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8 Zinsrisiko

8.3 Duration

Die Duration ist ein weit verbreitetes Maß für das Exposure eines Portfolios gegen-
über Schwankungen der Zinsstrukturkurve. Es sei y eine Anleiherendite und B deren
Marktpreis. Die Duration D der Anleihe wird gegeben durch

�B
B

D �D�y

bzw.

�B D �DB�y : (8.1)

Hierbei ist �y eine kleine Änderung der Anleiherendite und �B die zugehörige Ver-
änderung des Anleihepreises. Die Duration misst die prozentuale Sensitivität des
Anleihepreises gegenüber den Änderungen der Rendite. In der Notation der Diffe-
renzialrechnung lässt sich dies so ausdrücken:

D D � 1
B

dB
dy

: (8.2)

Wir betrachten nun eine Anleihe, die zu den Zeitpunkten t1; t2; : : : ; tn Zahlungen der
Höhe c1; c2; : : : ; cn abwirft. (Die Cash Flows bestehen dabei aus Kupon- und Kapital-
rückzahlungen.) Die Anleiherendite y ist definiert als derjenige Diskontierungssatz,
der den theoretischen Anleihepreis in den Marktpreis überführt. Wird die Rendite auf
die Anleihe mit stetiger Verzinsung (siehe ◮Anhang A) gemessen, dann sind Preis B
und Rendite y der Anleihe durch die Beziehung

B D
n
X

iD1

ci e�yti

verknüpft. Daraus folgt

D D
n
X

iD1

ti

�

ci e�yti

B

�

: (8.3)

Der Klammerausdruck in ◮Gleichung (8.3) gibt das Verhältnis des Barwertes der
Zahlung zum Zeitpunkt ti zum Anleihepreis an. Dieser Anleihepreis entspricht dem
Barwert aller Zahlungen. Die Duration ist somit das gewichtete Mittel der Zeitpunkte,
zu denen Zahlungen erfolgen, wobei das dem Zeitpunkt ti beigemessene Gewicht
gleich dem Anteil der Zahlung zum Zeitpunkt ti am gegenwärtigen Gesamtwert der
Anleihe ist. Die Summe der Gewichte ist 1,0. Damit ist auch die Wahl des Begriffs
„Duration“ (engl. D Dauer) plausibel. Die Duration ist ein Maß dafür, wie lange ein
Anleiheninhaber auf Zahlungen warten muss. Eine Nullkupon-Anleihe mit einer
Laufzeit von n Jahren hat eine Duration von n Jahren. Eine Kupon-Anleihe mit einer
Laufzeit von n Jahren hat eine Duration von weniger als n Jahren, da der Inhaber
bereits vor dem Jahr n Auszahlungen erhält.

Wir betrachten eine dreijährige 10 %-Kupon-Anleihe mit einem Nennwert von
100 Dollar und nehmen eine Anleiherendite von 12 % per annum bei stetiger Ver-
zinsung an, d. h. y D 0;12. Alle sechs Monate erfolgen die Kupon-Ausschüttungen
in Höhe von 5 Dollar. ◮Tabelle 8.3 veranschaulicht die für die Bestimmung der
Anleihe-Duration notwendigen Berechnungen. Die Barwerte der Zahlungen sind
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8.3 Duration

Zeit (Jahre) Zahlung (Dollar) Barwert Gewicht Zeit � Gewicht

0,5 5 4,709 0,050 0,025

1,0 5 4,435 0,047 0,047

1,5 5 4,176 0,044 0,066

2,0 5 3,933 0,042 0,083

2,5 5 3,704 0,039 0,098

3,0 105 73,256 0,778 2,333

Gesamt 130 94,213 1,000 2,653

Tabelle 8.3: Berechnung der Duration

in Spalte 3 angegeben, wobei die Rendite als Diskontsatz verwendet wurde (so ist
z. B. der Barwert der ersten Zahlung 5e�0;12�0;5 D 4;709). Die Summe der Zahlen in
Spalte 3 ergibt den Anleihepreis 94,213. Die Gewichte erhält man durch Division
der Zahlen aus Spalte 3 durch 94,213. Die Summe der Zahlen aus Spalte 5 liefert die
Duration von 2,653 Jahren.

Kleine Veränderungen in Zinssätzen werden oft in Basispunkten gemessen. Ein
Basispunkt ist 0,01 % per annum. Im folgenden Beispiel untersuchen wir die Genau-
igkeit der Durationsbeziehung in ◮Gleichung (8.1).

Beispiel 8.1 Die Anleihe in Tabelle 8.3 hat den Preis 94,213 und die Dura-
tion 2,653. Gleichung (8.1) ergibt also

�B D �94;213 � 2;653 �y

bzw.

