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Equations of Steady Electric and Magnetic Fields in Media

Maxwell equations (for instance, Equations (I.2.82)–(I.2.85)1)) also hold in the
presence of matter, viz., dielectrics, conductors, magnetized media, and so on.
However, the matter while as a whole electrically neutral in most cases, consists
of the majority of charged particles, electrons, and atomic nuclei. The resulting
electromagnetic field in matter is due to both external charges and currents,
which do not belong to the matter, and particles of the matter itself. The field
produced by external charges causes redistribution of charges and currents and
leads to the occurrence of an additional field. For this reason, in matter we are
generally dealing with a self-consistent electromagnetic field due to both external
and intrinsic charges.
It is a priori clear that the presence of a great variety of natural and artificial

materials differing in magnetic and electric properties implies many specific
approaches to their description. Currently, there is no unified general method for
studying electromagnetic phenomena in the macroscopic electrodynamics as in
the microscopic vacuum theory. Therefore, along with consistent microscopic
approaches considering the specific atomic structure of matter, one has to
use phenomenological laws that generalize the data obtained in macroscopic
experiments.
In this book, wewill first consider themost general laws that hold for anymatter,

and thereafter turn our attention to more specific (though relatively simple) mod-
els ofmedia exposed to polarization andmagnetization, such as plasma, ferromag-
netics, conductors, superconductors, dielectrics andmodern artificial media, that
is, metamaterials. Whenever necessary, we will use quantummechanics, thermo-
dynamics, statistical physics, and physical kinetics, which are the most significant
for the consistent analysis of electromagnetic phenomena in media.

1) Recall that labels (of equations, figures, chapters, examples, problems, appendices, and sections)
which start with “I” refer to the monograph by Toptygin (2014). For instance, Equation (I.2.82)
means Equation (2.82) from Toptygin (2014).
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2 1 Equations of Steady Electric and Magnetic Fields in Media

1.1
Averaging Microscopic Maxwell Equations. Vectors of Electromagnetic Fields in Media

In this section, the microscopic (exact) values of the electric and magnetic field
strengths are denoted by calligraphic capital letters  and , respectively. The
Maxwell equations (I.2.82)–(I.2.85) for the microscopic fields can be written as

rot (r, t) = −1
c
𝜕(r, t)
𝜕t

, (1.1)

rot (r, t) = 1
c
𝜕(r, t)
𝜕t

+ 4𝜋
c
(jint(r, t) + jext(r, t)), (1.2)

di𝑣(r, t) = 4𝜋(𝜌int(r, t) + 𝜌ext(r, t)), (1.3)
di𝑣(r, t) = 0. (1.4)

The charge and current densities in the right-hand sides of these equations consist
of two parts associated with the particles of matter and external sources; they are
labeled by subscripts “int” and “ext” respectively. We will assume that the external
sources are given. Particles of the matter are affected by the fields  and , and
the quantities 𝜌int and jint are generally complicated functionals of these fields. In
order to determine themotion of particles in themedium and calculate the charge
and current densities, one has to use the equations of classical or (in most cases)
quantum mechanics. Simultaneous solutions of the Maxwell equations and the
equations of the particle motion in medium ensure, in principle, the determina-
tion of microscopic values of the fields  and.
However, such a detailed description of the field is impossible due to the pres-

ence of a large amount of particles in the medium, and it is actually not needed
in most cases. The quantities that are measured in macroscopic experiments are
fields averaged over a statistical ensemble of medium states (i.e., over regular and
randommotions of the particles). In accordance with the general principles of sta-
tistical physics (Landau and Lifshitz (1980)), such averaging is equivalent to the
averaging over a certain time intervalΔt. Moreover, when measuring the fields by
means of macroscopic devices, an additional averaging is performed over macro-
scopically small volumes ΔV containing a large number of elementary charges
(this issue has already been outlined in the beginning of Section I.2.1). The neces-
sity of such an averaging stems from the fact that a microscopic field in medium
undergoes very large and irregular changes in space and time, for example, on
length-scales of the order of 3 × 10−8 cm in a condensedmedium (Problems I.2.15
and I.2.16).
A quantity averaged over space and time will be denoted by a bar and defined by

f (r, t) = 1
ΔVΔt ∫ΔV

dV ∫
Δt∕2

−Δt∕2
d𝜏f (r + 𝝆, t + 𝜏), (1.5)

where the integration over coordinates is performed within the volume ΔV . The
macroscopic field defined in this way remains a function of coordinates and time.
Differentiation of both sides of Equation (1.5) with respect to any coordinate or
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time yields the following relation:

𝜕f
𝜕t

=
𝜕f
𝜕t
, (1.6)

that is, a derivative of an average value is equal to an average value of a derivative.
Since the Maxwell equations (1.1)–(1.4) contain derivatives with respect to

coordinates and time, from Equation (1.6) we have

rot  = rot , 𝜕

𝜕t
= 𝜕

𝜕t
,

and so on. Let us introduce the following notations for the strengths of macro-
scopic fields:

(r, t) = E(r, t), (r, t) = B(r, t). (1.7)

The first quantity is referred to as an electric field vector and the second as a
magnetic induction vector. In these notations, the Maxwell equations take the
form

rot E(r, t) = −1
c
𝜕B(r, t)
𝜕t

, (1.8)

rot B(r, t) = 1
c
𝜕E(r, t)
𝜕t

+ 4𝜋
c
(jint(r, t) + jext(r, t)), (1.9)

di𝑣E(r, t) = 4𝜋(𝜌int(r, t) + 𝜌ext(r, t)), (1.10)
di𝑣B(r, t) = 0. (1.11)

Here, the external charges and currents must be macroscopic quantities. The
macroscopic vectors E and B are the analogs of microscopic field strengths  and
 (even though the name of the vector B was changed for historical reasons).
They are just these quantities that are used to express the force acting on a small
macroscopic body with a charge q moving in a medium with velocity u:

F = q
(
E + 1

c
u × B

)
. (1.12)

The system of Equations (1.8)–(1.11) is incomplete since the quantities jint and
𝜌int are not known in advance. They should be expressed in terms of macroscopic
vectors E andB.Themost consistent approach to this problem is based on the use
of the distribution functions (in the classical case) or the density matrices (in the
quantum case) for describing the particle motion in matter. This requires invok-
ing corresponding kinetic equations and rather detailed information concerning
microscopic parameters, which characterize the state of particles in matter. Such
an approach can be consistently implemented only for the simplest models of
medium. In most cases, one has to use various phenomenological models and
experimental data.
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1.2
Equations of Electrostatics and Magnetostatics in Medium

Vectors of electric and magnetic polarization. In a static case, the electric and
magnetic fields may exist separately: from the system of Equations (1.8)–(1.11) at
𝜕B∕𝜕t = 𝜕E∕𝜕t = 0 we obtain

rot E = 0, di𝑣E = 4𝜋(𝜌int + 𝜌ext), (1.13)

rot B = 4𝜋
c
(jint + jext), di𝑣B = 0. (1.14)

The macroscopic densities 𝜌int and jint can be conveniently expressed in terms of
the vectors of the electric P(r) and magnetic M(r) polarization of matter, which
are by definition the electric and magnetic dipole moments per unit volume:

P =
∑

i pi

ΔV
, M =

∑
i mi

ΔV
. (1.15)

Here pi and mi are, respectively, the electric and magnetic moments of individ-
ual structural units of the medium (atoms or molecules); summation is over all
particles in a macroscopically small volume ΔV .

Example 1.1

Show that the density of the induced volume charge inside medium is related to the
electric polarization vector by the expression

𝜌int(r) = −di𝑣P(r). (1.16)

What significance does this relation acquire on the boundary of a body?

Solution. Consider an electrically neutral body placed in vacuum in the presence
of external electric charges 𝜌ext . The total electric dipole moment of the body 
can be written as the integral of the electric polarization vector  = ∫ P(r) dV
over the body’s volume. On the other hand, the dipole moment can be written
in terms of the charge macroscopic density  = ∫ r𝜌int(r) dV . The latter integral
is independent of the choice of the coordinate origin provided the condition for
electric neutrality ∫ 𝜌int(r) dV = 0 is satisfied. We equate these two expressions
for  and multiply them by a constant vector a:

(1) ∫ (a⋅P) dV = ∫ 𝜌int(a⋅r) dV .

We use the identities a⋅P = (P⋅∇)(a⋅r) = ∇[P(a⋅r)] − (a⋅r)(∇⋅P) and apply the
Gauss–Ostrogradskii theorem to the integral in Equation (1):

(2) ∫ 𝜌int(a⋅r) dV = ∮S
[P(a⋅r)]⋅ dS − ∫ (a⋅r)(∇⋅P) dV .

The surface that encloses the integration volume in Equation (2) can be chosen
outside the body, where P = 0. Omitting the vector a in the remaining equation,
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we have

(3) ∫ r𝜌int(r) dV = −∫ r di𝑣P dV .

It follows from this equation that the density of induced charges may be identi-
fied with the divergence of the electric polarization vector according to Equation
(1.16). On the boundary of the body, the vector P jumps to zero. In this case, we
have to perform the limiting transition in Equation (1.16), by analogy with that
which led to Equation (I.2.18), and take into account that P = 0 outside the body.
As a result, we find the density of the surface macroscopic charges induced on the
surface of the polarized body:

𝜎int = Pn. (1.17)

The obtained charge densities (1.16) and (1.17) are restricted to dielectrics, that
is, to media whose internal charges can be displaced only by microscopic dis-
tances. For this reason, these quantities are also referred to as densities of bound
charges. Inside conductors, the charges move freely. Therefore, in these cases
𝜌int = 0 and P = 0. However, a surface charge, which is expressed in terms of the
external field, may be present (Chapter 2).

Example 1.2

Show that in the absence of charges, which can freely propagate through the body
(free charges), the volume current density induced inside medium (magnetization
current) is related to the magnetic polarization vector by the expression

jint(r) = c rot M(r). (1.18)

Write down the limiting form of this relation on the boundary of the body.

Solution. We use the same approach as in Example 7.1, that is, equate two inte-
grals for the total magnetic moment of the body, , and multiply them by a
constant vector a. This gives

(1) a⋅ = 1
2c ∫ a⋅[r × jint] dV = ∫ a⋅M dV .

