
Chapter 1

Autonomous driving and
simulational challenges

For more than one hundred years the automotive industry has been a warrant for techno-
logical innovation, sustainable employment and prosperity. With the introduction of seat
belts and airbags vehicles got increasingly safer. The development of an electronic fuel
injection system lead to severely diminished emissions due to lower fuel consumption.
Moreover, and despite the rising technological complexity prices dropped considerably
with regards to the Consumer Price Index. As a summary it may be stated that motor
vehicles got cleaner, safer, and more affordable. The automobile as a symbol of freedom,
indepence, and prosperity lead to a continually increasing demand. In conjunction with
additional political measures the automotive sector has become the leading industry in
many industrialized nations like the United States, China, and Germany, to name just a
few.
In spite of all this, time does not stand still and so car manufactures are facing great up-
heavals nowadays. For a long time period California has been a sole pioneer for tightening
emission regulations and thus increased the demand for electric vehicles. While senior
industry experts kept saying lithium-ion technology is still several years away Tesla intro-
duced the first all-electric car based upon lithium-ion battery cells in 2008. Even though
new competitors are struggling with numerous difficulties till date their way of working
as well as their influence to current and future development projects in the automotive
sector is already considerable. Economy and society are on the brink of another new
technological revolution: autonomous driving [1].

1.1 Safety validation and simulative test drives
The almost one hundred year old idea of self-driving cars might solve several intractable
problems related to everyone’s daily mobility. These include, among others, traffic con-
gestions, availability of public transport, medical or age-related mobility constraints as
well as the often quoted number of road fatalities. The particular interest of many com-
panies in this technology, however, is especially based on associated disruptive business
models [2].
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Fig. 1.1. Schematic, exemplary view of the various sensors around a vehicle
with a driver assistence system. The picture is taken from a highway scene
within a virtual environment. The colored sensor cones show each sensors ap-
proximate field of view. The different colors indicate different types of sensors,
e.g., radar, lidar, and camera sensors (see also [3]).

However, the almost 25-year-long development of adaptive cruise control (ACC) has
demonstrated that innovation development up to the stage of production readiness re-
quires a certain amount of effort. On the one hand, there was uncertainty about the
customer features and the technology to be used (pulse-width modulation or frequency
modulation), and on the other hand, there was a lack of suitable suppliers. From to-
day’s point of view, it is not surprising that numerous product releases failed due to
the extensive efforts required for integration and deployment, as well as the difficulty
in communicating the resulting benefits to the customers. Nevertheless, adaptive cruise
control has matured to become a mass product these days, paving the way for the further
development of advanced driver assistance systems.
The development of autonomous driving and modern advanced driver assistance systems
always focuses on controllability by the driver and constitutes the basis for safety vali-
dation of individual functions. This applies in particular to conditional automation, the
so-called Level 3 of driving automation according to the SAE J3016 standard. Here, all
aspects of the driving task are performed by an autonomous driving function, whereby
the driver is always expected to be able to intervene on demand in case of doubt. Typ-
ically, the driver is expected to be ready to take over the driving task within a few
seconds. This strategy leads to enormous demands on the view of environmental sensors.
However, particularly due to the fact that even the simplest tasks are covered by the
autonomous driving function, even the very simplest but rarely occurring events must
be safe guarded prior to a vehicle’s release. In case of events that occur only after an
average of 50,000 kilometers or more (see 1.2), such as an emergency break event, several
million test kilometers have to be performed beforehand. Additional requirements for a
particular test concept, such as weather conditions or configuration options, may again
drastically increase the number of test kilometers to be covered [4, 5].
When deriving the number of test kilometers, a Poisson distribution is usually assumed.
For example, if a certain event occurs n times on average for a distance length s0, then
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Fig. 1.2. Effects on the number of test kilometers assuming an underlying
Poisson distribution. On the left, the cumulative probability for the number of
occurrences, if λ = 3 (blue) or λ = 6.3 (red) events are to be expected during
the test. On the right, the stretch factor for the test drive in case of a given
number of events (see also [4, p. 1175 ff.]) for further details.

