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1.1 Introduction

Hybrid composite is fabricated by adding two or more fibers into a single polymer
system [1]. The resulting material has a unique feature that combines the advantages
of each fiber. Since different fibers are added together, the benefits of one particu-
lar type of fiber property could be compensated with the other fiber lacking a spe-
cific property. The performance of hybrid composites could be influenced by many
factors [2–7]:

i. Fiber length
ii. Fiber loading

iii. Fiber orientation
iv. Fiber layer sequence
v. Fiber/matrix interfacial bonding

vi. Failure strain of fiber

The hybrid effect is termed as an apparent synergistic improvement of properties
due to different fibers in a single matrix system. The selection of fibers and their
properties is of main importance to achieve the enhanced properties for the hybrid
composites. Besides the physical, chemical, and mechanical stabilities of fiber, the
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matrix system also defines the strength of the hybrid composites. The different types
of hybrid composites are characterized as follows [8–12]:

i. Tow by tow: the fibers are mixed up randomly or regularly.
ii. Sandwich hybrid composites: one material is sandwiched between two different

layers.
iii. Inter-ply or laminated: two or more fiber layers are alternatively stacked regu-

larly.
iv. Intimately mixed fibers: various types of fibers are mixed up randomly.

Though the hybrid composites have many advantages, the prime challenges
are replacing the synthetic fiber-reinforced composites using biocomposites. Bio-
composites exhibit functional and structural stability during storage and degrade
upon disposal into the environment. “Engineered natural fiber” is one of the
exciting concepts to obtain the enhanced strength in the biocomposites, which
involves the blending of the leaf and stem fibers. The correct blending of these two
fibers exhibits optimum balance in mechanical properties, resulting in balanced
stiffness–toughness properties [13–15].

The mechanical and physical characteristics of the natural fiber are influenced
by many factors: (i) maturity of the plant fiber, (ii) harvesting time and region,
(iii) soil condition, (iv) rain, (v) sun, etc. Since the natural fibers are nonabrasive and
hypoallergenic, they could be processed efficiently. Amongst the various properties
of natural fibers, the low density and the cellular structure allow them to exhibit
better thermal properties. However, the amorphous hemicellulose on the fiber
surface can be a potential threat to the better interfacial bonding between the matrix
and the fiber, thereby reducing the properties. Hence, the mechanical and thermal
properties of the biocomposites could be further enhanced through chemical
treatments [16]. Natural fiber has cellulose, hemicellulose, and lignin susceptible
to degradation on exposure to elevated temperature [17–19]. Thus, many studies
exploring the thermal properties of the biocomposites have been published over the
years [20–22]. By botanical type, the natural fibers are classified into six major types
(Table 1.1).

Table 1.1 Classification of the natural fibers.

Seed Bast Leaf Core Grass and seed Others

Kapok Jute Banana Flax Canary Roots
Coir Ramie Pineapple Kenaf Barley wood
Cotton Flax Curaua Hemp Wheat
Oil palm Hemp Sisal Jute Grass
Rice Kenaf Abaca Corn
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1.2 Thermal Characterization

The thermal analyses encompass a family of techniques that would share a common
feature, whereby any material’s response could be measured through heating or
cooling. Thus, a significant connection is held between the temperature and the
physical property of the materials. The most common thermal techniques that
have been used by researchers and by industrial organizations for thermal char-
acterization are thermomechanical analysis (TMA), thermogravimetric analysis
(TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis
(DMA). These techniques are not only used for measuring the physical properties
with respect to the temperature changes but also used in the following areas: (i) to
substantiate mechanical properties and thermal history of the biocomposites, (ii) to
estimate the service life of composites in different environments, and (iii) as one
of the quality control approaches in polymers and their manufacturing industries.
Figure 1.1 shows some of the essential thermal analysis techniques and the
characteristics measured [23–25]. In terms of research, thermal behavior of the bio-
composites has been investigated by varying fiber volume fractions [26–28], varying
fiber layering patterns [29, 30], using different types of chemical treatments [31, 32],
adding different kinds of fillers [19, 33, 34], and using polymer blends [35, 36].

For instance, Table 1.2 presents some of the experimental works carried out on
thermal properties using different natural fibers.

1.2.1 DMA

Figure 1.2 presents the step-by-step process involved in the DMA of the polymers
and polymer-based composites. Output parameters such as storage modulus (E′ or
G′), loss modulus (E′′ or G′′), and damping factor (tan 𝛿) obtained as the function
of temperature are shown in Figure 1.3a. As the polymer or composite is heated
in the temperature range with the simultaneous application of oscillatory load, it
undergoes displacement or strain where some energy gets stored in the material,

Thermal analysis techniques

DSC DTA

ΔT, ΔT

TG or TGA

Mass

differential
power input

Length
or

volume

Viscoelastic
properties

Dielectric
properties

Penetration,
ΔT

TMA/ TD DMA DEA μ/n-TA

Figure 1.1 Various thermal analysis techniques and their applications. DFA, dielectric
analysis.
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Table 1.2 Reported thermal based works of natural fiber-reinforced hybrid composites.