Then we use the identity

(2) 2a⋅M = M⋅rot[a × r] = a⋅[r × rot M] − ∇⋅[M × (a × r)]

and reduce Equation (1) to the form

(3) 1
2c ∫ a⋅[r × jint] dV = 1

2 ∫ a⋅[r × rot M] dV ,

fromwhich Equation (7.18) follows.The limiting form of this formula on the body
boundary, where M undergoes a discontinuity, can be obtained by analogy with
Equation (I.2.58). A jump of the magnetization vector determines the surface cur-
rent density according to the relation

iint = c n × M, (1.19)

where n is the unit vector of the normal to the surface.
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With the aid of Equations (1.16) and (1.18), Equations (1.13) and (1.14) for static
fields take the form

rot E = 0, di𝑣D = 4𝜋𝜌ext , (1.20)

rot H = 4𝜋
c

jext , di𝑣B = 0. (1.21)

Here, two new field vectors are introduced: the electric induction vector

D = E + 4𝜋P, (1.22)

and themagnetic field strength vector

H = B − 4𝜋M. (1.23)

Coupling equations.The sets of Equations (1.20) and (1.21) are not closed until
the coupling between the vectorsD and E, and also betweenH and B, is specified.
It is possible to find the coupling equations for a broad class of media based on
general physical considerations and experimental data of general character, with-
out invoking accurate data on the internal structure of the medium. This holds
true for media where in the absence of external fields the electric and magnetic
polarizations are also absent. If external fields are weak compared with the inter-
atomic fields, the electric polarization vector P and the magnetization vector M
are linear functions of the components of the corresponding external fields. In this
case, for isotropic bodies we have

P = 𝛼E, M = 𝜒H, (1.24)

where the coefficients 𝛼 and 𝜒 are independent of external fields; they are referred
to as dielectric and magnetic susceptibilities, respectively. Certainly, these
quantities are not the same for different media, and depend on density and, in the
general case, on temperature. In a constant electric field, we always have 𝛼 > 0,
whereas themagnetic susceptibilitymay be either positive or negative. Substances
with 𝜒 > 0 are called paramagnetics and those with 𝜒 < 0 diamagnetics.
If a conducting body, that is, a body containing free charges, presents a closed

contour, then with the aid of a suitable source of energy (external electromotive
force) a nonzero electric field and current can be maintained inside it. In the case
of sufficiently weak fields, the relationship between the current density j ≡ jint and
the electric field E is given by theOhm law

j = 𝜅E, (1.25)

where the electric conductivity 𝜅 is a macroscopic characteristic of medium and
is independent of E.
Using Equations (1.22)–(1.24) we find the coupling equations

D = 𝜀E, B = 𝜇H, (1.26)

where the coefficients of proportionality

𝜀 = 1 + 4𝜋𝛼, and 𝜇 = 1 + 4𝜋𝜒 (1.27)
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are called dielectric permittivity and magnetic permeability, respectively.
In anisotropic media the susceptibility, permittivity, permeability and electric
conductivity are second-rank tensors representing the apparent generalization of
Equation (1.27):

𝜀𝜎𝜈 = 𝛿𝜎𝜈 + 4𝜋𝛼𝜎𝜈, 𝜇𝜎𝜈 = 𝛿𝜎𝜈 + 4𝜋𝜒𝜎𝜈. (1.28)

In this case, the coupling Equation (1.26) takes the form

D𝜎 = 𝜀𝜎𝜈E𝜈 , B𝜎 = 𝜇𝜎𝜈H𝜈 . (1.29)

In very strong external fields, linear relations (1.24)–(1.26) do not hold, and the
coupling equations becomenonlinear.Moreover, there exist themedia that exhibit
spontaneous polarization at certain temperatures (ferroelectrics, ferromagnetics).
In all these cases, the coupling equations are very complicated.

1.3
Polarization of Media in a Constant Field

Electric polarization.The electric permittivity or magnetic permeability of a cer-
tain medium, as a rule, can be calculated based on some simplified models. For
rarefied molecular gases, the permeabilities are connected with polarizabilities of
individual molecules by simple relations. In the general case, the polarization of a
certain system of particles is described by a second-rank tensor, which relates the
vector of the induced dipole moment p to the vector of the field E acting on the
system:

p𝜅 = 𝛽𝜅𝜈E𝜈 , (1.30)

where 𝛽𝜅𝜈 is the polarizability tensor. Polarizabilities of atoms and molecules are
calculated by quantum mechanical methods (Problems I.6.62, 1.5, 1.17, 1.19). If
the molecules possess electric dipole moments in the absence of an external field,
then in order to calculate the polarization vector in a given field, one should use
the Boltzmann distribution

dN(qi) = C exp
[
−

U(qi)
T

]
dΓ. (1.31)

Here dN is the number of particles in an elementary volume dΓ in the space of
generalized coordinates, U(qi) is the potential energy of one particle in an external
field, qi is a set of generalized coordinates characterizing position and orientation
of the particle, T is the temperature in energy units, and C is the normalization
constant. The distribution of particles over momenta in the equilibrium state is
the Maxwell distribution:

dN = f0(p)d3p = n
(2𝜋mT)3∕2

exp
(
−

p2

2mT

)
d3p, (1.32)

where n is the number density of the particles with all energies, whichmay depend
on coordinates in a nonhomogeneous system, and m is a molecular mass. The
Maxwell distribution assumes that particles move according to the classical laws.
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Example 1.3

A rarefied, statistically equilibrated gas consists of identical dipole molecules of
number density N, having an individual dipole moment p. Calculate the depen-
dence of the polarization vector P on an applied electric field E, neglecting the
inter-molecule interaction and deformation of molecular electron shells. Deter-
mine also the dielectric permittivity and find the applicability criterion of the linear
dependence given by Equation (1.24).

Solution. We calculate the projection P of the polarization vector on the direc-
tion of an external field with the aid of the Boltzmann distribution (1.31):

(1) P = Np
∫ 𝜋

0 cos 𝜗 exp
[
(pE∕T) cos 𝜗

]
sin 𝜗 d𝜗

∫ 𝜋

0 exp
[
(pE∕T) cos 𝜗

]
sin𝜗 d𝜗

= 𝜕

𝜕a
ln∫

1

−1
eax dx,

where U = −pE cos 𝜗 is the interaction energy between the dipole and the exter-
nal field, and a = pE∕T , x = cos 𝜗. Calculations yield

(2) P = Np d
da

ln
(2

a
sinh a

)
= NpL(pE∕T),

where L(a) is called the Langevin2) function:

L(a) = coth a − 1
a
. (1.33)

The Langevin function is close to unity when a ≫ 1, while for small a it can be
expanded into a series

(3) L(a) = a
3
− a3

45
+ · · · , a ≪ 1.

For this reason, at pE ≫ T the saturation takes place, and all dipoles are oriented
along the field. When pE ≪ T , the polarization depends linearly on the field
with the proportionality coefficient 𝛼 = Np2∕3T . This leads to the dielectric
permittivity

𝜀 = 1 +
4𝜋Np2

3T
. (1.34)

The dipole moments of simple molecules are of the order of the product of the
elementary charge and a linear molecular size (the Bohr radius), that is, p ≈ 10−18
CGS units. The transition from the linear dependence of polarization on the field
strength and the saturation range takes place at the field value Ec ≈ T∕p, or Ec ≈
104 CGSE ≈ 3 × 106 V∕cm for T ≈ 300 K ≈ 0.03 eV. For a gas under normal con-
ditions (N ≈ 3 × 1019 cm−3), one has 𝜀 − 1 ≈ 4 × 10−3.

Example 1.4

The molecules of a dielectric are spherically symmetric and have no dipole
moments in the absence of the field. The number density N and polarizability 𝛽 of

2) Paul Langevin (1872–1946), outstanding French physicist, founder of numerous physical schools
(L. de Broglie, M. de Broglie, F. Joliot-Curie, F. Perren, etc.)
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the molecules are known. Find the dependence of the dielectric permittivity 𝜀 on
N and polarizability. Take into account a possible difference between the electric
field  acting on a molecule and the average (macroscopic) field E due to other
molecules.

Solution. If the field acting on the molecule is equal to the average field, that is,
 = E, the induced dipole moment of a single molecule is p = 𝛽E, and the polar-
ization vector is P = Np = N𝛽E = 𝛼E,

𝜀 = 1 + 4𝜋𝛼 = 1 + 4𝜋N𝛽. (1.35)

In order to include the effect of surrounding molecules, we enclose a given
molecule by a sphere of radius a ≫ N−1∕3 (Figure 1.1) and present the acting field
as a sum of two fields  = 1 + 2, where 1 is the field which is produced by the
external charges and all molecules localized outside the sphere of radius a.
The field 1 is macroscopic and can be calculated as the field in the center of the

sphere carved in a uniformly polarized dielectric. In accordance with the superpo-
sition principle, 1 = E − Ei, where Ei = −4𝜋P∕3 is the field inside the uniformly
polarized sphere (Problem 1.3). As a result, 1 = E + 4𝜋P∕3.
The field 2 can be easily calculated in two limiting cases: (a) molecules inside

the sphere are distributed quite randomly; the field of a single dipole, averaged
over the sphere volume, is zero, that is, 2 = 0; (b) molecules are localized at the
sites of a cubic lattice, and, hence, 2 = 0 from symmetry considerations (see the
field of a single dipole in Example I.2.5). For these cases

 = E + 4𝜋
3

P, (1.36)

and P = N𝛽 = N𝛽(E + 4𝜋P∕3). Hence

P = N𝛽E
1 − 4𝜋N𝛽∕3

= 𝛼E, 𝜀 = 1 + 4𝜋𝛼 = 1 + N𝛽
1 − 4𝜋N𝛽∕3

or
𝜀 − 1
𝜀 + 2

= 4𝜋
3

N𝛽. (1.37)

P

Figure 1.1 To calculation of the field acting on an individual molecule.
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Equations (1.36) and (1.37) are called the Clausius–Mossotti formulas.3) For the
optical range of spectrum they are expressed in terms of the refraction coefficient
n =