it is expected that in case of a trip length s the event occurs s/s0 × n times. However,
this does not guarantee that the event will occur that often. Instead, this value forms
the expectation value λ of the Poisson distribution. For instance, if an event occurs on
average only once at a distance s0, then at the three-fold distance, i.e., λ = 3, the event
does not occur at all in 5% of the cases (see 1.2). This is referred to as significance level
and is usually tolerated up to a probability of 5%. Therefore, for a given event, at least
three times the distance must be completed without an accident. Alternatively, 6.3 times
with a maximum of one accident.
Such a safety validation strategy rapidly leads to a coverage of up to multiple hundred
million test kilometers and exceeds the technical, personnel and financial capabilities of
today’s companies. Even if this effort was ventured for an initial system under limited
circumstances, one has to consider that the test would have to be performed again with at
least one third of the initial effort after each modification of the system, which is obviously
not economically justifiable [4]. Therefore, the prevailing opinion among automotive
manufacturers, suppliers and also within the research community tends towards a decisive
role for simulation-based safety validation in the future [6].

1.2 Principles of automotive radar sensors
The first radar systems originated in the field of military and aviation technology. For
about two decades, these sensors have also been increasingly integrated into automobiles.
Today, upper-class vehicles already include numerous radar sensors that provide data
for various driver assistance functions. In general, however, vehicle manufacturers only
specify certain sensor requirements and subsequently either purchase these sensors or
develop them in collaboration with suppliers.
Regardless of whether the design of models is performed by the sensor manufacturer him-
self or by automotive or simulation manufacturers themselves, it is crucial to understand
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the fundamental principles of radar sensor technology and to be familiar with the defini-
tion of the interfaces. Essentially, to determine the distance of an object, a radar sensor
usually measures the time of flight t taken by an electromagnetic wave to travel back and
forth between sensor and target. Hence the distance R is given by

R = c0

2 t, (1.1)

whereby c0 is the speed of light. For automotive applications, however, so called pulsed
radar systems, which measure the runtime directly, have numerous disadvantages. Thus,
targets can only be distinguished from each other if the distance between them is suffi-
ciently large, i.e., depending on the pulse duration tp the distance must be at least

ΔR � c0

2 tp. (1.2)

Due to legal restrictions and the fact that the -3 dB bandwidth is inversely proportional
to the pulse duration, tp cannot be chosen arbitrarily small. Therefore, the frequency
modulated continuous wave (FMCW) measurement principle is widely accepted and cur-
rently de facto standard for automotive purposes. Therefore, a short introduction to
the essential principles of modern automotive radar sensors will be given in the follow-
ing. The subsection focuses primarily on signal processing and concludes with a general
description of the radar point cloud interface.

1.2.1 Static targets and their radar signal
Frequency modulation is characterized by the transmission of a continuous wave, with
periodically increasing or decreasing frequency. The following explanation deals with
the common case of sawtooth frequency modulation, i.e., the time dependent transmit
frequency fTx is given by

fTx(t) = fc + B

T

(
t −
⌊

t

T

⌋
T
)

. (1.3)

Each sawtooth, also called chirp, passes through the frequency range from fc to fc + B.
Thereby, fc indicates the carrier frequency, B the bandwidth and T the chirp or sweep
time. In case of a reflective target at a distance R, the signals time of flight is

τ0 = 2R

c0
. (1.4)

This results in a time dependent receive frequency

fRx(t) = fTx(t − τ0)

= fc + B

T

(
t −
⌊

t

T

⌋
T − τ0

)
.

(1.5)

Now, if the difference frequency Δf between the transmit and receive frequency is mea-
sured, the distance R to the target can be determined, i.e.,

R = c0TΔf

2B
. (1.6)
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To be more specific about digital signal processing and the frequency measurement prin-
ciples, it is necessary to examine the actual transmit and receive signal more closely. The
signal of an unmodulated wave at frequency f is given at the transmitting antenna as

uTx(t) = u0 cos (ϕTx(t))
= u0 cos (2πft) .

