## **Contents**

| 1 | General Characteristic of Rotating-Disk Systems l |                                                                     |    |  |  |
|---|---------------------------------------------------|---------------------------------------------------------------------|----|--|--|
|   | 1.1                                               | Industrial Applications of Rotating-Disk Systems                    | 1  |  |  |
|   | 1.2                                               | Acting Forces                                                       | 2  |  |  |
|   | 1.3                                               | Differential Equations of Continuity, Momentum and Heat Transfer.   | 4  |  |  |
|   | 1.4                                               | Differential Equation of Convective Diffusion                       | 9  |  |  |
| 2 | Mod                                               | delling of Fluid Flow and Heat Transfer in Rotating-Disk Systems .  | 11 |  |  |
|   | 2.1                                               | Differential and Integral Equations                                 |    |  |  |
|   |                                                   | 2.1.1 Differential Navier-Stokes and Energy Equations               | 11 |  |  |
|   |                                                   |                                                                     | 13 |  |  |
|   |                                                   | 2.1.3 Integral Boundary Layer Equations                             | 14 |  |  |
|   | 2.2                                               | Differential Methods of Solution                                    | 15 |  |  |
|   |                                                   | 2.2.1 Self-Similar Solution                                         | 15 |  |  |
|   |                                                   | 2.2.2 Approximate Analytical Methods for Laminar Flow Based         |    |  |  |
|   |                                                   |                                                                     | 17 |  |  |
|   |                                                   |                                                                     | 17 |  |  |
|   | 2.3                                               | Integral Methods of Solution                                        | 18 |  |  |
|   |                                                   | 2.3.1 Momentum Boundary Layer                                       | 18 |  |  |
|   |                                                   |                                                                     | 22 |  |  |
|   | 2.4                                               | Integral Method for Modelling Fluid Flow and Heat Transfer in       |    |  |  |
|   |                                                   |                                                                     | 23 |  |  |
|   |                                                   | 2.4.1 Structure of the Method                                       | 23 |  |  |
|   |                                                   | 2.4.2 Turbulent Flow: Improved Approximations of the Velocity       |    |  |  |
|   |                                                   | and Temperature Profiles                                            | 24 |  |  |
|   |                                                   |                                                                     | 25 |  |  |
|   |                                                   | 2.4.4 Integral Equations with Account for the Models                |    |  |  |
|   |                                                   |                                                                     | 27 |  |  |
|   | 2.5                                               | General Solution for the Cases of Disk Rotation in a Fluid Rotating |    |  |  |
|   |                                                   | <del>v</del>                                                        | 29 |  |  |
| 3 | Free                                              | Rotating Disk                                                       | 33 |  |  |
|   | 3.1                                               | Laminar Flow                                                        |    |  |  |
|   | 3.2                                               | Transition to Turbulent Flow and Effect of Surface Roughness        |    |  |  |



xii Contents

|   | 3.3          | Turbul   | lent flow                                                                                           | 41 |
|---|--------------|----------|-----------------------------------------------------------------------------------------------------|----|
|   |              | 3.3.1    | Parameters of the Turbulent Boundary Layer                                                          | 41 |
|   |              | 3.3.2    | Surface Heat Transfer: Experimental and Theoretical Data                                            |    |
|   |              |          | of Different Authors                                                                                | 45 |
|   |              | 3.3.3    | Effect of Approximation of the Radial Velocity Profile on                                           |    |
|   |              |          | Parameters of Momentum and Thermal                                                                  |    |
|   |              |          | Boundary Layers                                                                                     | 48 |
|   |              | 3.3.4    | Numerical Computation of Turbulent Flow and Heat                                                    |    |
|   |              |          | Transfer for an Arbitrary Distribution of the Wall                                                  |    |
|   |              |          | Temperature                                                                                         | 54 |
|   | 3.4          | Genera   | alized Analytical Solution for Laminar and Turbulent                                                |    |
|   |              |          | es Based on the Novel Model for the Enthalpy Thickness                                              | 58 |
|   | 3.5          | _        | e Problem of Restoration of the Wall Temperature                                                    |    |
|   |              |          | oution at a Specified Arbitrary Power Law for the Nusselt                                           |    |
|   |              |          | er                                                                                                  | 61 |
|   |              | 3.5.1    | Solution of the Problem                                                                             | 61 |
|   |              | 3.5.2    | Limiting Case of the Solution                                                                       | 64 |
|   |              | 3.5.3    | Properties of the Solution for Temperature Head                                                     | 65 |
|   |              | 3.5.4    | Analysis of the Solution                                                                            | 66 |
|   | 3.6          | Theor    | y of Local Modelling                                                                                | 72 |
|   |              | 3.6.1    | Solution of the Problem                                                                             | 72 |
|   |              | 3.6.2    | Other Interpretations                                                                               | 74 |
| 4 | <b>Uns</b> : | teady La | aminar Heat Transfer of a Free Rotating Disk ent Experimental Technique for Measuring Heat Transfer | 77 |
|   | 4.1          |          | totating Disks                                                                                      | 77 |
|   | 4.2          |          | imilar Navier–Stokes and Energy Equations                                                           | 79 |
|   | 4.3          |          | Solution for Surface Heat Transfer of an Isothermal Rotating                                        | 17 |
|   | 7.5          |          |                                                                                                     | 82 |
|   | 4.4          |          | rical Solution of an Unsteady Conjugate Problem                                                     | 02 |
|   | 7.7          | of Hye   | drodynamics and Heat Transfer of an Initially Isothermal Disk                                       | 85 |
|   |              | 4,4.1    | Computational Domain and Grid                                                                       | 85 |
|   |              | 4.4.2    | Validation for Steady-State Fluid Flow and Heat Transfer                                            | 86 |
|   |              | 4.4.3    | Unsteady Fluid Flow and Heat Transfer                                                               | 88 |
|   | 4.5          |          | ady Conjugate Laminar Heat Transfer of a Rotating                                                   | -  |
|   | •            |          | niformly Heated Disk                                                                                | 91 |
|   |              | 4.5.1    | Problem Statement                                                                                   | 91 |
|   |              | 4.5.2    | Self-Similar Solution of the Transient Laminar Convective                                           |    |
|   |              |          | Heat Transfer Problem                                                                               | 92 |
|   |              | 4.5.3    | Solution of the Unsteady Two-Dimensional Problem of                                                 |    |
|   |              |          | Heat Conduction in a Disk                                                                           | 93 |
|   |              | 4.5.4    | Analysis of the Solutions for Unsteady Heat Conduction                                              |    |
|   |              |          | in a Disk                                                                                           | 94 |
|   |              |          |                                                                                                     |    |