√
𝜀 (Chapter 6) and referred to as the Lorenz–Lorentz.4) The validity of these

relations is confirmed by experimental data on polarization of liquids consisting
of molecules with quasi-elastic dipoles; however, they do not describe a matter
with solid dipoles.
Magnetic polarization of matter is a purely quantum phenomenon. When a

system of charged particles is in a magnetic field and is in a state of statistic equi-
librium, its magnetic moment is zero only if the motion of particles is governed
by classical laws (Problems 1.15 and 1.21). The magnetic susceptibility is there-
fore calculated on the basis of quantummechanics (Problems 1.17, 1.19, 1.22, and
1.23). Even the models that suggest the existence of classical electron orbits in
atoms (Problems 1.16 and 1.18) are essentially of quantum character since in clas-
sical physics an atom is unstable and the stationary orbits cannot exist (see, for
instance, Problem I.5.119).
Electric conductivity. In order to calculate the electric conductivity, it is nec-

essary to find an electric current produced by a weak electric field. These prob-
lems are solved by using either the classical distribution function or the quantum
mechanical density matrix, depending on the character of particle motion. The
equation for the density matrix is presented in (I.C42). The distribution func-
tion f (r,p, t) of charged particles exposed to an electromagnetic field satisfies the
Boltzmann equation

𝜕f
𝜕t

+ 𝒗⋅
𝜕f
𝜕r

+ e
(
E + 1

c
𝒗 × B

)
⋅
𝜕f
𝜕p

= I[f ]. (1.38)

The distribution function is normalized by the condition

∫ f (r,p, t) d3p = n(r, t), (1.39)

where n(r, t) is the particle number density. In a multi-component system, each
component should be described by its own distribution function.
The right-hand side of Equation (1.38) is called the collision Integral. The col-

lision integral describes processes of mutual scattering of particles and must con-
tain detailed information their interaction. As a rule, it has a specific and rather
complicated form for each system. In most (may be in all) cases, Equation (1.38)
is an integro-differential equation with respect to the distribution function. The
collision integral is frequently written in the relaxation time approximation to
obtain semi-qualitative results:

I[f ] = −
f − f0
𝜏(p)

, (1.40)

3) Clausius Rudolf (1822–1888), German physicist theorist. His basic works are in thermodynamics
and kinetic theory of gases. He formulated the second law of thermodynamics and introduced the
concept of entropy. Mosotti Ottaviano Fabricio (1791–1863), Italian physicist.

4) Lorentz Ludvig Valentin (1829–1891), Danish physicist, constructed, independently of Maxwell,
the electromagnetic theory of light.
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where f0 is the equilibrium distribution function and 𝜏(p) is the relaxation time
that may depend on the energy of particles. This quantity should be considered
a phenomenological adjustable parameter, which must show the best correlation
with experimental data or with a more rigorous theory. The physical meaning of
this parameter becomes apparent froma consideration of a spatially homogeneous
system in the absence of external fields:

𝜕f (p, t)
𝜕t

= −1
𝜏
[f (p, t) − f0(p)].

It gives the exponential relaxation of the nonequilibrium distribution:

f (p, t) = f0(p) + 𝛿f (p, 0) e−t∕𝜏(p). (1.41)

Here f0(p) + 𝛿f (p, 0) is the initial nonequilibrium distribution function. One
should bear in mind that this relaxation may become more complicated as the
equilibrium is approached (e.g., several different relaxation times are possible);
therefore, in each specific case it is necessary to verify that approximation (1.40)
can be used.

Example 1.5

Calculate the electric conductivity of a semiconductor, in the relaxation time
approximation 𝜏 = const. The number density n of free charge carriers is suffi-
ciently low. Therefore, the equilibrium distribution function can be treated as
classical (Maxwell distribution), see Equation (1.31).

Solution. The stationary kinetic equation for a homogeneous system of charged
particles in a uniform electric field is

(1) eE⋅
𝜕f
𝜕p

= −
𝛿f
𝜏
.

Let E be small (eE𝜏 ≪ p) and linearize Equation (1) remembering that the
nonequilibrium additive correction to the distribution function is also of the
order of E:

(2) eE⋅
𝜕f0
𝜕p

= −
𝛿f
𝜏
.

Substituting the Maxwell distribution (1.31) for f0 in Equation (2), we find the
nonequilibrium component of the distribution function:

(3) 𝛿f = 𝜏e
T

E⋅𝒗f0(p).

The electric current is calculated using the formula

(4) j = e∫ 𝒗𝛿f (p) d3p.

Then for the electric conductivity tensor we have

(5) 𝜅𝛼𝛽 =
e2𝜏
T ∫ 𝑣𝛼𝑣𝛽 f0(p) d3p.
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If the distribution of particles over momenta is isotropic, the electric conductivity
is also isotropic: 𝜅𝛼𝛽 = 𝜅𝛿𝛼𝛽 , where

𝜅 = ne2𝜏
m

(1.42)

is the Drude formula.5)

Suggested literature: Maxwell (1989); Frenkel (1926a,b); Landau et al. (1984);
Landau and Lifshitz (1980); Landau and Lifshitz (1977); Tamm (1976);
Bredov et al. (2003); Sivukhin (1977); Peierls (1979); Pitaevskii and Lifshitz
(1980); Frohlich (1958); Toptygin (2014)

Problems

1.1 Derive Equation (1.16) by a physically transparent method: assume that
the electric polarization P is produced in matter by identical elementary
dipoles p = el, and calculate the charge inside an arbitrary closed surface.

1.2 Derive Equation (1.18) by a physically transparent method: assume that the
magnetic polarization M is due to the closed circular microscopic currents
circulating inmatter, and calculate the current through an arbitrary surface
inside the matter.

1.3 A dielectric sphere of radius a is uniformly polarized (polarization vector
P = const) and is in vacuum. Calculate the electric field inside and outside
the sphere using the model that considers a small relative displacement of
positive and negative charges.

1.4 Calculate the polarizability 𝛽 of a hydrogen atom in a weak electric field
with the aid of the classical model that suggests that the electron cloud
density is described by the function 𝜌(r) = −(e0∕𝜋a3

B) exp(−2r∕aB), where
e0 is the elementary charge and aB is the constant (Bohr radius). Neglect
the deformation of the electron cloud. Find the change in the polarizability
assuming that the electron cloud has a constant density inside a sphere of
radius aB.

1.5⋆ Calculate the polarizability of a hydrogen atom in the ground state by the
quantum mechanical method (see the general formula in Problem I.6.62).

1.6⋆ A molecule consists of two atoms that are at a distance a from each other.
The atoms are spherically symmetric and have the polarizabilities 𝛽′ and
𝛽′′. Find the polarizability tensor of the molecule assuming the atomic radii
are small in comparison with a. Consider, in particular, the case 𝛽′ = 𝛽′′.

1.7 On the basis of energy conservation, prove that the polarizability tensor of
a molecule in a constant field is symmetric.

5) Drude Paul (1863–1906), German physicist, who laid the foundation for the electronic theory of
metals.
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1.8 A dielectric consists of identical molecules whose dipole moment is zero
in the absence of an external field. The polarizability tensor 𝛽ik of an indi-
vidual molecule is known. Find the dielectric polarization coefficient 𝛼 for
two cases: (i) all molecules are equally oriented and (ii) all molecules are
randomly oriented.6) Take account of the difference between the field act-
ing on themolecule and the average field with the aid of Clausius–Mossotti
formula.

1.9⋆ If the polarizability of a molecule is different in different directions, then
the energy of interaction between the molecule and an external field will
depend on the orientation of the molecule. For this reason, along with the
deformation mechanism of polarization, the orientation mechanism will
operate even though the molecule does not possess any constant electric
moment. This results in the temperature dependence of the dielectric con-
stant of the matter consisting of randomly oriented nonpolar molecules.
Investigate this effect by considering a diatomic gas in a weak constant
electric field. Calculate the dielectric p olarizability coefficient 𝛼. The lon-
gitudinal polarizability of a molecule of the gas is 𝛽1, and the transverse
polarizability is 𝛽2.

1.10 Two molecules in a gas have the dipole moments p1 and p2 and are at
a distance R from each other. Their orientation changes due to collisions
with other molecules. The probability of a specified mutual orientation is
determined by the Boltzmann formula (1.31), where U is the energy of
interaction between the two dipoles. Assume that the condition U ≪ kT
is satisfied and show that the quantity U averaged over the Boltzmann dis-
tribution7) has the form

U(R) = −
2p2

1p2
2

3kTR6 .

1.11 A molecule with an electric dipole moment p interacts with a nonpolar
molecule of polarizability 𝛽. Show that the interaction energy averaged over
orientations of the dipole moment has the form

U(R) = −
𝛽p2

R6 ,

where R is the distance between the molecules.
1.12⋆ In a dielectric placed in a constant electric field, apart from the dipole

moment (the polarization vector P), there exist higher-order moments.
Find the densities of the volume and surface charges that are equivalent to
the quadrupole polarization Qik (Qik are the components of the quadrupole
moment per unit volume of the dielectric).

6) Case (i) may take place in solid bodies, either crystalline or amorphous, and case (ii) can happen
in gases, liquids, and solids. Note, however, that solid body unlike a gas is a complicated system
of strongly interacting particles. Therefore, the idea of isolated molecules in the solid body may be
questionable.

7) When averaging over the directions of dipole moments in Problems 1.10 and 1.11, use the formulas
obtained in Problem I.1.33.
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1.13 For polar substances, the Clausius–Mossotti relation is inapplicable and
their dielectric permittivitymay be calculated by the following approximate
method proposed by L. Onsager.
Consider a sphere as small as to contain a single molecule. Assume that

outside the sphere there is a dielectric with permittivity 𝜀, and inside the
sphere there is vacuum, while the field is equal to the effective field acting
on the molecule. This field is determined by solving the macroscopic elec-
trostatic equations. Find the relation between the dielectric permittivity 𝜀
of the substance and the polarizability of its molecules 𝛽.