(1.7)

Thereby, the factor u0 denotes the amplitude and ϕTx the phase of the transmit signal.
To derive a more profound interrelation between frequency and phase of a frequency
modulated signal the term instantaneous frequency must first be explained. Since fre-
quency is the number of revolutions (or simply repetitions) per time, the formula can be
expressed in terms of the phase angle as well. Therefore, the average frequency f̄h in a
small interval [t, t + h] of length h is given as

f̄h(t) = 1
2π

ϕ(t + h) − ϕ(t)
h

. (1.8)

Now, the limit h → 0 defines the instantaneous frequency. Thus, it can be concluded
that frequency is the time derivative of the phase, i.e.,

f(t) = 1
2π

d
dt

ϕ(t). (1.9)

Conversely, the phase can be determined by integrating the time dependent frequency.
Hence the phase is given by

ϕTx(t) = 2π
∫ t

0
fTx(u)du. (1.10)

Provided that all chirps start in phase, it suffices to simply integrate from 0 to (t − �t/T� T )
to determine ϕTx(t). An analogous formula applies to the phase of the receive signal ϕRx
at t � τ0 , i.e.

ϕRx(t) = 2π
∫ t

τ0
fRx(u)du

= 2π
∫ t−τ0

0
fRx(u + τ0)du

= 2π
∫ t−τ0

0
fTx(u)du

= ϕTx(t − τ0).

(1.11)

The intermediate frequency signal uΔ of uTx and uRx is a nearly continuous wave with
frequency Δf . Technically, the differential signal is generated by means of a multiplicative
mixer and a subsequent low-pass filter. The mixer multiplies both signals with each other.
According to the trigonometric product-sum identity, the resulting signal u∗ has the form

u∗(t) = uTx(t)uRx(t)
= u (cos (ϕTx(t) + ϕRx(t)) + cos (ϕTx(t) − ϕRx(t))) .

(1.12)
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In general, since the receive signal passes through an amplifier before, there is an ad-
ditional constant c > 0 such that u = u0u1c. In the context of signal processing, the
exact value of the amplitude can usually be neglected anyway. Now, the low-pass fil-
ter removes all high-frequency components, hence only the difference frequency remains
present. Consequently, the intermediate frequency signal is given by

uΔ(t) = u cos (ϕTx(t) − ϕRx(t)) . (1.13)

According to equation (1.10) and (1.11) one can derive a detailed expression for the inter-
mediate frequency signal. However, since this leads to an extremely elongated expression,
the signal is usually only given for the range of constant intermediate frequency. This
range extends from τ0 to T − τ0 and accounts for considerably more than 90% of the sig-
nal. For example, a signal with T = 20μs contains 99% constant frequency components
for a target at a distance of 15m. For the previously mentioned range the temporal signal
is given by

uΔ(t) = u cos
(

2π
(

B

T
τ0

(
t −
⌊

t

T

⌋
T
)

+ fcτ0 − B

2T
τ 2

0

))

≈ u cos
(

2π
(

B

T
τ0

(
t −
⌊

t

T

⌋
T
)

+ fcτ0

))
.

(1.14)

Since a window function is usually applied to the intermediate frequency signal anyway,
it is sufficient for almost all applications and models to consider a signal of constant
intermediate frequency. For consideration of more complex effects due to the time ranges
[0, τ0] and [T − τ0], the phase must be calculated for the full range. In addition to a
different phase, and depending on the window function, there is also a time-dependent
amplitude. The following neglects these effects and proceeds with the formula given in
equation (1.13).

1.2.2 The Doppler effect and its influence
For the derivation of the frequency modulated continuous wave radar signal only static
targets have been considered so far. However, if the target moves the frequency of the
received signal is shifted due to the Doppler effect. For the receive frequency fRx of a
moving target at the radial speed vr, the following applies

fRx = c0 − vr

c0 + vr
fTx. (1.15)

Since an exact relativistic consideration is usually not necessary at low speeds, the above
formula is often simplified by a first-order taylor approximation. Therefore, equation
(1.15) can be written as

fRx ≈
(

1 − 2vr

c0

)
fTx. (1.16)

As is the case with a primary radar, the above formula given in equation (1.15) considers
two relativistic Doppler shifts. The first shift occurs during the reception at the target.
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Fig. 1.3. Illustration of the relativistic Doppler effect and its influence on a
single chirp. During the transmission of a chirp, the target vehicle continuously
moves and as a result, a frequency shift occurs. Since the chirp duration is also
subject to a Doppler shift, the graphs of transmitted and received frequencies
are not perfectly parallel. However, these nuances are generally negligible.

