Contents

Pro	eface		• • • • • • • • • • • • • • • • • • • •	vii
1	Vecto	or Algel	ora I: Scalars and Vectors	1
	1.1		s and Vectors	
	1.2		on of Vectors	
		1.2.1	Sum of Two Vectors: Geometrical Addition	
	1.3	Subtra	ction of Vectors	
	1.4		onents and Projection of a Vector	
	1.5		onent Representation in Coordinate Systems	
		1.5.1	Position Vector	9
		1.5.2	Unit Vectors	
		1.5.3	Component Representation of a Vector	
		1.5.4	Representation of the Sum of Two Vectors	
			in Terms of Their Components	12
		1.5.5	Subtraction of Vectors in Terms of their Components	13
	1.6	Multip	olication of a Vector by a Scalar	
	1.7	-	tude of a Vector	
2	Vecto	or Algel	ora II: Scalar and Vector Products	23
	2.1		Product	
		2.1.1	Application: Equation of a Line and a Plane	
		2.1.2	Special Cases	
		2.1.3	Commutative and Distributive Laws	
		2.1.4	Scalar Product in Terms of the Components of the Vectors.	27
	2.2	Vector	Product	30
		2.2.1	Torque	
		2.2.2	Torque as a Vector	
		2.2.3	Definition of the Vector Product	
		2.2.4	Special Cases	
		2.2.5	Anti-Commutative Law for Vector Products	
		2.2.6	Components of the Vector Product	
				-

xii Contents

3	Fun	ctions .		39		
	3.1		Mathematical Concept of Functions			
		and its	s Meaning in Physics and Engineering	39		
		3.1.1	Introduction			
		3.1.2	The Concept of a Function	40		
	3.2	Graph	ical Representation of Functions	42		
		3.2.1	Coordinate System, Position Vector	42		
		3.2.2	The Linear Function: The Straight Line			
		3.2.3	Graph Plotting			
	3.3	Quadi	ratic Equations	47		
	3.4	Param	netric Changes of Functions and Their Graphs	49		
	3.5		e Functions			
	3.6	Trigo	nometric or Circular Functions			
		3.6.1	Unit Circle			
		3.6.2	Sine Function			
		3.6.3	Cosine Function			
		3.6.4	Relationships Between the Sine and Cosine Functions			
		3.6.5	Tangent and Cotangent			
		3.6.6	Addition Formulae			
	3.7		e Trigonometric Functions			
	3.8	Functi	ion of a Function (Composition)	66		
4	Exp	Exponential, Logarithmic and Hyperbolic Functions				
	4.1	Power	rs, Exponential Function			
		4.1.1	Powers			
		4.1.2	Laws of Indices or Exponents	70		
		4.1.3	Binomial Theorem	71		
		4.1.4	Exponential Function			
	4.2	Logar	ithm, Logarithmic Function			
		4.2.1	Logarithm			
		4.2.2	Operations with Logarithms			
		4.2.3	Logarithmic Functions			
	4.3	Hyper	bolic Functions and Inverse Hyperbolic Functions			
		4.3.1	Hyperbolic Functions			
		4.3.2	Inverse Hyperbolic Functions	81		
5	Diffe	erential	Calculus	85		
	5.1	Seque	nces and Limits	85		
		5.1.1	The Concept of Sequence			
		5.1.2	Limit of a Sequence			
		5.1.3	Limit of a Function			
		5.1.4	Examples for the Practical Determination of Limits	89		
	5.2	Contir	nuity			