1.14⋆ A homogeneous isotropic dielectric of permittivity 𝜀 does not exhibit any
spontaneous polarization in the absence of an external field. Due to this, in
any given macroscopic volume V , in the absence of the external field, the
dipole moment averaged over the equilibrium configurations of the charge
distribution, is ⟨ ⟩0 = 0. However, an instantaneous value of the moment
is fluctuating and  ≠ 0. Hence, generally, ⟨2⟩0 ≠ 0. Show that ⟨2⟩0 is
expressed through the dielectric permittivity as

⟨2⟩0 = VT(1 + 2𝜀)(𝜀 − 1)
4𝜋𝜀

,

where T is the temperature, V is the volume of the macroscopic sphere
inside the dielectric, and ⟨2⟩0 is the mean square of the fluctuating dipole
moment of this sphere (in the absence of any external field).

1.15⋆ Show that themagnetic moment of a system of charged particles, which are
moving in a magnetic field according to the laws of classical mechanics,
is zero in the stationary state (the Bohr–Van Leeuween theorem). For
this purpose, write down the energy of the system, averaged over Gibbs
ensemble, in the presence and in the absence of themagnetic field and show
that the energy is independent of the external field.

1.16 Atoms (molecules) of a statistically equilibrated rarefied gas (of number
density N and temperature T) have the intrinsic magnetic moment 𝝁.
Assuming that atomic electrons move in stationary classical orbits, show
that in the presence of a magnetic field each atomwill acquire an additional
kinetic energy ΔK = −𝝁⋅H. Calculate the magnetic polarization vector M
and the paramagnetic susceptibility of the gas due to the orientation of
atomic magnetic moments. Are the results obtained in agreement with the
theorem proved in Problem 1.15?

1.17⋆ Carry out a quantum mechanical calculation of the magnetization and the
paramagnetic susceptibility of a statistically equilibrated rarefied atomic
gas placed in a weak magnetic field. The quantum mechanical operator of
the total magneticmoment of an individual atom has the form (cf. Equation
(I.6.86))

𝝁̂ = 𝜇B(Ĵ + Ŝ), (1.43)

where 𝜇B is the Bohr magneton, while Ĵ = L̂ + Ŝ and Ŝ are, respectively,
the dimensionless operators of the total and spin mechanical moment of
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an electron shell of the atom. The atom is in the ground state with fixed
quantum numbers J , L, and S. The magnetic field is weak and unable to
break the LS-binding.

1.18 Let atoms in the quasi-classical model (Problem 1.16) be spherically sym-
metric and have no intrinsic magnetic moments. Calculate the diamag-
netic susceptibility of the atoms due to the Larmor precession of the elec-
tron shells in an external magnetic field.

1.19⋆ Carry out a quantum mechanical calculation of the diamagnetic suscepti-
bility of an atomic gas. The electron shells of the atoms have the quantum
numbers L = S = 0.

1.20 An atom with spherically symmetric charge distribution is placed in an
external uniform magnetic field H. Show that the additional field near the
nucleus due to a diamagnetic current (Larmor precession of electrons) is
equal to

ΔH = − eH
3mc2

𝜑(0),

where𝜑(0) is the electrostatic potential near the nucleus due to atomic elec-
trons; e and m are the electron charge and mass respectively.

1.21⋆ Consider a system consisting of particles with charge e and mass m, each
moving at a fixed distance a from a certain center (classic rotators). The
system is in a magnetic field in the state of statistical equilibrium. Show
that the total magnetic susceptibility of this system is zero.

1.22 In the simplest model, free electrons in metals can be considered an
ideal Fermi-gas at temperature T close to absolute zero. Calculate the
paramagnetic susceptibility of the electron gas due to orientation of
the spin magnetic moments of the electrons in a weak magnetic field. The
number density of electrons is N and the temperature T = 0. Ignore the
effect of the magnetic field on the motion of the electrons in space.
Hint.The Fermi energy 𝜖F (i.e., the energy of the highest occupied level)

in the absence of themagnetic field is 𝜖F = ℏ2(3𝜋2N)2∕3∕2m, where m is the
electron mass.

1.23 A rarefied electron gas at temperature T is in a weak uniform magnetic
field and obeys the Maxwell–Boltzmann statistics. Calculate the magnetic
susceptibility of the electron gas and separate its part, which is due to orien-
tation of spin magnetic moments and the contribution associated with the
effect of the magnetic field on the orbital motion of particles. Make use of
the quantummechanical expression for the electron energy in themagnetic
field.
Hint.An electron in a homogeneous magnetic field has the energy (Lan-

dau and Lifshitz (1977)) (cf. also Problem I.6.76)

n =
(

n + 1
2

)
ℏ𝜔B +

p2
z

2m
− 𝜇BmsB. (1.44)

Here 𝜔c = 𝜔B = |e|B∕mc is the cyclotron frequency, n = 0, 1… , ms =
±1∕2. The values of energy degenerate due to the position uncertainty of
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Larmor circle. Operators of coordinates

x̂0 = x̂ +
cp̂y

eB
, ŷ0

cp̂x

eB
(1.45)

of Larmor circle centre mutually do not permutable. The number of quan-
tum states in volume V per dpz interval is

dQ = eBV
(2𝜋ℏ)2c

dpz. (1.46)

1.24⋆ An ionized gas consists of ions (charge Ze, average number density N0)
and electrons (charge −e, average number density n0). The gas as a whole
is electrically neutral, that is, ZN0 = n0, and is in statistical equilibrium at
temperature T . Find the charge density distribution near an individual ion
on the assumption that the gas is described by classical statistics and that
the energy of particle-particle interaction is low comparedwith the thermal
energy T .

1.25 An infinite conducting plate, bounded by planes x = h and x = −h, is placed
in a constant and uniform transverse electric field E0.The plate as a whole is
electrically neutral, the average number density of “free charges” is N0, and
the dielectric permittivity is 𝜀. Assuming that the change in the number
density under the action of the applied field is small (|N − N0|≪ N0), find
the field distribution inside the plate and the thickness of the layer in which
the “surface” charge is concentrated.The charge-carrying particles obey the
Boltzmann distribution.

1.26⋆ A layer of electrolyte is placed between two infinite plane electrodes, x = h
and x = −h, at a potential difference 2𝜑0. The electrolyte consists of ions of
two types with charges+e and−e.Their average number density isN0 in the
absence of an external field, and the dielectric permittivity of the electrolyte
is 𝜀. Find the potential distribution between the electrodes. The particles
obey the Boltzmann distribution.
Hint. Use the same method as in Problem 1.24.

1.27⋆ Find the charge and potential distribution around an impurity ion with
the charge Ze in metal. Use the simplest model of the metal as degener-
ate electron gas (T → 0) with an average number density n0, whose charge
is neutralized by motionless positive ions.
Hint. Make use of the Thomas–Fermi quasi-classical model

(Landau and Lifshitz (1977)).
1.28 Calculate an electric conductivity of degenerate electron gas of number

density n in the relaxation time approximation 𝜏(𝜖).
1.29 An equilibrium plasma with electron number density n and motionless

ions is in a weak uniform magnetic field B = const. In the relaxation time
approximation 𝜏 = const, calculate the current in the plasma induced by a
weak electric field, and also the electric conductivity tensor. In the expres-
sion for the current, take into account the terms not higher than the first-
order terms with respect to B.
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1.30⋆ Solve Problem 1.29 without limitations on the magnetic field strength.
Calculate the anisotropic electric conductivity tensor and analyze specific
cases of weak and strong magnetic fields.

1.4
Answers and Solutions

1.1 Consider an arbitrary volume V inside a dielectric, which is enclosed by
surface S, and calculate the electric charge qint = ∫V 𝜌int dV inside this vol-
ume. This charge is produced only by the dipoles, which are intersected by
the surface S (Figure 1.2).
All remaining dipoles are either wholly inside or outside the volume V

and make no contribution to the total charge. A surface element dS meets
Nl⋅dS dipoles on average. Their charge enclosed by this surface element is
dqint = −eNl⋅dS = −P⋅dS. Hence, qint = − ∮S P⋅dS = − ∫V di𝑣P dV , which
leads to Equation (1.16).

S

n

Figure 1.2 To calculation of the density of bound charges in a dielectric.

S

l

Figure 1.3 To calculation of magnetization current.
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Figure 1.4 To calculation of an electric field of polarized sphere.

1.2 The magnetic moment of an individual elementary current can be written
as m = isn∕c, where i is the elementary molecular current, s is the circle
area, and n is a unit normal to the plane of the circle (Equation (I.2.60)). Let
us plot an arbitrary closed contour inside matter (Figure 1.3).
The magnetization current Jint through the surface S bounded by con-

tour l is due to those closed elementary currents that are pierced by this
contour. The remaining currents either cross the surface S twice or do not
cross it at all, and, hence, do not contribute to Jint . The segment dl of the
contour crosses s(n⋅dl)N molecular currents on average andmakes the con-
tribution dJint = is(n⋅dl)N = cM⋅dl to the total current. Hence, we have
Jint = c ∮l M⋅dl = c ∫S rot M⋅dS. Since the contour has been chosen arbi-
traryly, from the latter relation follows we obtain Equation (1.18).

1.3 If the number density of elementary dipoles p = el in a polarized sphere
is N , then the total dipole moment of the sphere is  = 4𝜋a3P∕3, where
P = Np is the polarization vector. At l ≪ a, the polarized sphere can be
treated as a system of two spheres with the charges q = ±4𝜋a3Ne∕3, whose
centers are separated by the distance l (Figure 1.4). In the outer region, each
sphere produces a field similar to that of a point charge localized at the
corresponding center; in other words, the two spheres produce the field of
the dipole with the moment ql =  , whose potential is given by

(1) 𝜑e(r) =
 ⋅r
r3

(Equation (I.2.21)). Inside the polarized sphere at a distance r < a from
its center the field is only due to internal charges localized at distances
smaller than r. The external charges produce no field in the inner region,
and therefore formula (1) may be applied provided  is replaced by the
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dipole moment of the inner region,  r3∕a3:

(2) 𝜑i(r) =
 ⋅r
a3 .

The field strength in the outer region was calculated in Problem I.2.21. For
the inner region we have

(3) Ei = ∇𝜑i(r) = − 

a3 = −4𝜋
3

P.

1.4 𝛽 = 3a3
B∕4. In the case of uniform charge distribution in an electron cloud,

𝛽 = a3
B.