Hybrid composites Details of study References

Thermoset polymers
Flax/sugar palm/epoxy DMA [6]
Flax/woven aloe vera/epoxy TGA, DMA [20]
Sisal/cattail/polyester Thermal conductivity [37]
Date palm/coir fiber/epoxy TGA [38]
Sisal/jute/sorghum/polyester TGA [39]
Coir/Luffa cylindrica/epoxy DMA [40]
Bamboo/kenaf/epoxy TGA, DMA, DSC [41]
Ramie/sisal/epoxy Sisal/curaua/epoxy TGA, DSC [42]
Flax/aloe vera/hemp/epoxy TGA, DMA [43]
Kenaf/pineapple leaf fiber/phenolic TGA [44]

Thermoplastic polymers
Sugar palm/roselle/polyurethane TGA [45]
Jute/bamboo/polyethylene DSC, TGA [46]
Sugar palm/roselle/polyurethane TGA [47]
Seaweed/sugar palm fiber/thermoplastic sugar
palm starch agar

TGA [48]

Coir/pineapple leaf fiber/polylactic acid (PLA) TGA [49]
Coir/pineapple leaf fiber/ PLA TGA, TMA [50]

Biodegradable polymers
Sisal/hemp/bioepoxy DMA, TGA [29]
Kenaf/sisal/bioepoxy TGA, DSC, DMA [51]
Sisal/hemp/bioepoxy TGA [52]

while some energy is dissipated as heat due to the internal friction. The resultant
strain measured by applying the oscillatory load is represented as loss modulus, stor-
age modulus, and phase angle or damping factor. The ability of the tested material to
store the energy is termed as the storage modulus while the tendency of the material
to dissipate heat energy is termed as the loss modulus. Storage modulus represents
the stiffness of a polymer or composite and is often related to Young’s modulus. Loss
modulus is related to the molecular chain motions such as transition and relaxation
within the polymer during the heating process and applied load. Tan 𝛿 is a dimen-
sionless number obtained through the ratio of loss modulus to the storage modulus.
Lower tan 𝛿 indicates higher stiffness and better interfacial bonding between fiber
and polymer matrix, which restricts the molecular mobility within the polymeric
chains.
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D4473 Standard Test Method for Plastics: Dynamic Mechanical Properties: Cure Behavior

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Peak on tan 𝛿 curve

Peak on storage modulus curve

Peak on loss modulus curve

Glass transition temperature

Complex shear modulus in torsional mode

Damping Coefficient (tan 𝛿) vs. temperature

Viscous Modulus vs. temperature,

Elastic Modulus vs. temperature

Assessment

Output

Input

ASTM 
standards

Temperature program

Type of load and clamping

Frequency or strain

Specimen geometry

D5418 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Flexure (Dual Cantilever Beam)

D5279 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Torsion

D5026 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Tension

D5024 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Compression

D4440 Standard Test Method for Plastics: Dynamic Mechanical Properties Melt Rheology

Figure 1.2 Thermal characterizations of the polymer and polymer-based composite
through DMA, step-by-step process.

Polymers are viscoelastic and can be classified into crystalline, amorphous,
and semicrystalline (has both crystalline and amorphous characteristics) depend-
ing upon the composition. It is because of this characteristic that polymers or
polymer-based composite undergoes phase change during the simultaneous appli-
cation of the load and heating process (Figure 1.3b). Figure 1.3a shows the typical
data obtained from DMA. Glass transition temperature (Tg) is the tangent obtained
in the phase change region between glassy state and rubbery state. Tg can be below
the melting temperature for a polymer, which has both crystalline and amorphous
characteristics. The material tends to get softer rather than melting at Tg. DMA is
particularly useful in identifying the cross-linking density of the polymer, as shown
in Figure 1.3b. It can be noticed that polymers with a high cross-linking density
have higher Tg and greater loss modulus and storage modulus, while it is vice versa
for polymers with low cross-linking density [53].

1.2.2 TMA

TMA is a common technique used for investigating the dimensional change of mate-
rial under the combination of temperature and a fixed load. Figure 1.4 presents
the step-by-step process involved in the TMA of the polymers and polymer-based
composites. Dimensional change of material (at nanoscale) under the influence of
temperature and load can be measured in various testing modes shown in Figure 1.5.
Changes in the free volume of material depending upon the heat absorption or heat
release with respect to the temperature can also be determined with this technique.

Figure 1.6a–c shows that the Tg measurement for a polymer or a polymer com-
posite can be derived from the TMA, DSC, and DMA.
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Figure 1.3 Thermal characterization of polymer and polymer-based composite with DMA.
(a) Typical curve. (b) Viscoelastic characteristics of the polymer. Source: Saba et al. [53].