Contents xiii

5.3	Series		92
	5.3.1	Geometric Series	93
5.4	Differe	entiation of a Function	94
	5.4.1	Gradient or Slope of a Line	94
	5.4.2	Gradient of an Arbitrary Curve	95
	5.4.3	Derivative of a Function	97
	5.4.4	Physical Application: Velocity	98
	5.4.5	The Differential	99
5.5	Calcul	ating Differential Coefficients	100
	5.5.1	Derivatives of Power Functions; Constant Factors	
	5.5.2	Rules for Differentiation	102
	5.5.3	Differentiation of Fundamental Functions	106
5.6	Highe	r Derivatives	112
5.7	Extren	ne Values and Points of Inflexion; Curve Sketching	113
	5.7.1	Maximum and Minimum Values of a Function	113
	5.7.2	Further Remarks on Points of Inflexion (Contraflexure) .	117
	5.7.3	Curve Sketching	118
5.8	Applic	cations of Differential Calculus	121
	5.8.1	Extreme Values	121
	5.8.2	Increments	122
	5.8.3	Curvature	123
	5.8.4	Determination of Limits by Differentiation:	
		L'Hôpital's Rule	
5.9	Furthe	er Methods for Calculating Differential Coefficients	
	5.9.1	Implicit Functions and their Derivatives	
	5.9.2	Logarithmic Differentiation	
5.10	Param	etric Functions and their Derivatives	129
	5.10.1	Parametric Form of an Equation	129
	5.10.2	Derivatives of Parametric Functions	133
		culus	
6.1		rimitive Function	
	6.1.1	Fundamental Problem of Integral Calculus	
6.2		rea Problem: The Definite Integral	147
6.3		mental Theorem	
		Differential and Integral Calculus	
6.4		efinite Integral	
	6.4.1	Calculation of Definite Integrals from Indefinite Integrals	
	6.4.2	Examples of Definite Integrals	
6.5		ods of Integration	
		Principle of Verification	
	652	Standard Integrals	150

6

xiv Contents

		6.5.3 Constant Factor and the Sum of Functions	160
		6.5.4 Integration by Parts: Product of Two Functions	
		6.5.5 Integration by Substitution	
		6.5.6 Substitution in Particular Cases.	
		6.5.7 Integration by Partial Fractions	
	6.6	Rules for Solving Definite Integrals	
	6.7		
	6.8	Mean Value Theorem	
	6.9	Improper Integrals	
7	App	lications of Integration	. 191
	7.1	Areas	
		7.1.1 Areas for Parametric Functions	
		7.1.2 Areas in Polar Coordinates	
		7.1.3 Areas of Closed Curves	
	7.2	Lengths of Curves	
		7.2.1 Lengths of Curves in Polar Coordinates	
	7.3	Surface Area and Volume of a Solid of Revolution	
	7.4	Applications to Mechanics	
		7.4.1 Basic Concepts of Mechanics	
		7.4.2 Center of Mass and Centroid	
		7.4.3 The Theorems of Pappus	
		7.4.4 Moments of Inertia; Second Moment of Area	
8	Tayl	or Series and Power Series	
	8.1	Introduction	
	8.2	Expansion of a Function in a Power Series	. 228
	8.3	Interval of Convergence of Power Series	. 232
	8.4	Approximate Values of Functions	. 233
	8.5	Expansion of a Function $f(x)$ at an Arbitrary Position	. 235
	8.6	Applications of Series	. 237
		8.6.1 Polynomials as Approximations	. 237
		8.6.2 Integration of Functions when Expressed as Power Series.	. 240
		8.6.3 Expansion in a Series by Integrating	. 242
9	Com	plex Numbers	
	9.1	Definition and Properties of Complex Numbers	
		9.1.1 Imaginary Numbers	
		9.1.2 Complex Numbers	
		9.1.3 Fields of Application	
		9.1.4 Operations with Complex Numbers	
	9.2	Graphical Representation of Complex Numbers	
		9.2.1 Gauss Complex Number Plane: Argand Diagram	. 250
		9.2.2 Polar Form of a Complex Number	. 251