1.5 Ahydrogen atom in the ground state is spherically symmetric and its polar-
izability tensor is diagonal. The general formula (see Equation (3) from the
solution of Problem I.6.62) takes the form

(1) 𝛽 = 2
∑

n

′ e2|⟨n|z|0⟩|2
n − 0 .

The most difficult procedure in this expression is summation over inter-
mediate states n. Following (Landau and Lifshitz (1977)), we replace the
z-coordinate by the auxiliary operator

(2) z = m
ℏ

d𝜁
dt
,

where m is the electron mass. The matrix element of the time derivative
operatorwith thewave functions of stationary states is calculated according
to the rule ⟨n| ̂̇𝜁 |0⟩ = i(0 − n)⟨n|𝜁 |0⟩∕ℏ, which allows one to eliminate the
energy denominator in Equation (1) and carry out the summation:

(3) 𝛽 = 2ime2
ℏ2

⟨0|z𝜁 |0⟩.
Wewill now find the action of 𝜁 on the wave function of the ground state

of an hydrogen atom by writing it in the form

(4) 𝜁 |0⟩ = q(r)|0⟩,
where q(r) is a new unknown function. With the aid of equations (2), (4),
and (I.C34), we have

(5) z|0⟩ = m
ℏ

d𝜁
dt

|0⟩ = im
ℏ2

(̂𝜁 − 𝜁̂)|0⟩ = im
ℏ2

(̂ − 0)q(r)|0⟩.
Substituting Equation (5) into the Hamiltonian of a hydrogen atom, given
by

(6) ̂ = − ℏ2

2m
Δ + U(r),

we obtain the equation for determining q(r):

(7) 1
2
|0⟩Δq + ∇q⋅∇|0⟩ = iz|0⟩.
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We need only the specific solution of this equation which is expressed in
terms of quantities entering its right-hand side.
Substituting the wave function of the ground state |0⟩ = exp(−r∕aB)∕√
𝜋a3

B, where aB = ℏ2∕me2 is the Bohr radius, and using the dependence
on the polar angle 𝜗 defined by the right-hand side of z = r cos 𝜗, we seek
the solution in the form q(r) = f (r) cos 𝜗 and obtain the equation

(8) 1
2

f ′′ +
(
1
r
− 1

aB

)
f ′ − 1

r2
f = ir,

whose particular solution is given by

(9) f (r) = −iaBr
(

aB + r
2

)
.

Finally, with the aid of Equations (2), (3), and (9) we find

(10) 𝛽 = 2i
aB

⟨0|rf (r) cos2 𝜗|0⟩ = 9
2

a3
B.

Acomparisonwith the result of Problem 1.4 shows that the classicalmodels
give the correct order of magnitude (provided the value of atomic radius is
borrowed from quantum mechanics) but do not allow us to obtain correct
numerical factor.

1.6 It is clear from the symmetry of the molecule that one of the main polariza-
tion tensor axes lies along the axis of the molecule while two others can be
chosen arbitrarily in the plane perpendicular to the molecular axis. Hence,
only two of the three main values of the polarizability tensor are different,
namely, 𝛽(1) and 𝛽(2) = 𝛽(3). The following cases should be considered sep-
arately to find these values:
(a) The external field is directed along the axis of the molecule. It is clear

that the induced dipole moment of each atom is directed along the exter-
nal field. Denote these moments by p′ and p′′, respectively, and obtain two
equations for them:

(1) p′ = 𝛽′(E + E′), p′′ = 𝛽′′(E + E′′),

where E is the external field, and E′ and E′′ are the additional fields in the
center of each atom due to the presence of another atom.The fields E′ and
E′′ can be expressed in terms of dipole moments of the respective atoms
with the aid of the formula for the strength of the field due to the dipole
with moment p, taking into account that all vectors are directed along the
axis of the molecule. Determining p′ and p′′ from Equation (1), and using
the formula p = p′ + p′′ = 𝛽(1)E, we find

(2) 𝛽(1) =
[
1
𝛽′

− 2(a3 + 2𝛽′)
a3(a3 + 2𝛽′′)

]−1
+
[
1
𝛽′

− 2(a3 + 2𝛽′′)
a3(a3 + 2𝛽′)

]−1
.

(b) The external field is perpendicular to the axis of the molecule. In a
similar way, we arrive at

(3) 𝛽(2) = 𝛽(3) =
[
1
𝛽′

+ a3 − 𝛽′

a3(a3 − 𝛽′′)

]−1
+
[
1
𝛽′′

+ a3 − 𝛽′′

a3(a3𝛽′)

]−1
.
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At 𝛽′ = 𝛽′′ the expressions 𝛽(1) and 𝛽(2) are simplified:

(4) 𝛽(1) = 2𝛽′

(1 − 2𝛽′∕a3)
, 𝛽(2) = 2𝛽′

(1 + 2𝛽′∕a3)
.

The average polarizability is given by

(5) 𝛽 = 1
3
(𝛽(1) + 𝛽(2)) = 2

3
𝛽′

(
1

1 − 2𝛽′∕a3 + 2
1 + 𝛽′∕a3

)
.

1.8 (a) The dielectric is anisotropic as a whole. The principal values of the
dielectric polarizability tensor (cf. Equation (1.37)) are given by

𝛼(i) = N𝛽(i)

1 − 4𝜋N𝛽(i)∕3
.

(b) In the case of a random orientation of molecules, there are no phys-
ically selected directions in macroscopic volumes of dielectric, except for
the direction of external field. Hence, the average dipole moment of the
molecule p is proportional to the field  acting on the molecule:

p = 𝛽.

On the other hand, it is clear that

pi = 𝛽ikk = 𝛽 ikk ,

where the averaging is carried out over a macroscopically small volume. It
follows from comparison of the two last formulas that

𝛽 = 𝛽11 = 𝛽22 = 𝛽33, 𝛽 ik = 0 (at i ≠ k).

Thus,
𝛽 = 1

3
(𝛽11 + 𝛽22 + 𝛽33).

However, the sum of the diagonal components of the tensor is Invariant,
which is equal to the sum of the principal values 𝛽(1) + 𝛽(2) + 𝛽(3) (Equation
(I.1.263)). Hence,

𝛽 = 1
3
(𝛽(1) + 𝛽(2) + 𝛽(3)).

The polarization coefficient of dielectric 𝛼 relates to 𝛽 by a usual formula
(Example 1.4).

1.9 If the axis of the molecule is oriented at an angle 𝜃 to the direction of an
external field E0, the energy of the molecule can be written down as

W = −1
2
p ⋅ E0 = −1

2
(𝛽1 cos2 𝜃 + 𝛽2 sin2 𝜃)E2

0 .

The number of particles per unit volume with axes directed at an angle 𝜃
to the field E0 is given by the Boltzmann formula (1.31). The polarization
vector is defined by the formula P = Np, where p is the dipole moment
of an individual molecule, averaged over the Boltzmann distribution, and
N is the number density of particles. Since in the absence of the field, the
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molecules are chaotically oriented, the vector p has the same direction as
the external field.
In line with this, we calculate the quantity p by the formula

p = 1
N ∫ p∥ dN =

E0 ∫ 𝜋

0 exp
(
−W (𝜃)

kT

)
(𝛽1 cos2 𝜃 + 𝛽2 sin2 𝜃) sin 𝜃 d𝜃

∫ 𝜋

0 exp
(
−W (𝜃)

kT

)
sin 𝜃 d𝜃

,

where p∥ denotes the component of the molecule dipole moment parallel
to the field. According to the condition of the problem, the field is weak.
Hence, it is sufficient to consider the terms linear in a = (𝛽1 − 𝛽2)E2

0∕
2kT ≪ 1 only. Finally, with the use of formulas P = Np = 𝛼E0 we obtain

𝛼 = N𝛽2 +
1
3

N(𝛽1 − 𝛽2)
[
1 + 2

15
(𝛽1 − 𝛽2)E2

0
kT

]
.

It is clear from this formula that the dependence of P on E0 appears
to be nonlinear, and that 𝛼 is not a proportionality coefficient, which is
independent of E0. Let us estimate the value of the correction term at room
temperatures (T = 300K). If 𝛽1 − 𝛽2 is of the order of 10−24 cm3, then
T∕(𝛽1 − 𝛽2) ≈ 106.Thus, this term is small at E0 ≪ 103 V cm−1. Neglecting
the correction term, we obtain the previous expression for 𝛼:

𝛼 = 1
3

N(𝛽1 + 2𝛽2)

(Problem 1.8).
1.12 Theadditional potential due to the quadrupole polarization of the dielectric

can be written in the form

(1) 𝜑 = 1
2 ∫

𝜕2(1∕R)
𝜕xi𝜕xk

Qik dV ,

where R is a distance between the volume element dV and point of obser-
vation; the integration is carried out over the volume of the dielectric. On
the other hand, the potential of the volume and surface charges is generally
given by

(2) 𝜑 = ∫
𝜌′

R
dV + ∫

𝜎′

R
dS + ∫ 𝝉

′ ⋅ ∇
( 1

R

)
dS,

where 𝜌′ is the volume charge density, 𝜎′ is the surface charge density, and
𝜏′ is the thickness of the double layer. Reducing Equation (1) to the form of
Equation (2), we get

(3) 𝜌′ = 1
2
𝜕2Qik

𝜕xi𝜕xk
, 𝜎′ = −1

2
𝜕Qin
𝜕xi

, 𝜏′k = 1
2

Qkini.

Thus, the quadrupole polarization is determined by the volume charges
𝜌′ inside the dielectric, the surface charges 𝜎′, and the double electric layer
with the power 𝜏′ on the surface of the dielectric. Since the densities of the
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volume and surface charges are related to the polarization vector by formu-
las 𝜌′ = −di𝑣P′, 𝜎′ = P′

n, it follows from Equation (3) that the quadrupole
polarization is determined by the additional dipole polarization

P′
k = −1

2
𝜕Qik

𝜕xi

and the double layer with the power 𝜏′. Equation (3) can also be obtained
from the energy of dielectric in the presence of quadrupole polarization.