The second one when the signal reaches the transmitter after reflection. For example,
if the target moves radially away from the sensor, vr > 0 applies and thus fRx < fTx.
In order to finally reproduce such a frequency shift within the phase of the time signal
uΔ, an exact relativistic consideration of the received phase is necessary. In numerous
publications and contributions one can find simpler derivations, which only consider a
time-dependent runtime τ in equation (1.11). However, this reproduces the Doppler shift
only approximately and neglects certain effects due to frequency modulation (see the
following remark).
In order to determine the phase of the reflected signal, in case of a single dynamic target, a
twofold coordinate transformation must be performed. For this purpose, the transmitted
spacetime-signal (for simplicity limited to only one chirp)

uTx(t, x) = u0 cos
(

2π

(
fc

(
t − x

c0

)
+ B

2T

(
t − x

c0

)2
))

(1.17)

is transformed into the reference frame of the target. According to the Lorentz transfor-
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mation, the coordinates (t, x) are given in the reference frame of the target as

x′ = γ (x + vrt)

t′ = γ

(
t + vrx

c2
0

)
,

(1.18)

whereby γ = (1 − v2
r/c2

0)
−1/2 is the Lorentz factor [7]. Plugging (t′, x′) into equation (1.17)

one gets the transmit signal from the perspective of the target vehicle. Now, a reflection
is equivalent to the instantaneous emission of the signal received from the sensor. Due
to the principle of relativity, instead of a moving target and a fixed sensor, one can just
as well assume a stationary target and a moving sensor. Therefore, the reflected signal
in the sensor reference frame is obtained by another Lorentz transformation. Just with
exchanged roles of (t′, x′) and (t, x). If one considers the additional time of flight τ0, this
results in the following overall transformation(

t − x

c0

)
c0 − vr

c0 + vr

(
t − x

c0

)
c0 − vr

c0 + vr

(
t − τ0 − x

c0

)
(1.19)

for the transition from uTx to uRx. The phase of the reflected signal in the reference frame
of the sensor at x = 0, i.e., the phase of the received signal, is therefore given as

ϕRx(t) = 2π
c0 − vr

c0 + vr

(
fc (t − τ0) + c0 − vr

c0 + vr

B

2T
(t − τ0)2

)
. (1.20)

Remark. Deviding equation (1.20) by 2π and performing a time derivative, one
obtains the instantaneous receive frequency

fRx(t) = c0 − vr

c0 + vr

(
fc + c0 − vr

c0 + vr

B

T
(t − τ0)

)

Now, one clearly sees that the Doppler shift affects the current transmit frequency
on the one hand, but also the chirp frequency 1/T on the other. Consequently, the
duration of the chirp also changes (see Fig. 1.3). The latter two facts are usually
neglected.

To obtain a concise, closed form for the intermediate frequency signal uΔ, again several
first-order Taylor approximations are necessary. An extensive calculation then yields

uΔ(t) ≈ u cos
(

2π
(

B

T
τ0t + fcτ0 − B

2T
τ 2

0 + 2vr

c0
fc (t − τ0) + 4vr

c0

B

2T
(t − τ0)2

))
(1.21)

for a single chirp. In the limiting case vr → 0, one obtains the already known formula for
the static case presented in equation (1.14). In practice, an additional approximation is
usually performed, and hence one usually considers

uΔ(t) ≈ u cos
(

2π
((

B

T
τ0 + 2vr

c0
fc

)
t + fcτ0

))
(1.22)
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only. For example, this approach is also used in [8, p. 49 ff.] but derived differently
(see the following remark). The intermediate frequency signal uΔ contains not only a
time of flight dependent part, but also an additional frequency shift due to the Doppler
effect1. Therefore, the objective of radar signal processing is to separate the time-of-
flight component from the Doppler component as precisely as possible in order to enable
simultaneous measurement of distance and velocity. Subsequent to the basics of angle es-
timation, the signal processing of modern radar sensors is explained taking this derivation
into account.