1.2.3 DSC

Figure 1.7 presents the step-by-step process involved in the DSC of the polymers
and polymer-based composites. In DSC, the sample is heated around 30 to the ele-
vated temperature beyond 300 ∘C with the constant supply of liquid nitrogen in a
controlled chamber. Heat flow from the sample is measured as a function of the
temperature shown in Figure 1.8. The changes in crystalline properties (Tg), melting
temperature (Tm), and cold crystallization temperature (Tc) due to the introduction
of two or more natural fibers in the hybrid composite can be evaluated.

1.2.4 TGA

Figure 1.9 presents the step-by-step process involved in the TGA of the polymers
and polymer-based composites. It is an effective technique for evaluating thermal



1.2 Thermal Characterization 7
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Figure 1.4 Thermal characterizations of the polymer and polymer-based composite
through TMA, step-by-step process.

Load direction

Probe

Sample

Sample
cylinder

Expansion/Compression Penetration Tension 3-Point bending

Chuck

Voulmetric expansion E-modulus

Figure 1.5 Test modes in TMA. Source: Saba and Jawaid [54].

decomposition characteristics of the polymers and polymer composite reinforced
with the natural fibers or the synthetic fibers. It provides the quantitative mass
change of the sample due to the heating under the controlled atmosphere. A natural
fiber obtained from the plants and trees is made up of the constituents such as cel-
lulose, hemicellulose, lignin, pectin, wax, moisture, and ash. The percentage of con-
stituents can vary from one fiber to another, which has a significant influence on the
thermal decomposition characteristics of natural fiber and their composites. Also,
these fiber constituents are volatile and can decompose at elevated temperatures.
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Figure 1.6 Tg measured from the various thermal characterization techniques: (a) TMA, (b)
DSC, and (c) DMA. Source: Saba and Jawaid [54].

D3418-15 Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of

Polymers by Differential Scanning Calorimetry

• 

• 

• 

• 

• 

• 
• 

• 

• 

• 

• 

• 
• 

Specimen preparation

Specimen weight

Purge gas and gas flow rate

Heating rate

Start/end temperature

Heat flow  vs. Temperature

Glass transition temperature

Melting temperature

Crystallization temperature

Specific heat capacity

Heat of fusion

E1269-05 Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry
ASTM

standards

Input

Output

Assessment

Figure 1.7 Thermal characterizations of the polymer and polymer-based composite
through DSC, step-by-step process.

A few milligram of sample is placed in the TGA chamber and heated from room
temperature to as high as 700 ∘C at a defined ramp rate in the presence of nitrogen to
prevent oxidation inside the chamber. The thermal stability of a polymer-based com-
posite is usually assessed from the thermogram (TG curve) and the derivative ther-
mogram (DTG curve) obtained from the TGA, as shown in Figure 1.10. Parameters
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Figure 1.8 Thermogram from the DSC. Source: Chandrasekar et al. [55].
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Figure 1.9 Thermal characterizations of polymer and polymer-based composites through
TGA, step-by-step process.

such as the onset, endset, inflection temperature, and residue percentage at the end
of the heating process in the TGA chamber are usually compared to identify changes
due to the reinforcement percentage and type of fiber. Degradation temperature
at 5%, 10%, 20%, 40%, and 80% weight loss along with the residue can also be
discussed.

In the case of a polymer, thermal decomposition usually occurs in single stage,
whereas, for the natural fiber, thermal decomposition occurs in two or three stages
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depending on the fiber constituents. Initial mass loss between 50 and 150 ∘C is due
to the evaporation of moisture in the fiber. The weight loss at a temperature range
between 150 and 300 ∘C is associated with the decomposition of hemicellulose and
lignin. The final weight loss between 300 and 700 ∘C is attributed to the decompo-
sition of cellulose. Since the fiber constituents vary from one fiber to another, TGA
has proved to be an excellent tool for determining the changes in thermal decompo-
sition characteristics of the hybrid polymer composite reinforced with two or more
natural fibers. Thermal stability is also evaluated by residue percentage at the end of
the heating process. The higher the residues, the better the thermal stability of the
composite.

1.3 Conclusion

Thermal characterization of the hybrid composites using various commercially
available techniques such as DMA, TMA, DSC, and TGA has been discussed. The
following are the conclusions:

● DMA is useful in determining the creep properties and interfacial interactions of
the composites and measuring their stiffness, material behavior with respect to
the phase transitions, damping, and relaxation processes in a range of frequencies
and temperatures.

● TMA helps in defining the material structure with respect to the dimensional
and volumetric change, surface roughness, molecular structure, cure, and
cross-linking polymerization under both static and dynamic loads.

● DSC is considered as one of the primary tools for thermodynamic analysis and
cure kinetics. It gives useful information on the phase transitions upon heating
and quantifies the glass transition temperature, melting temperature, and crystal-
lization temperature related to the polymers and polymer-based biocomposites.
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● TGA has been widely used to illustrate the thermal stability of the composites,
which provides the quantitative mass change of the sample due to heating. It also
provides vital information on the decomposition characteristics of the constituents
of the composites at elevated temperatures.

The forthcoming chapters of this book would give extensive information on the
above-discussed thermal characterization techniques with respect to different natu-
ral fibers and polymers targeted for various applications.
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