1.13 𝜀 = 1
4

[
1 + 3x + 3

(
1 + 2

3
x + x2

) 1
2
]
,

where x = 4𝜋N𝛽. The polarizability 𝛽 of polar materials in weak fields is
given by the formula

𝛽 =
p2

3T
,

where p is the dipole moment of the molecule and T is the temperature in
energy units.
For x ≪ 1, when the difference between the field acting on the molecule

and the average field becomes very small, we have

𝜀 = 1 + x = 1 + 4𝜋N𝛽.

1.14 We will describe the charges inside the sphere using the microscopic
approach, on the base of the classical Boltzmann distribution (1.31), while
outside the sphere we consider the dielectric as a continuous medium of
permittivity 𝜀. Let an ath charge inside the sphere be displaced by a vector
ua with respect to the equilibrium position. A set of such displacements is
denoted by Q = Q(u1,…ua,…). In the absence of an external field, these
displacements are of pure fluctuation character. The interaction between
the charges is described by the potential energy U0(Q), which includes
also the interaction between the charges inside the sphere. The interaction
with the charges outside the sphere occurs on the surface and is negligibly
small by virtue of the macroscopic sizes of the sphere. The dipole moment
of the sphere is given by

(1)  =
∑

a
eaua.

Since there is no spontaneous polarization, the statistical average of the
dipole moment is equal to zero:

(2) ⟨ ⟩0 = ∫  exp
(
−

U0(Q)
T

)
dQ = 0.

The presence of an external field gives rise to a uniform electric field
inside the sphere whose strength is given by (Problem 2.11)

(3)  = 3𝜀
2𝜀 + 1

E.
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This field is produced by the external sources and external (with respect to
the sphere) charges of the dielectric. As a result, the potential energy of the
charges inside the sphere acquires the additional term

(4) U(Q,E) = U0(Q) −
∑

a
eaua⋅ = U0(Q) − 3𝜀

2𝜀 + 1
 ⋅E.

This potential energy should be used now in the Boltzmann distribution to
calculate the dipole moment induced by the external field:

(5) ⟨ (E)⟩ = ∫  exp
(
−U

T

)
dQ

/
∫ exp

(
−U

T

)
dQ.

Assuming the field E to be weak, we expand the exponent into a series to
obtain

(6) exp
(
−U

T

)
=
[
1 + 3𝜀

2𝜀 + 1
 ⋅E

T

]
exp

(
−

U0
T

)
.

Using Equation (2) we find

(7) ⟨𝜇(E)⟩ = 3𝜀E𝜈
(2𝜀 + 1)T

∫ 𝜇𝜈 exp
(
−U0

T

)
dQ

∫ exp
(
−U0

T

)
dQ

=
3𝜀E𝜈

(2𝜀 + 1)T
⟨𝜇𝜈⟩0.

We transform the average over components of the dipole moment using
the symmetry considerations:

(8) ⟨𝜇𝜈⟩0 = 1
3
⟨2⟩0𝛿𝜇𝜈.

The left-hand side of Equation (7) can be written in terms of the projection
P𝜇 of the electric polarizability vector:

(9) ⟨𝜇(E)⟩ = VP𝜇 = V (𝜀 − 1)
4𝜋

E𝜇.

Substituting Equations (8) and (9) into Equation (7), we obtain the formula
given in the statement of the problem.
We stress that this formula relates the response of the medium, charac-

terized by permittivity 𝜀, to an external perturbation with the fluctuation
of the internal parameter of the medium ⟨2⟩0 corresponding to the statis-
tical equilibrium in the absence of any external perturbation. This relation
is actually a specific case of the fluctuation-dissipative theorem (FDT).The
general relation of such kind for the time-dependent disturbance can be
found in Section 7.2.

1.15 Consider a system of particles whose Hamiltonian function in the absence
of any external magnetic field is given by

(1) 0 =
∑

a

p2
a

2ma
+ U,
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where the potential energy U is the function of coordinates. In the presence
of a magnetic field, the Hamiltonian function takes the form [(I.4.65′)]

(2)  =
∑

a

1
2ma

(
Pa −

ea
c

Aa

)2
+ U,

wherePa is the generalizedmomentumof an ath particle, andAa is the vec-
tor potential of the external field at the point where the particle is localized.
The energy of the system averaged over the Gibbs ensemble (its internal
energy in the thermodynamic approach) is expressed as an integral over
the phase space

(3)  = 1
Z ∫  exp

(
−

T

)
dΓ,

where dΓ =
∏

i dPi dxi is an element of phase space. Let us changemomen-
tum variables in Equation (3)

(4) Pa −
ea
c

Aa → pa,

keeping the same coordinates. With such a replacement,  becomes 0,
and dΓ =

∏
i dpi dxi because the Jacobian of transition to the new variables

equals 1. As a result, the internal energy of the system in a magnetic field is
expressed just as it is expressed in the absence of the field, that is, the energy
is field-independent. A body that does not possess themagnetic moment in
the absence of the field, will not acquire it in the presence of the field. How-
ever, such a result holds only in the classical case and fails when particles
move according to quantum mechanical laws.

1.16 Let electrons in atoms move with velocity 𝒗a. When a field H is applied,
each electron undergoes Larmor precession with the angular velocity𝛀L =
−eH∕2mc (Problem I.4.102) and acquires an additional velocity

(1) Δ𝒗a = 𝛀L × ra.

A change in the kinetic energy of the electrons is given by

(2) ΔK = m
2
∑

a
[(𝒗a + Δ𝒗a)2 − 𝒗

2
a] ≈ m

∑
a
𝒗a⋅Δ𝒗a = m𝛀L⋅

∑
a

ra × 𝒗a,

where the second-order term in small velocity Δ𝒗 is omitted.
Using the evident expression 𝝁 =

∑
a 𝝁a for the total magnetic moment

of an atom, and the coupling Equation (I.4.76) for the mechanical andmag-
netic orbital moments, 𝝁a = era × pa∕2mc, we obtain the relation given in
the statement of the problem. Note that, conceptually, it would be more
reasonable to write B instead of H in the expression for𝛀L. However, since
the magnetic susceptibility of gases is small, the error introduced in this
case is negligible.
Further calculations of the magnetization and magnetic susceptibility

can be carried out in the same manner as for the electric polarization in
Example 1.3, that is, with the aid of the Boltzmann distribution. In the
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general case, the magnetization is expressed in terms of the Langevin
function

(3) M = N𝜇L
(
𝜇H
T

)
.

At 𝜇H ≪ T , the dependence between M and H is linear, and the magnetic
susceptibility is given by

(4) 𝜒 = N𝜇2

3T
∝ 1

T
(the Curie8) law for paramagnetics). The results obtained are not at vari-
ance with the Bohr–Van Leeuween theorem since the model considered
in the present problem is not purely classical: the assumption on the exis-
tence of stationary orbits of electrons in atoms is inconsistent with classical
mechanics and electrodynamics.

1.17 The operator of interaction between an atom and a field in the approxima-
tion, which is linear in the field has the form

(1) V̂ = −𝝁̂⋅H.

In the absence of the external field, the energy levels at given L, S, J , and MJ
degenerate in MJ withmultiplicity 2J + 1, but the degeneracy is removed in
the magnetic field. In order to solve the problem, one needs to find correc-
tions to the energy levels based on the perturbation theory and thereafter
calculate the averagemagneticmoment of the atom in amagnetic fieldmak-
ing use of the densitymatrix in the energy representation (Equations (I.C43)
and (I.C44)).
Let the direction of the field H be the quantization axis Oz. Hence, in

accordance with the stationary perturbation theory, the corrections to the
energy levels must be calculated as

(2) ΔLSJMJ
= −⟨LSJMJ |𝜇z|LSJMJ⟩H.

In order to calculate this matrix element, it is convenient to present the
magnetic moment operator in the form

(3) 𝝁̂ = ĜĴ ,

where Ĝ is a certain scalar operator. Using the explicit form of 𝝁̂, given in
the statement of the problem, we have

(4) ĜĴ = 𝜇B(Ĵ + Ŝ),

and consider the scalar product of this equation and the operator Ĵ . Then,
we calculate the diagonal matrix elements of both sides of the obtained
equation:

(5) ⟨LSJMJ |ĜĴ2|LSJMJ⟩ = 𝜇B⟨LSJMJ |Ĵ2 + Ŝ⋅Ĵ|LSJMJ⟩.
8) Curie Pierre (1859–1906), outstanding French physicist, studied magnetism, physics of crystals,

radioactivity; Nobel Prize laureate.
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It is clear that

(6) Ĵ2|LSJMJ⟩ = J(J + 1)|LSJMJ⟩, L̂2|LSJMJ⟩ = L(L + 1)|LSJMJ⟩,
Ŝ2|LSJMJ⟩ = S(S + 1)|LSJMJ⟩.

Finally, we square both sides of the equality Ĵ − Ŝ = L̂ and use Equation (6)
to find

(7) 2Ŝ⋅Ĵ|LSJMJ⟩ = [J(J + 1) − L(L + 1) + S(S + 1)]|LSJMJ⟩.
With the aid of Equations (6) and (7) we obtain the matrix element

(8) ⟨LSJMJ |Ĝ|LSJMJ⟩ = g𝜇B,

and calculate the energy levels

(9) ΔLSJMJ
= −g𝜇BHMJ ,

where

(10) g = 1 + J(J + 1) − L(L + 1) + S(S + 1)
2J(J + 1)

is the gyromagnetic factor or Landé g-factor.
The magnetization can be calculated with the aid of the probability

(I.C44) by substituting the values of the energy levels given by Equation (9):

(11) M = Ng𝜇B

∑m=J
m=−J meam∑m=J

m=−J eam
= Ng𝜇B

d
da

ln

( m=J∑
m=−J

eam

)
,

where a = g𝜇BH∕T , and the sum over m under the logarithm is a statistical
sum for an individual atom. Its calculation with the aid of the formula for a
finite geometric progression yields

(12) M = M0LJ (aJ), where

LJ (x) =
(
1 + 1

2J

)
coth

[(
1 + 1

2J

)
x
]
− 1

2J
coth

(
x
2J

)
is the quantum Langevin function or Brillouin9) function). The quan-
tity M0 = Ng𝜇BJ is the saturation magnetization which is reached at low
temperatures (aJ ≫ 1). If the opposite inequality is satisfied, then the mag-
netization is proportional to the magnetic field, and the paramagnetic sus-
ceptibility is expressed in the form

(13) 𝜒 =
Ng2𝜇2

BJ(J + 1)
3T

.