Contents xiii

| 5 | Exte |           | ow Imposed over a Rotating Disk                            | 101 |
|---|------|-----------|------------------------------------------------------------|-----|
|   | 5.1  | Rotati    | on of a Disk in a Fluid Rotating as a Solid Body Without   |     |
|   |      | Impos     | sed Radial Flow                                            | 101 |
|   |      | 5.1.1     | Turbulent Flow                                             | 101 |
|   |      | 5.1.2     | Laminar Flow                                               | 106 |
|   | 5.2  | Accele    | erating Radial Flow Without Imposed External Rotation      | 118 |
|   |      | 5.2.1     | Flow Impingement onto an Orthogonal Rotating Disk:         |     |
|   |      |           | Experimental and Computational Data of Different Authors.  |     |
|   |      | 5.2.2     | Turbulent Flow                                             |     |
|   |      | 5.2.3     | Laminar Flow                                               | 125 |
|   | 5.3  | Non-s     | ymmetric Flow over a Parallel Rotating Disk                | 143 |
| 6 | Out  | ward U    | nderswirled and Overswirled Radial Flow Between            |     |
|   | Para | allel Co- | -rotating Disks                                            | 147 |
|   | 6.1  |           | n the Ekman Layers                                         |     |
|   | 6.2  | Radial    | Outflow Between Parallel Co-rotating Disks                 | 148 |
|   |      | 6.2.1     | Flow Structure, Experiments and Computations of            |     |
|   |      |           | Different Authors                                          | 148 |
|   |      | 6.2.2     | Computation of the Radial Variation of the Swirl Parameter |     |
|   |      |           | Using the Integral Method                                  | 152 |
|   |      | 6.2.3     | Local Nusselt Numbers                                      | 157 |
|   |      | 6.2.4     | Effect of the Radial Distribution of the Disk Surface      |     |
|   |      |           | Temperature                                                |     |
|   | 6.3  | Effect    | of the Flow Overswirl                                      | 164 |
|   | 6.4  | Aerod     | ynamics and Heat Transfer in a Rotating-Disk Air Cleaner   |     |
|   |      | 6.4.1     | General Characteristics of the Problem                     |     |
|   |      | 6.4.2     | Geometrical and Regime Parameters of the Air Cleaner       |     |
|   |      | 6.4.3     | Parameters of the Computational Scheme                     |     |
|   |      | 6.4.4     | Results of Simulations                                     | 171 |
| 7 | Lan  | inar Fl   | uid Flow and Heat Transfer in a Gap Between a Disk and     |     |
|   | a Co |           | Touches the Disk with Its Apex                             |     |
|   | 7.1  |           | al Characterization of the Problem                         |     |
|   | 7.2  |           | r-Stokes and Energy Equations in the Self-similar Form     |     |
|   | 7.3  | Rotati    | ng Disk and/or Cone                                        |     |
|   |      | 7.3.1     | Numerical Values of Parameters in the Computations         |     |
|   |      | 7.3.2     | Cone Rotation at a Stationary Disk                         | 185 |
|   |      | 7.3.3     | Disk Rotation at a Stationary Cone                         |     |
|   |      | 7.3.4     | Co-rotating Disk and Cone                                  |     |
|   |      | 7.3.5     | Counter-Rotating Disk and Cone                             |     |
|   | 7.4  | Radial    | lly Outward Swirling Flow in a Stationary Conical Diffuser | 189 |
| 8 |      |           | lass Transfer of a Free Rotating Disk for the Prandtl and  |     |
|   | Schi |           | ımbers Larger than Unity                                   |     |
|   | 8.1  | Lamin     | ar Flow                                                    | 193 |

xiv Contents

| 8.2     | Transi | tional and Turbulent Flows for the Prandtl or Schmidt    |   |
|---------|--------|----------------------------------------------------------|---|
|         | Numb   | ers Moderately Different from Unity                      |   |
| 8.3     | Transi | tional and Turbulent Flows at High Prandtl and Schmidt   |   |
|         | Numb   | ers                                                      | 3 |
| 8.4     | An Int | egral Method for Modelling Heat and Mass Transfer in     |   |
|         | Turbul | ent Flow for the Prandtl and Schmidt Numbers Larger than |   |
|         | Unity. |                                                          | ļ |
|         | 8.4.1  | Prandtl and Schmidt Numbers Moderately Different         |   |
|         |        | from Unity                                               | ļ |
|         | 8.4.2  | High Prandtl and Schmidt Numbers                         | , |
| Referen | ices   |                                                          | , |
| Index . |        |                                                          | ; |