Contents

1	Shel	l patterns - a natural picture book to study dynamic	
	syste	ems and biological pattern formation	1
	1.1	Dynamic systems everywhere	1
	1.2	Pattern formation	2
	1.3	Dynamic systems are difficult to predict	3
	1.4	Pattern formation in biology	4
	1.5	Most shell patterns preserve a faithful time record	5
	1.6	Elementary patterns: Lines perpendicular, parallel and oblique to the	
		direction of growth	e
	1.7	Oblique lines	8
	1.8	Relief-like patterns follow the same rules	9
	1.9	Many open questions and some hints	10
	1.10	The hard problem: complex patterns	15
	1.11	Earlier attempts to understand shell patterns	17
2	Patte	ern formation by local self-enhancement and long range inhibition	19
	2.1	The activator – inhibitor scheme	19
	2.2	Stable patterns require a rapid antagonistic reaction	20
	2.3	Periodic patterns in space	21
	2.4	The width of stripes and the role of saturation	25
	2.5	Early fixation of a pattern	27
	2.6	The activator - depleted substrate scheme	29
	2.7	The influence of growth	30
	2.8	Inhibition via destruction of the activator	32
	2.9	Autocatalysis by an inhibition of an inhibition	33
	2.10	Formation of graded concentration profiles	35
	2.11	Pattern formation in two dimensions	38
3	Osci	llations and traveling waves	41
	3.1	The coupling between the oscillators by diffusion	44
	3.2	The width of bands and interbands	47

••	a
X11	Contents
XIII	COmenia

	3.3	Oblique lines: traveling waves in an excitable medium	47
	3.4	Traveling waves require a pace-maker region	49
4	Supe	rposition of stable and periodic patterns	53
	4.1	The formation of undulating lines and the partial synchronization of	
		cells by activator diffusion	54
	4.2	Reducing wave termination with a longer activation period	58
	4.3	Interconnecting wavy lines and the formation of arches	58
	4.4	Hidden waves	60
	4.5	Pattern on the shell of Nautilus pompilius	61
	4.6	Stabilizing an otherwise oscillating pattern by diffusion	62
	4.7	Combinations of oscillating and nonoscillating patterns	63
	4.8	Rows of patches parallel to the direction of growth	63
	4.9	The possible role of a central oscillator	66
	4.10	Conclusion	68
5	Cros	sings, meshwork of oblique lines and staggered dots:	
	the c	ombined action of two antagonists	71
	5.1	Displacement of stable maxima or enforced de-synchronization by a	
		second antagonist	71
	5.2	Pattern variability	73
	5.3	Global pattern rearrangements	74
	5.4	Traces of the additional inhibition: oblique lines initiated or terminated	
		out of phase	76
	5.5	Crossings and branching	79
	5.6	Changing the wave speed before and during collisions	82
	5. 7	Parallel and oblique rows of staggered dots	84
	5.8	Conclusion	89
6	Bran	ch initiation by global control	91
	6.1	Branch formation: the trigger of backwards waves	91
	6.2	Simultaneous pattern change in distant regions	93
	6.3	No Oliva shell is like another	98
	6.4	The influence of parameters	99
	6.5	Alternative mechanisms	100
	6.6	A very different pattern generated by the same interaction	101
7	The l	big problem: two or more time-dependent patterns that	
-			105
	7.1	Inherent similarities in complex patterns	105
	7.2	White nonpigmented drop-like pattern on a pigmented background	103
	7.3	Evidence of a sudden extinguishing reaction	110
	7.4	Resolving an old problem with the separate extinguishing reaction	111
	7.5	The next step in complexity: an additional stabilizing pattern	112
	,.5	The near step in complexity, an additional stabilizing pattern	112

		Contents	xiii
	7.6	Branch formation by a temporary stabilization	116
	7.7	Branch formation by a temporary stabilization	119
	7.8	Extinguishing that results from a depletion of resources due to an	117
	7.0	enhancing reaction	121
	7.9	Related patterns reveal unsolved problems	123
	7.10	Apparently different patterns can be simulated by closely related models	126
	7.11	Conclusion	128
8		ngles	131
U		-	
	8.1	The crossing solution through the backdoor	132
	8.2	Triangle versus branch formation	135
	8.3	The involvement of three inhibitory reactions	139
	8.4	Breakdown as a failure of the enhancing reaction	143
	8.5	Conclusion	145
9	Para	llel lines with tongues	147
	9.1	Survival using a precondition pattern	147
	9.2	Tongue formation: refresh comes too late	150
	9.3	Variations on a common theme	157
	9.4	Conus textile: tongues and branches on the same shell	159
	9.5	Missing elements, missing links	162
10	Shell	l models in three dimensions	167
	10.1	Mathematical descriptions of shell shape: a brief history	167
	10.2	Elements of shell shape	168
	10.3	The helico-spiral	169
	10.4	The generating curve	171
	10.5	Incorporating the generating curve into the model	171
	10.6	Modeling the sculpture on shell surfaces	174
	10.7	Shells with patterns	179
11	The	computer programs	187
	11.1	Introductory remarks	187
	11.2	Using the program	187
	11.3	GUIDED TOURS	190
	11.4	Implementation of the interactions	190
	11.5	Numerical instabilities that may cause errors	192
	11.6	Compilers and versions	193
	11.7	Parameters used in the program	194
12	Patte	ern formation in the development of higher organisms	205
	12.1	Hydra, a versatile model system	208
	12.1	Tissue polarity and graded competence	211
	12.2	How to avoid periodic structures during growth	211
	12.3	How to generate structures at a distance: head and foot of hydra	214
	14.1	110m to benefate structures at a distance. Head and host of hydra	21 1

•	
XIV	Contents

	12.5	Induction of adjacent structures
	12.6	The evolution of the main body axes
	12.7	Gene activation under the control of a morphogen gradient
	12.8	Position-dependent activation of several genes
	12.9	A problem that the mollusks don't have: the initiation of legs and wings 224
	12.10	Conclusion
13	Patte	ern formation in development in which shell-related
	mech	nanisms are implicated
	13.1	Arrangement of leaves and staggered dots on shells - two similar patterns 231
	13.2	Veins and nerves: the formation of net-like structures
	13.3	Chemotactic orientation of cell polarity
	13.4	Highly dynamic effects in preparing cell division in budding yeast 242
	13.5	Out-of-phase oscillations in E.coli bacteria for center-finding to
		determine the plane of cell division
	13.6	Dictyostelium: traveling waves at the border to multicellular organisms 245
	13.7	Feather patterns
	13.8	Color patterns of feathers
	13.9	Barbs of flight feathers are separated by traveling waves of local signals 250
	13.10	Nerve conduction as a traveling wave phenomenon
	13.11	Activation and extinguishing waves in blood coagulation
Ref	erence	es
Ind	ex .	