At J ≫ 1we pass to the semi-classical model considered in Problem 1.16. In
this case, the atomic magnetic moment is expressed in the form 𝜇 ≈ g𝜇BJ ,

9) Brillouin Léon (1889–1969), French physicist, workedmainly in quantummechanics, radiophysics,
physics of solids.
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and the quantum Langevin function becomes the classical one, LJ (x) →
L(x) as J → ∞.
The paramagnetic susceptibility of gases under normal conditions is very

low. Substituting N ≈ 3 × 1019 cm−3 and T ≈ 10−14 erg in Equation (13),
we obtain 𝜒 ≈ 10−7. For comparison, the dielectric susceptibility under
the same conditions is 𝛼 ≈ 10−3. The difference arises from the fact that
the magnetization is related to the motion of particles, owing to which the
magnetic susceptibility possesses an additional small factor (𝑣∕c)2 ≈ 10−4,
where 𝑣 is the velocity of atomic electrons.

1.18 Due to Larmor precession, each electron acquires an additional velocityΔ𝒗
which is given by Equation (1) of the solution of Problem 1.16. Introducing
the volume charge density of the electron shell 𝜌(r), we calculate the atomic
magnetic moment induced by the Larmor precession:

(1) 𝝁 = 1
2c ∫ r × 𝜌Δ𝒗 dV = 1

2c ∫ 𝜌r × [𝛀L × r] dV .

In view of spherical symmetry of 𝜌(r), the vector 𝝁 is parallel to 𝛀L:

(2) 𝝁 = 1
2c

𝛀L ∫ 𝜌(x2 + y2) dV ,

where the Ox- and Oy-axes are perpendicular to the vector H. Evidently, it
is possible to write down

(3) ∫ 𝜌(x2 + y2) dV = 2
3

Zea2,

where Ze is the total charge of the electron shell and a2 is the squared dis-
tance of electrons from the nucleus averaged over all electrons. As a result,
from Equations (2) and (3) we get

(4) M = N𝝁 = 𝜒H, where 𝜒 = −NZe2a2

6mc2
< 0

is the diamagnetic susceptibility.The diamagnetic atomic moment is oppo-
site to the magnetic field, and the diamagnetic susceptibility is negative.

1.19 If the orbital and spin moments of an electron shell of an atom are zero,
then the operator (1.43) will give the zero value of the magnetic moment in
all orders of the perturbation theory while the nonzero value will be associ-
ated with the term quadratic in vector-potential in the interaction operator
(I.6.57). Since we deal with the constant but non-quantized external field,
we can substitute A = H × r∕2 in Equation (I.6.57) and write the operator
of interaction of the electron shell with the magnetic field in the form

(1) V̂ = e2
8mc2

∑
a
[H × ra]2.

The correction to the atomic energy in the first order of the perturbation
theory is expressed by the integral

(2) Δ = ∫ 𝜓∗(q)V̂𝜓(q) dq,
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where q is a set of coordinates of all atomic electrons. Owing to spherical
symmetry of the electron shell, in integrating over the angles, the quantity
sin2 𝜗a entering the vector product may be substituted by its average value
which is equal to 2∕3. The final result is

(3) Δ = e2
12mc2

H2
∑

a
⟨𝜓|r2a|𝜓⟩.

The atomic magnetic moment can be calculated as 𝜇 = −𝜕Δ∕𝜕H (see
Section 3.3 below). For the number density of atoms N , the calculation of
the magnetization yields

(4) M = N𝝁 = 𝜒H, where 𝜒 = − Ne2
6mc2

∑
a
⟨𝜓|r2a|𝜓⟩.

The sum of r2a for atomic electrons in Equation (4), averaged over the quan-
tum state of the atom, may be replaced by the product Za2, where a2 is the
mean squared distance for all electrons. Thereafter the quantum formula
for the diamagnetic susceptibility will coincide with the semi-classical for-
mula obtained in Problem 1.18. The numerical values of the diamagnetic
susceptibility of gases are very small. An estimate can be made by substi-
tuting the squared Bohr radius (4). Under normal pressure, we will have
𝜒 ≈ 10−10. For condensedmatter, where number density of particles is four
orders of magnitude higher, we will obtain 𝜒 ≈ 10−6.

1.21 The total magnetic susceptibility is equal to the sum of the paramagnetic
and diamagnetic susceptibilities (Problems 1.16, 1.18, 1.19⋆):

(1) 𝜒 = N𝜇2

3kT
− Ne2

6mc2
r2.

The magnetic moment 𝜇 of an individual rotator entering this formula
can be calculated in the following way. Based on the well-known theorem
(Equation (I.2.61)), we have

(2) 𝝁 = e
2mc

K ,

where K is the angular momentum of the particle. In the case of a rotator,
the K is related to the kinetic energy through the formula

(3) Wk = K2

2ma2 .

The statistical average K2 is therefore expressed in terms of the average
kinetic energy

(4) K2 = 2ma3W k .

The average kinetic energy W k can be found from the theorem on uni-
form energy distribution over degrees of freedom. Since the rotator has
two degrees of freedom, W k = T . Substituting Equations (4) and (2) in
Equation (1), we find 𝜒 = 0. This result is consistent with the general
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Bohr–Van Leeuween theorem (Problem 1.15) according to which the
total magnetic moment of a body obeying the classical statistics is zero.
A nonzero magnetic moment will only be obtained assuming discrete
electron orbits in atoms. However, such an assumption goes beyond the
scope of the classical theory.

1.22 In the absence of a field, each pair of electrons of equal energy has, accord-
ing to the Pauli principle, the opposite spin projections, and the micro-
scopic magnetic moment of the system equals zero. In the presence of the
field, each of the electrons acquires an additional energy ±𝜇BB depending
on the direction of its spin projection. In other words, the Fermi levels of
electrons with different spin projections shift by 2𝜇BB. However, in a statis-
tically equilibrated system theremust be a single Fermi level for all particles.
It means that some electrons will change the spin projection. The num-
ber density N ′ of spin-flip electrons can be determined from the condition
𝜖F+ = 𝜖F−, or

(1) ℏ2

2m
(6𝜋)2∕3

(N
2

− N ′
)2∕3

+ 𝜇BB = ℏ2

2m
(6𝜋)2∕3

(N
2

+ N ′
)2∕3

− 𝜇BB.

The same condition ensures minimum of internal and free energies at
T = 0.
For a weak field (𝜇BB ≪ 𝜖F ) we will have N ′ ≪ N , and from Equation (1)

we obtain

(2) N ′ =
3𝜇BB
4𝜖F

N .

The magnetization is calculated from the formula M = 2𝜇BN ′, and the
paramagnetic susceptibility of a completely degenerate electron gas
(T = 0) is given by

(3) 𝜒para =
3𝜇2

BN
2𝜖F

.

The temperature corrections to the quantity (Equation (3)) are of the order
of (T∕𝜖F )2 ≈ 10−4 for the majority of metals at room temperature. For this
reason, the “Pauli paramagnetism” (Equation (3)) unlike the Curie law [see
Equation (4) in Problem 1.16 and Equation (13) in Problem 1.17] is almost
independent of temperature.
A degenerate electron gas exhibits also the diamagnetic susceptibility

(Landau diamagnetism):

(4) 𝜒dia = −1
3
𝜒para, 𝜒 = 𝜒para + 𝜒dia = 2

3
𝜒para

(see Landau and Lifshitz (1980) and Problem 1.23).
1.23 In order to calculate the magnetization, we use the formulas of statistical

physics for the free energy: F = −T lnZ ((I.C46)) and M = −𝜕F∕𝜕B
(Section 3.3). Since the gas is rarefied and homogeneous, we ignore
the electron-electron interaction and calculate the free energy per unit
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volume from the formula F = −NT ln z, where z is the statistical sum
of an individual electron regarded as a quasi-independent equilibrium
subsystem. With the aid of the data given in the statement of the problem,
we find

(1) z = zszorb, zs =
ms=1∕2∑

ms=−1∕2
exp

(
−
2𝜇BBms

T

)
= 2 cosh

(
𝜇BB

T

)
,

zorb =
∞∑

n=0
exp

(
−
ℏ𝜔B
2T

(2n + 1)
)
∫ exp

(
−

p2
z

2mT

) eBVdpz

(2𝜋ℏ)2c

(2) =
√
2𝜋mT eBV

(2𝜋ℏ)2c
1

2 sinh(ℏ𝜔B∕2T)
,

where zs relates to the spin states and zorb to the states of orbital motion.
Further on, we take into consideration that ℏ𝜔B∕2 = 𝜇BB and 𝜇BB ≪ T .
Carrying out the small-argument expansion of the hyperbolic functions,
we find

(3) M = NT
(
𝜕zs
𝜕B

+
𝜕zorb
𝜕B

)
=

N𝜇2
BB

T
−

N𝜇2
BB

3T
.

Thefirst and second terms in the right-hand side describe the paramagnetic
and diamagnetic effects, respectively. Now the corresponding susceptibil-
ities depend on temperature; however the relation between them remains
the same as for degenerate gas:

(4) 𝜒para =
N𝜇2

B
T

, 𝜒dia = −1
3
𝜒para.

1.24 Thenumber densities of ions (N) and electrons (n) can be determined from
the Boltzmann formula (1.31)10)

(1) N = N0 exp
(
−Ze𝜑

T

)
, n = n0 exp

( e𝜑
T

)
,

where kB ≈ 1.38 × 10−16 erg/K is the Boltzmann constant and 𝜑(x, y, z)
is the electric potential. The pre-exponents are chosen so that as T → ∞
(when the interaction between the particles dies out) N and n become N0
and n0. With Equation (1), the charge density becomes

(2) 𝜌 = ZeN − en = eZN0 exp
(
−Ze𝜑

kBT

)
− en0 exp

(
e𝜑

kbT

)
.

The potential 𝜑 should be determined by solving the Poisson equation:

(3) △𝜑 = −4𝜋𝜌 = −4𝜋eZN0 exp
(
−Ze𝜑

kBT

)
+ 4𝜋en0 exp

(
e𝜑

kBT

)
.

