplier 64
mold surface temperature 339
mold technology 497
mold technology selection 498
mold temperature controllers 301
mold temperature difference 317, 334, 336, 338, 365
mold texturing 53
mold wall temperature control 341
- conduction heating 344
- induction heating 346
- insert mold 507
- managed heat transfer 347
- passive heating 347
- pulsed cooling 342
moment of inertia 419, 422, 462, 482
moving cavity inserts 438
moving core 398, 429
moving half 11, 471
moving platen 11, 123
moving side 400
multicavity molds 8, 119
multigated 14
multilayer injection blow molding 513
multishot molding 330
multishot molds 515
multi-station 515
multi-station mold 519
multivariate analysis, MVA 566
multivariate modeling 554, 561
multivariate sensing 4

N

naturally balanced 188, 196
naturally balanced feed system 120
near net shape manufacturing 97
net shape manufacturing 1
Newtonian 257
Newtonian limit 143
Newtonian model 145, 197
nitriding 132
no-flow temperature 259
nominal dimensions 390
nominal shrinkage rate 380
nonuniform shrinkage 543
normal probability 547
nozzles 187

O

oil, for cooling 305
one-sided heat flow 328, 516
opening time 187
open-loop control 230
operating cost 16
orientation 140
orifice diameter 122

original design manufacturer 46
original equipment manufacturer 46
overfilling 179
overmolding 330, 515, 516
over-packing 139, 383, 539
overpressure 481, 494

P

P20 steel 126, 128, 130, 451
packing 358
packing pressure 356, 539, 542
packing stage 2
packing stage profiling 543
packing time 3, 237, 379, 542
pack pressure profiling 380, 391, 542
parison 513, 514
part cost 66
part dimensions 542
part fracture 370
parting line 111, 112, 114
parting plane 9, 107, 109, 112, 121, 180, 270, 277, 471
parting surfaces 402
part interior 273
payment terms 41
peak clamp tonnage 156
physical vapor deposition 132
pilot production 27
pin length 420
pin-point gate 239
planetary gears 443
plastic
– material properties 580
plastication 358
plastication stage 2
plastication time 3
plastic part design 23
plate bending 450, 460
plate compression 457
platen deflection 456
platens
– bending 450
plating 132, 574

polymer
– amorphous 357
– anisotropic shrinkage 363
– compressibility 358
– semicrystalline 357
poor gloss 72
Porcerax 283
porous metals 283
power law 197, 200, 257
power law index 143, 147, 148
power law model 147
power law regime 143
preliminary quote 17
preloading 468
pressure difference 482
pressure drop 138, 141, 176, 196, 257, 303
– annulus 218
– channel flow 146
– gates 236
– in vents 276
– tube flow 197
pressure test
– of water lines and feed system 536
pressure transmission 15, 16
pressure-volume-temperature 386
preventive maintenance 68, 554
Priamus 555
Principal Component Analysis, PCA 564
process automation 3, 553
process capability index 547
– rolled-up 551
process conditions 315
processing conditions 149
– robust 552
processing cost per part 67, 70
processing limits 551
process optimization
– of injection molding 531
process simulation 163
process window 551
process window development 551
product definition 24
product design 16, 25
product development process 23, 27

production data 42
production flexibility 102
production part approval process, PPAP 545, 550, 566
production planning 25, 42
projected area 71
projections 516
prototype mold 389
prototype molding 45
prototype tooling 86
pulsed cooling 342
purchase agreement
– for injection molds 529, 533
– warranties for injection molds 532
purchase agreements
– for molded products 531
purchase cost 16
purge 208
purging 15
push area 409
push-pin 370, 399, 410
– defect 545
PvT, pressure-volume-temperature behavior 356

Q

QC7 aluminum 451
QC10 aluminum 321
quality assurance 4, 553
quality assurance methodology 553, 565
quick ship 125
quoting process 63, 191