Remark. The formula given in equation (1.22) is usually derived by simpler meth-
ods than a Lorentz transformation, see [8, p. 49 ff.] for example. However, from the
physical point of view it is not entirely correct. Nevertheless, since it is common
practice, a possible procedure is briefly presented here.
Suppose the target moves with constant radial speed, then the distance R changes
linearly and so does the runtime τ0. Hence the time-dependent runtime is given by

τ(t) = τ0 + 2vr

c0
t. (1.23)

If one proceeds analogously to the static case as described in equation (1.11) and
uses the above relation during integration, one obtains the following approximation

ϕRx(t) = 2π
∫ t

τ(t)
fRx(u)du

≈ 2π
((

1 − 2vr

c0

)
B

2T
t2 +

((
1 − 2vr

c0

)
fc − B

T
τ0

)
t − fcτ0

)
,

(1.24)

if terms of order v2
r/c2

0, v3
r/c3

0 and τ 2
0 are neglected. After calculating the phase difference

as indicated in (1.13) and neglecting terms of order t2, one obtains the the same
intermediate frequency signal for the dynamic case as presented in equation (1.22).

1.2.3 Angle estimation with multiple receivers
Measuring the speed and distance of a target vehicle is still not sufficient for an environ-
mental perception. In addition, an angular measurement in azimuthal direction is also
necessary. In order to evaluate time-of-flight dependent differences and thus determine
the direction of incidence, radar systems require at least two receiving antennas. Assum-
ing a reflective target is located in polar coordinates at (R0, θ) with θ > 0, the reflected
signal will reach the left receiving antenna first. Although the time difference is minimal
due to the speed of light, the phase of the received signal changes (see Fig. 1.4). The
ratio of the phase difference Δϕ and 2π matches the ratio of the additional path length
ΔR and the wavelength λ, i.e.,

Δϕ

2π
= ΔR

λ
. (1.25)

1Using equation (1.22), the non-parallelity of transmitted and received chirps (see Fig. 1.3) is neglected.
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ΔR
θ

θ

incoming
plane wave

Fig. 1.4. Illustration of the angle measurement principle. The antenna dis-
tance ds of the fictitious receiving element on the right side is chosen in a way
that a phase difference of 2π, respectively λ arises compared to the first receiv-
ing antenna. This argument is used within the signal processing subsection.

The additional path depends in good approximation (plane wavefront) only on the angle
of incidence θ and the spacing between the antennas d. Thereby

ΔR = d sin θ (1.26)

applies. Since the phase difference must be in the range from −π to π, the antenna
spacing is also directly related to the unique angular range of the sensor. For a common
antenna spacing of λ/2, a maximum range of −90° to 90° is obtained due to

α = sin−1
(

λ

d

Δϕ

2π

)
. (1.27)

Due to the non-linearity, however, a significantly larger angular error results at the bound-
aries of the range of uniqueness even in case of slightest phase measurement errors.
This simple principle is already sufficient for determining the angle of a single target. In
practice, though, often more than two antennas are used. The exact way in which the
phase difference is measured is discussed in the following section.

1.2.4 Radar signal processing and point clouds
The purpose of signal processing is to determine the distance, the velocity and the in-
cidence angle of a target. Essentially, the signal processing is based on the frequency
analysis by means of Fourier transformations, which is explained step by step in the fol-
lowing. The subsequent detection is generated with a constant false alarm rate algorithm,
which will be briefly discussed afterwards.
Frequency analysis with Fourier transformations. If the signal from equation
(1.21), resp. (1.22) is received by the receiving antenna, the analog signal is sampled
at a frequency fAD using an analog-to-digital converter. Therefore, a chirp of length T