10) In this and next three problems, the quantities being considered are averaged over statistical ensem-
ble but not over volume.



32 1 Equations of Steady Electric and Magnetic Fields in Media

To do this, we take into account that the interaction energy is small com-
pared with the thermal energy:|||Ze𝜑

kBT
|||≪ 1, ||| e𝜑

kBT
|||≪ 1.

Expanding the exponents into a series to within the terms linear in 𝜑, and
using the condition of electrical neutrality of the gas, ZN0 = n0, we obtain

(4) 𝜌 = − 𝜅
2

4𝜋
𝜑, 𝜅2 =

4𝜋e2(Z2N0 + n0)
kBT

.

Equation (3) can therefore be written in the form

(5) △𝜑 = 𝜅2𝜑.

The potential 𝜑 can depend only on distance r to the ion under considera-
tion. The spherically symmetric solution of Equation (5) is

𝜑 = C1
e−𝜅r

r
+ C2

e𝜅r

r
.

The potential cannot grow up at infinity, and hence, C2 = 0. The constant
C1 is determined from the condition that at r ≪ 1∕𝜅 it must become the
purely Coulomb potential of the considered ion:

𝜑||r≪1∕𝜅 = Ze
r

=
C1
r
, C1 = Ze.

Thus, the ion is surrounded by a “cloud” of electrons and other ions. The
density of the cloud exponentially decreases. The lower the temperature,
the less the average radius 1∕𝜅 = rD.
The presented method for calculating the potential was proposed

by Debye11) and Hückel12) and was employed by them in the theory
of strong electrolytes. The constant 1∕𝜅 = rD is referred to as the
Debye–Hückel radius.

1.25 The electric induction inside the plate is described by the formula

D(x) = E0
cosh 𝜅x
cosh 𝜅h

,

where 𝜅 =
√
4𝜋e2n0∕𝜀T . At 𝜅h ≫ 1, for the region near the surfaces

x = ±h, we have
D(x) = E0e−𝜅(h−|x|);

hence, as |x − h|≫ 1∕𝜅 we have D(x) → 0, that is, the field penetrates into
the conductor at a depth of about 1∕𝜅. The charge is concentrated in the

11) Debye Peter (1884–1966), outstanding European scientist who worked in Switzerland, Holland,
Germany, andUnited States, had awide range of scientific interests: theory of crystal lattice, diffrac-
tion of X-rays, quantum theory of atoms, Compton effect, theory of strong electrolytes, and so on.
Nobel Prize laureate in chemistry.

12) Hückel Erich (1896–1980), German physicist-theorist. Worked mainly in the field of quantum
mechanics, quantum chemistry and electrochemistry.
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layer of the same thickness,

𝜌 = 1
4𝜋

𝜕D
𝜕x

= ±
𝜅E0
4𝜋

e−𝜅(h−|x|).
The “surface” charge density, which is considered in the macroscopic the-
ory, is determined by integrating 𝜌. On the boundary x = h, we obtain

𝜎 = ∫ 𝜌 dx = −
𝜅E0
4𝜋 ∫

∞

0
e−𝜅x′ dx′ =

E0
4𝜋
,

which is the same as the usual boundary condition on the surface of a con-
ductor.

1.26

𝜑 = 𝜑0
sinh 𝜅x
sinh 𝜅h

, 𝜅 =
√

8𝜋e2n0
𝜀T

.

In the present case the value of 𝜅2 is twice larger than in Problem 1.24 since
there are mobile ions of two species.

1.27 Unlike Problem 1.24, this one deals with the electrons obeying the
Fermi distribution. We start from the assumption that the states of
the electrons in the vicinity of the ion are semi-classical. The origin is
chosen at the point of the ion location and the electron number density
is denoted by n(r). Far from the ion the boundary conditions are given by
n(r)|r→0 → n0, 𝜑(r)|r→0 → 0, where 𝜑(r) is the electrostatic potential. At
temperature T → 0 all electron energy levels from the zero-level to the
Fermi level 𝜖F are occupied. Far from the ion the Fermi level is determined
by the conditions

(1) 2
(2𝜋ℏ)3

⋅
4
3
𝜋p3

F = n0, 𝜖F =
p2

F
2m

=
(3𝜋2n0)2∕3ℏ2

2m
.

Here, the Fermi momentum pF is calculated from the fact that the number
of occupied states p3

F∕3𝜋
2ℏ3 is equal to the number of the electrons n0 per

unit volume.
The Fermi energy retains the value given by Equation (1) throughout

space, since, otherwise, the electrons will move to the sites with lower 𝜖F .
However, at finite r the Fermi energy 𝜖F should be regarded as a sum of the
kinetic and potential energies,

(2) 𝜖F = (3𝜋2)2∕3ℏ2

2m
n2∕3(r) − e𝜑(r).

Expressing n(r) from Equations (1) and (2), we have

(3) n(r) = n0

[
1 + e𝜑(r)

𝜖F

]3∕2
≈ n0

[
1 + 3 e𝜑(r)

2𝜖F

]
.

Using the last equation, we find the charge density distribution in the
vicinity of the ion, 𝜌(r) = −(3e2n0∕2𝜖F )𝜑(r). For the potential we obtain
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Equation (5) from the solution of Problem 1.24, where the screening con-
stant is given by

(4) 𝜅2 = 4me2
ℏ2

(3n0
pi

)1∕3

= 8
aB𝜆F

.

Here, aB = ℏ2∕me2 is the Bohr radius, and 𝜆F = 2𝜋ℏ∕pF is the De Broglie
wavelength of the electron at the Fermi level.

1.28 Let us use the kinetic equation as in Example 1.5. For the equilibrium dis-
tribution function, we substitute the Fermi step-function f0(𝜖) (f0(𝜖) = 1,
𝜖 ≤ 𝜖F ; f0(𝜖) = 0, 𝜖 > 𝜖F , where 𝜖F is the Fermi energy expressed through
particle number density – see the statement of Problem 1.22). Using the
relation 𝒗 = 𝜕𝜖∕𝜕p , we write

(1) 𝛿f = −e(E⋅𝒗)𝜏(𝜖)
𝜕f0
𝜕𝜖
,

and obtain the expression for the current density

(2) j = −e2 ∫ 𝜏(𝜖)𝒗(E⋅𝒗)
𝜕f0
𝜕𝜖

2 d3p
(2𝜋ℏ)3

,

where the last fraction under the integral presents the number of the quan-
tum states including two spin projections.
For a degenerate electron gas, we have 𝜕f0∕𝜕𝜖 = −𝛿(𝜖 − 𝜖F ). Substituting

the required quantities into Equation (2) and integrating over the energy
with the aid of the delta-function, we obtain the electric conductivity, which
is the coefficient of proportionality between the current and the electric
field strength:

(3) 𝜅 =
ne2𝜏(𝜖F )

m
.

This result coincides with the Drude formula (1.42).
In real metals, an electron gas interacts with a crystal lattice. As a result,

the energy dependence of the particle on its momentum, 𝜖(p), becomes
more complicated, the effective mass of charge carriers may be anisotropic,
and the Fermi surface in momentum space non-spherical. In this case, the
simple model considered above is inapplicable.

1.29 A nonequilibrium additive correction to the electron distribution function,
produced byweak electric andmagnetic fields in the first order, is calculated
from the kinetic equation and has the form

(1) 𝛿f =
(
−e(E⋅𝒗)𝜏 + e2𝜏2

mc
[E × B]⋅p

)
𝜕f0
𝜕𝜖
.

Using this distribution function, we find the current density

(2) j = 𝜅E + E × a,

where

(3) 𝜅 = ne2𝜏
m

, a = ne3𝜏2
m2c

B.
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The electric conductivity, under the action of the magnetic field, becomes
anisotropic,

(4) 𝜅𝛼𝛽 = 𝜅𝛿𝛼𝛽 − e𝛼𝛽𝛾a𝛾 ,

and the electric current perpendicular to the magnetic field is induced (the
Hall13) current).The inverse dependence between the current and the elec-
tric field in the same approximation is of the form

(5) E = 1
𝜅

j − R[j × B],

where R = 1∕cen is the Hall constant.
1.30 Wewrite down the stationary kinetic equation with allowance for the first-

order terms in E, but without restriction on values of B:

(1) eE⋅
𝜕f0
𝜕p

+ e
c
[𝒗 × B]⋅

𝜕𝛿f
𝜕p

= −
𝛿f
𝜏
.

Multiply both parts of Equation (1) by e𝒗, integrate over momenta,
and transform this equation into the algebraic equation for the current
j = e ∫ 𝒗𝛿f d3p. Multiplying the result by 𝜏 , we obtain

(2) 𝜅E = j − 𝜏j × 𝝎B,

where 𝜅 is given by Equation (3) of Problem 1.29, and 𝝎B = eB∕mc is the
cyclotron frequency. Resolving Equation (2) with respect to the compo-
nents of j, we find j𝛼 = 𝜅𝛼𝛽E𝛽 , where the electric conductivity tensor is

(3) 𝜅𝛼𝛽 =
⎛⎜⎜⎝

𝜅⟂ 𝜅H 0
−𝜅H 𝜅⟂ 0
0 0 𝜅∥

⎞⎟⎟⎠ , where 𝜅⟂ = 𝜅

1 + (𝜔B𝜏)2
,

𝜅H =
𝜅(𝜔B𝜏)

1 + (𝜔B𝜏)2
, 𝜅∥ = 𝜅.

The subscripts ⟂ and ∥ denote the directions perpendicular and parallel to
the magnetic field, respectively. The component 𝜅H is responsible for the
Hall current.
The quantity𝜔B𝜏 is the rotation angle of the transversemomentumof the

particle during relaxation time, when it is moving along a spiral trajectory.
If 𝜔B𝜏 ≪ 1, the effect of the magnetic field is insignificant and the electric
conductivity is almost isotropic. In the opposite case, when 𝜔B𝜏 ≫ 1, the
conductivity is strongly anisotropic: 𝜅∥ ≫ 𝜅H ≫ 𝜅⟂.

13) Hall Adven Herbert (1855–1938), American physicist.