R

race-tracking 159, 160
radial flow 242
radial mold opening direction 109
rails 6, 395
rear clamp plate 6, 395, 463
recommended melt velocity 150, 151
recyclability 525

recycled material 513
reduced material consumption 15
reduce setup times 102
regulatory agencies 41
replacement parts 531
requests for quotes 63
required heat transfer rate 300
residence time 208
residual stress 11, 140, 354
retainer plate 115, 433
return pins 395
reverse ejection 444
rework
– cost of 530
Reynolds number 196, 302, 316
RFQs, request for quote 63
rheology 143
rib design 48
root cause analysis 529
rotating cores 442
R statistical language 562
rubber 382
rule of thumb 299
runner 10, 176, 180, 183.
see feed system
– annulus 217
– full round 215
– half-round 215
– hydraulic diameter 216
– round-bottom 215
– shut-offs 220
– standard sizes 222
– trapezoidal 215
runner volume 198

S

safety margin 137
scientific molding 169, 532, 539, 554
Selective Laser Melting, SLM 284
Selective Laser Sintering, SLS 88
self-regulating valve 230
self-threading screws 49
semiautomatic 70
semicrystalline 380

- sensor
 - cavity pressure 383
 - cavity temperature 383
- sensor stack 383
- series layout 119, 193
- service providers 98
- setup sheet
 - for molding 536
- sharp corners 50
- shear heating 538
- shear rate 140, 143, 255
 - maximum 255
- shear stress 140, 142, 409, 439, 460, 473, 523
- shear thinning 148
- shims 535
- short shot 72, 140, 149, 176, 237, 286
- short shot studies 540
- shot size 124, 541
- shot volume 124
- shot weight stability studies 3
- shrinkage 11, 140, 353, 354, 500
 - anisotropic 363
 - contractual obligation 389
 - gating dependence 375
 - in-mold 387, 544
 - linear 354, 361
 - lower limit 382
 - negative 383
 - pack pressure profiling 380
 - post-mold 387
 - post-molding 544
 - processing corrections 379
 - recommendation 388
 - test mold 388
 - uncertainty 388
 - uniformity 391
 - upper limit 382
 - validation 383
 - volumetric 361
- shrinkage analysis 355
- shrinkage behavior 45
- shrinkage range 382
- shut-offs 114
- shut-off surface 272
- side action 428
- side wall
 - deflection 470
- side walls 439
 - bending due to shear 470
- signal to noise ratio 555
- simulation. *See* molding simulation
 - advanced methodology 314
 - cooling 313
 - Moldex3D 163
 - mold filling 163
 - Moldflow 163
 - post-processing 166
 - pre-processing 163
 - Sigmasoft 163
 - Simpoe 163
 - venting 285
- single cavity 14
- single-cavity mold 119
- sink 48, 241
- sink marks 347
- sintered vent 282
- slender 483
- slender core 323, 328
- slides 433
- sideways 438
- sliding cores 433
- sliding fit 428, 500
- snap beam 54
- snap finger 54
- s-n, stress-number fatigue curve 453, 591
- Society of the Plastics Industry 20, 51
- socket head cap screws 6, 485, 489
- solidification temperature 404
- solidified plug 247
- solidified skin 341
- SolidWorks 163, 314, 337
- solvent 516
- specification limits 547
- specific heat 294
- specific volume 380
 - relation to shrinkage 360
- SPI finish 52
- splay 72, 237, 538

- split cavity 511, 513
- split cavity design 110
- split cavity mold 110, 402, 438
- sprue 122, 176
- sprue break 182
- sprue bushing 10, 180, 183
- sprue gate 238
- sprue knock-out pin 180
- sprue pickers 399
- sprue pullers 12, 184, 219
- SS420 steel 130
- stack height 122, 124, 187, 226, 456
- stack molds 225, 521
- staged deployment 390
- stagnant material 248
- standards 20
- start-up times 16
- stationary half 11, 471
- statistical process control 553
- steady flow 141
- steel safe 177, 213, 255, 266, 389, 392, 415
- steel-safe design 222
 - of additively manufactured components 97
- stop pins 395
- strain 426, 451, 457
- strength 127
- stress 451
 - during ejection 427
 - ultimate 452
 - von Mises 451
 - yield 451
- stress concentrations
 - due to cooling lines 305
 - ejector holes 475
 - water lines 475
- stress-strain behavior 451
- stripper bolt 12, 184
- stripper plate 12, 183, 424
- structural and thermal performance 128
- structural design 84, 449
 - minimize stress 450
 - mold deflection 455
- mold size 456
- safety factor 452
- structural integrity 293
- structural system design 449
 - cost 84
- structured development 23
- submarine gate 247
- sub-runners 254
- sucker pins 184, 219, 247
- superposition 465
- supply chain 4, 19, 25, 64, 192
- support pillars 456, 463
- support plate 6, 122, 395, 439, 463
- surface area removal rate 591
- surface defects 72
- surface finish 51
- surface refinishing 574
- surface roughness 52, 53, 95
- surface texture 51, 52
- surface treatments 131
- sustainability 1, 213, 214, 433, 498, 500, 515, 525, 559
 - concerns 57
 - hot runners 187
 - recycled material 513
- switchover 569
 - position 542, 543
 - surge forward 543
- switchover condition 541
- synthetic data 558, 560, 563, 566
- systems integration 554