Contents xv

	9.3	Exponential Form of Complex Numbers	
		9.3.1 Euler's Formula	
		9.3.2 Exponential Form of the Sine and Cosine Functions	
		9.3.3 Complex Numbers as Powers	
		9.3.4 Multiplication and Division in Exponential Form	
		9.3.5 Raising to a Power, Exponential Form	. 259
		9.3.6 Periodicity of $re^{j\alpha}$. 259
		9.3.7 Transformation of a Complex Number From One Form	
		into Another	. 260
	9.4	Operations with Complex Numbers Expressed in Polar Form	. 261
		9.4.1 Multiplication and Division	. 261
		9.4.2 Raising to a Power	. 263
		9.4.3 Roots of a Complex Number	. 263
10	Diffo	rential Equations	273
10	10.1	Concept and Classification of Differential Equations	
	10.1	Preliminary Remarks	
	10.2	General Solution of First- and Second-Order DEs	. 211
	10.5	with Constant Coefficients	270
		10.3.1 Homogeneous Linear DE	
		10.3.2 Non-Homogeneous Linear DE	
	10.4	Boundary Value Problems	
	10.4	10.4.1 First-Order DEs	
		10.4.2 Second-Order DEs	
	10.5	Some Applications of DEs	
	10.5	10.5.1 Radioactive Decay	
		10.5.2 The Harmonic Oscillator	
	10.6	General Linear First-Order DEs	
	10.0	10.6.1 Solution by Variation of the Constant	
		10.6.2 A Straightforward Method Involving the Integrating	
		Factor	. 304
	10.7	Some Remarks on General First-Order DEs	
	10	10.7.1 Bernoulli's Equations	
		10.7.2 Separation of Variables	
		10.7.3 Exact Equations	
		10.7.4 The Integrating Factor – General Case	
	10.8	Simultaneous DEs	
	10.9	Higher-Order DEs Interpreted as Systems	
	10.7	of First-Order Simultaneous DEs	317
	10.10	Some Advice on Intractable DEs	
		m - e	22-
11	-	ace Transforms	
	11.1	Introduction	
	11.2	The Laplace Transform Definition	
	11.3	Laplace Transform of Standard Functions	322

xvi Contents

	11.4	Solution of Linear DEs with Constant Coefficients	328
	11.5	Solution of Simultaneous DEs with Constant Coefficients	330
	_	4 40 177 117	
12		ctions of Several Variables; ial Differentiation; and Total Differentiation	227
	12.1	Introduction	
	12.1	Functions of Several Variables	
	12.2	12.2.1 Representing the Surface	550
		by Establishing a Table of Z-Values	339
		12.2.2 Representing the Surface	557
		by Establishing Intersecting Curves	340
		12.2.3 Obtaining a Functional Expression for a Given Surface	
	12.3	Partial Differentiation	
	12.5	12.3.1 Higher Partial Derivatives	
	12.4	Total Differential	
		12.4.1 Total Differential of Functions	
		12.4.2 Application: Small Tolerances	
		12.4.3 Gradient	
	12.5	Total Derivative	
		12.5.1 Explicit Functions	358
		12.5.2 Implicit Functions	360
	12.6	Maxima and Minima of Functions of Two or More Variables	361
	12.7	Applications: Wave Function and Wave Equation	367
		12.7.1 Wave Function	367
		12.7.2 Wave Equation	371
13	Marie	iple Integrals; Coordinate Systems	277
13	13.1	Multiple Integrals	
	13.1	Multiple Integrals with Constant Limits	
	13.2	13.2.1 Decomposition of a Multiple Integral	317
		into a Product of Integrals	381
	13.3	Multiple Integrals with Variable Limits.	
	13.4	Coordinate Systems	
		13.4.1 Polar Coordinates	
		13.4.2 Cylindrical Coordinates	
		13.4.3 Spherical Coordinates	
	13.5	Application: Moments of Inertia of a Solid	
1.4	T	-francisco of Consideration Madeine	401
14	17an:	sformation of Coordinates; Matrices	
	14.1	Introduction	
	14.2	Rotation	
	14.3	14.3.1 Rotation in a Plane	
		14.3.1 Rotation in a Flane 14.3.2 Successive Rotations	
		14.3.3 Rotations in Three-Dimensional Space	
		17.3.3 ROMUONS III TINCC-DINCHSIONAL SPACE	+11

