Contents

Introduction ---- V

1	Function spaces —— 1
1.1	Prerequisites and notation —— 1
	Locally convex topological vector spaces — 1
	Linear operators —— 2
	The dual space —— 2
	Polar topologies —— 3
	σ -rings —— 4
	Vector-valued functions —— 5
	Extended number systems —— 5
	Semicontinuous functions —— 6
	Convex sets —— 6
1.2	Spaces of vector-valued functions that vanish at infinity —— 6
	Neighborhood functions —— 7
	Function space neighborhoods —— 7
	Function space neighborhood systems —— 8
	Functions that vanish at infinity —— 8
	Weakly lower continuous neighborhood functions —— 8
	The function spaces $C_{\mathfrak{V}}(X, E)$ — 10
	Examples —— 12
	Function subspaces —— 19
1.3	Compactness in spaces of linear operators —— 19
	Bounded operators —— 20
	Compact and weakly compact operators —— 23
	Examples —— 28
1.4	Vector space extensions —— 29
	Locally convex cones —— 30
	The dual cone —— 31
	Sub and superlinear functionals —— 32
	Convex sets and sublinear functionals —— 33
	The locally convex cone \mathcal{P}_{E} —— 36
	The locally convex cone Q_F — 37
	Elements of Q_F representing convex sets — 42
	Examples —— 42
	The cone $\mathcal{F}(X, Conv(E))$ — 45
2	Integration —— 47
2.1	Operator-valued measures —— 48
	Definition of an operator-valued measure —— 48

	$\mathfrak{L}(E, F^{*\bullet})$ -valued measures —— 48
	Modulus of a measure —— 50
	Bounded measures —— 51
	Variation of a measure —— 53
	Measure of bounded variation —— 56
	Examples —— 56
	Compact and weakly compact measures —— 60
	Restriction of a measure —— 60
	Sets of measure zero —— 60
	Properties that hold almost everywhere —— 61
	Point evaluation measures —— 62
	Regularity of measures —— 62
	Composition measures —— 67
2.2	Measurable functions —— 68
	Set-valued step functions — 68
	Measurable vector-valued functions — 70
	Measurable set-valued functions — 73
	Examples —— 83
	Composition of measurable functions —— 85
2.3	Integrals of set-valued functions —— 86
	Integrals of step functions —— 87
	Integrals of measurable functions —— 88
	Integrals of set-valued functions —— 101
	Integrals over sets in \mathfrak{R} — 102
	Integrals over sets in \mathfrak{A} — 103
	Integrals of vector-valued functions —— 111
	Examples —— 115
	Integrals with respect to composition measures —— 117
2.4	The convergence theorems —— 123
	The relative topologies —— 129
	Sequences of set-valued functions —— 130
	The convergence theorem —— 133
	Examples —— 137
2.5	Measures as linear operators —— 139
	Properties of operators defined by an integral —— 142
	Properties of measures representing an operator —— 146
	Examples —— 148
2.6	Integral representation —— 149
	The representation theorem —— 149
	Positive operators —— 156
	Lattice homomorphisms —— 157
	Algebra homomorphisms —— 158

Compositions of operators with real- or complex-valued functions —— 161 Point evaluation operators —— 163 Examples and Remarks — 164 Choquet theory —— 168 3 3.1 C(X)-convex sets and functionals —— **168** C(X)-convex sets — 172 Ω -extremal point evaluations — 175 Elementary operators — 185 Examples — 187 3.2 A Choquet ordering for linear operators on function spaces —— 189 Choquet cone —— 189 Choquet ordering —— 190 Upper and lower envelopes —— 191 Minimal elements — 196 The Choquet boundary — 197 C-superharmonic sets - 204 3.3 Special cases and examples — 214 The case that X is compact and that $E = F = \mathbb{R}$ — 214 Sample settings in the general case —— 215 The case that $F = \mathbb{R}$ or $F = \mathbb{C}$ — 223 The case that $E = \mathbb{R}$ or $E = \mathbb{C}$ —— 224 Examples --- 227 The case that both E and F are either \mathbb{R} or \mathbb{C} — 229 Examples —— 238 The case that both E and F are ordered topological vector spaces — **240** The case that both E and F are topological vector lattices — 242 List of Symbols --- 243 Bibliography ---- 245 Further Reading — 247 Index ---- 249

The spectral theorem —— 160