T

- tab gate 241
- Tait equation 356
- technical feasibility 41
- Tempco 555
- temperature
 - coolant 316
 - molded plastic 316
 - mold temperature difference 316
- temperature differences 347
- temperature differential 318
- temperature fluctuations 341

temperature gradient 291, 308, 313
temperature variation 310
tensile stress 404
thermal conductivity 291, 294
thermal contact resistance 312, 400
thermal contraction 353
thermal diffusivity 3, 294
thermal expansion 353, 358
thermal gate 14, 247
thermal sprue gate 249
thermal strain 404
thermocouple 536
thermoplastic elastomer 330
thermoreactive diffusion 132
thickness 69
thin wall 149, 177, 342, 477
three-plate 176, 182, 187, 219
three-plate mold 12, 13, 16, 224
thrust pads 188
tie bar 123
– tension 450
tie bar spacing 123
tight tolerance 44, 342, 355, 376, 379, 381, 389, 391, 455, 457
tolerance 43, 390
– stack-up 415, 416
tolerance limit 486
tolerances
– tight 355
– typical 355
tolerance specifications 44
tolerance stack-up 424
toll-gate process 23
top clamp plate 6
torpedo 247
total cost 85
TPE, thermoplastic elastomer 330
tuning loops 529
tunnel gate 244
turbulent flow 302
turret drives 521
two-cavity 8
two-plate 176, 180, 187
two-plate mold 7, 12, 16
two-shot molding 330

type of gate 138
typical tolerance 44

U

ultimate stress 127
undercut 54, 246, 402, 426, 428, 516
– horizontal boss 54
– internal thread 56
– overhang 54
– side window 54
– snap finger 54
undercutting 440
uniformly distributed 413
uniform wall thickness 46
unsupported spans 461

V

valve gate 226, 250
valve pin 217, 250
vat photopolymerization 87
vent
– thickness 275
vent channel 278
venting 269, 416
– analysis 270
– dead pockets 281
– defects 269
– design 271, 277
– dimensions 274
– ejector pins 280
– flashing 270
– locations 138, 271
– maintenance 270, 287
– porous metals 282
– pressure drop 276
– relief 278
– thickness 275, 277
vent sensors 287
vertically integrated molders 64
viscosity 140, 143
– Arrhenius temperature dependence 144
– Cross-WLF model 143

- Newtonian model 145
- Newtonian plateau 144
- power law model 147
- power law regime 143
- WLF temperature dependence 144
- viscous flow 140
- volumetric flow rate 146, 148, 204
- volumetric removal rate 591
- volumetric shrinkage 48, 358, 542
- von Mises stress 450, 451, 475

W

- wall thickness 47, 137
- minimum 152
- warpage 72, 140, 291, 353, 374
 - avoidance strategies 391
 - compensation 392
 - differential shrinkage 365
 - out of plane deflection 366
 - pressure gradient 366
 - radius of curvature 365
 - sources 365
 - temperature gradient 365
 - windage 392

- water assist 500
- water assist molding 503
- water bottles 513
- water lines 570
 - maintenance 572
- wear
 - maintenance of 573
- wear plates 439
- weld line 159, 271
- width dimension 116
- willingness to pay 4
- windage 392
- window 114
- witness line 111, 114, 401, 426, 442
- witness mark 236, 400, 444, 515
- worst-case scenario 452, 490

Y

- yield 67, 73, 549
- yield estimates 73
- yield stress 127

Z

- zero shear viscosity 144, 145