Contents xvii

	14.4	Matrix Algebra	. 413
		14.4.1 Addition and Subtraction of Matrices	. 415
		14.4.2 Multiplication of a Matrix by a Scalar	. 416
		14.4.3 Product of a Matrix and a Vector	. 416
		14.4.4 Multiplication of Two Matrices	
	14.5	Rotations Expressed in Matrix Form	. 419
		14.5.1 Rotation in Two-Dimensional Space	
		14.5.2 Special Rotation in Three-Dimensional Space	. 420
	14.6	Special Matrices	
	14.7	Inverse Matrix	. 424
15	Sets o	of Linear Equations; Determinants	. 429
	15.1	Introduction	. 429
	15.2	Sets of Linear Equations	. 429
		15.2.1 Gaussian Elimination: Successive Elimination of Variables	420
		15.2.2 Gauss–Jordan Elimination	
		15.2.2 Gauss—Jordan Eminiation 15.2.3 Matrix Notation of Sets of Equations and Determination	. 431
		of the Inverse Matrix	132
		15.2.4 Existence of Solutions	
	15.3	Determinants	
	15.5	15.3.1 Preliminary Remarks on Determinants	
		15.3.2 Definition and Properties of an n-Row Determinant	
		15.3.3 Rank of a Determinant and Rank of a Matrix	
		15.3.4 Applications of Determinants	
16	Figor	nvalues and Eigenvectors of Real Matrices	451
10	16.1	Two Case Studies: Eigenvalues of 2 × 2 Matrices	
	16.2	General Method for Finding Eigenvalues	
	16.2	Worked Example: Eigenvalues of a 3 × 3 Matrix	
	16.4	Important Facts on Eigenvalues and Eigenvectors	
17		or Analysis: Surface Integrals, Divergence, Curl and Potential.	
	17.1	Flow of a Vector Field Through a Surface Element	
	17.2	Surface Integral	
	17.3	Special Cases of Surface Integrals	
		17.3.1 Flow of a Homogeneous Vector Field Through a Cuboid.	. 466
		17.3.2 Flow of a Spherically Symmetrical Field Through	460
		a Sphere	
		17.3.3 Application: The Electrical Field of a Point Charge	
	17.4	General Case of Computing Surface Integrals	
	17.5	Divergence of a Vector Field	
	17.6	Gauss's Theorem	
	17.7	Curl of a Vector Field	
	17 ጸ	Stokes' Theorem	484

xviii Contents

	17.9	Potential of a Vector Field	485
	17.10) Short Reference on Vector Derivatives	488
18	Four	ier Series; Harmonic Analysis	401
10	18.1	Expansion of a Periodic Function into a Fourier Series	
	10.1	18.1.1 Evaluation of the Coefficients	
		18.1.2 Odd and Even Functions	
	18.2	Examples of Fourier Series.	
	18.3	Expansion of Functions of Period 2L	
	18.4	Fourier Spectrum	
		•	
19	Prob	ability Calculus	
	19.1	Introduction	
	19.2	1 · · · 1 · · · · · · ·	
		19.2.1 Random Experiment, Outcome Space and Events	508
		19.2.2 The Classical Definition of Probability	509
		19.2.3 The Statistical Definition of Probability	509
		19.2.4 General Properties of Probabilities	511
		19.2.5 Probability of Statistically Independent Events.	
		Compound Probability	513
	19.3	Permutations and Combinations	515
		19.3.1 Permutations	515
		19.3.2 Combinations	516
20	Drob	ability Distributions	510
20	20.1	Discrete and Continuous Probability Distributions	
	20.1	20.1.1 Discrete Probability Distributions	
		20.1.1 Discrete Probability Distributions	
	20.2	Mean Values of Discrete and Continuous Variables	
	20.2	The Normal Distribution as the Limiting Value	525
	20.3	of the Binomial Distribution	527
		20.2.1 Description of the Name Distribution	520
		20.3.1 Properties of the Normal Distribution	522
		20.3.2 Derivation of the Binomial Distribution	332
21	Theo	ry of Errors	537
	21.1	Purpose of the Theory of Errors	537
	21.2	Mean Value and Variance	538
		21.2.1 Mean Value	538
		21.2.2 Variance and Standard Deviation	539
		21.2.3 Mean Value and Variance in a Random Sample	
		and Parent Population	540
	21.3	Mean Value and Variance of Continuous Distributions	542
	21.4	Error in Mean Value	544
	21.5	Normal Distribution: Distribution of Random Errors	545
		Law of Error Propagation	546

ents xi:

21.7	Weighted Average548	
21.8	Curve Fitting: Method of Least Squares, Regression Line 549	
21.9	Correlation and Correlation Coefficient552	
Answers .	557	
Index	581	