�B D �249;95 �y :

Eine Erhöhung der Rendite um 10 Basispunkte (D 0;1 %) entspricht �y D
C0;001. Die Durationsbeziehung sagt voraus, dass �B D �249;95 � 0;001 D
�0;250. Mit anderen Worten, der Anleihepreis fällt auf 94;213 � 0;250 D 93;963.
Wie genau ist diese Abschätzung? Bei einer Erhöhung der Anleiherendite um 10
Basispunkte auf 12,1 % beträgt der Anleihepreis

5e�0;121�0;5 C 5e�0;121 C 5e�0;121�1;5 C 5e�0;121�2;0 C 5e�0;121�2;5

C 105e�0;121�3;0 D 93;963;

was (auf drei Dezimalstellen) mit dem über die Durationsbeziehung ermittelten
Preis übereinstimmt.
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8 Zinsrisiko

Modified Duration

Die Definition der Duration in Gleichung (8.3) geht auf einen Vorschlag von Frede-
rick Macaulay (1938) zurück. Sie wird daher auch als Macaulay Duration bezeichnet.
Wird die Rendite y der Anleihe bei stetiger Verzinsung ausgedrückt, ist diese Defini-
tion äquivalent zu der Definition in den Gleichungen (8.1) und (8.2). Ist die Duration
wie in den Gleichungen (8.1) und (8.2) definiert und werden für y andere Verzin-
sungsfrequenzen verwendet, dann muss man an der Macaulay Duration eine leichte
Anpassung vornehmen. Wenn y mit jährlicher Verzinsung ausgedrückt wird, kann
man zeigen, dass der Ausdruck für D in Gleichung (8.3) durch 1 C y dividiert wer-
den muss. Allgemein gilt, dass durch 1 C y=m dividiert werden muss, wenn y mit
einer Verzinsungshäufigkeit von m-mal pro Jahr angegeben wird. Die auf diese Weise
definierte Duration heißt Modified Duration.

Beispiel 8.2 Die Anleihe von Tabelle 8.3 hat einen Preis von 94,213 und
eine Duration von 2,653. Die Rendite, ausgedrückt mit halbjähr-

licher Verzinsung, beträgt 12,3673 % (siehe ◮Anhang A). Die (Modified) Dura-
tion, die für die Berechnung der Sensitivität gegenüber der Rendite (ausgedrückt
bei halbjährlicher Verzinsung) zutrifft, beträgt

2;653
1 C 0;123673=2

D 2;4985 :

Aus Gleichung (8.1) erhält man

�B D �94;213 � 2;4985 �y

bzw.

�B D �235;39 �y :

Wenn die (halbjährlich verzinste) Rendite um 10 Basispunkte (0,1 %) steigt, ist
�y D C0;001. Gemäß der Durationsbeziehung erwarten wir für �B den Wert
�235;39 � 0;001 D �0;235, sodass der Anleihekurs auf 94;213 � 0;235 D 93;978
absinkt. Wie genau ist diese Näherung? Wenn die (halbjährlich verzinste) Ren-
dite um 10 Basispunkte auf 12,4673% steigt (bzw. auf 12,0941 % bei stetiger
Verzinsung), zeigt eine exakte Berechnung analog zum vorhergehenden Beispiel,
dass der neue Anleihekurs 93,978 beträgt. Die Berechnung mithilfe der Modified
Duration besitzt also eine annehmbare Genauigkeit für kleine Renditeschwan-
kungen.

Dollar-Duration

Die Dollar-Duration einer Anleihe ergibt sich aus dem Produkt von Duration und
Anleihewert. Bezeichnet DDollar die Dollar-Duration, so folgt aus Gleichung (8.1)

�B D �DDollar�y
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8.4 Konvexität

bzw. in der Notation der Differenzialrechnung

DDollar D � dB
dy

:

Während die Duration relative Änderungen des Anleihepreises mit der Rendite in
Beziehung setzt, verwendet die Dollar-Duration absolute Änderungen des Anleihe-
preises. Die Dollar-Duration ist ein Analogon zum Delta-Maß aus ◮Kapitel 7.

8.4 Konvexität

Die Durationsbeziehung misst nur kleine Änderungen in den Renditen. Dies wird in
◮Abbildung 8.1 illustriert, in der der Zusammenhang zwischen prozentualer Ände-
rung des Wertes und Änderung der Rendite für zwei Anleihen mit der gleichen Dura-
tion angegeben wird. Im Ursprung stimmen die Steigungen der beiden Kurven über-
ein. Das bedeutet, dass hier der Wert beider Portfolios bei einer kleinen Änderung der
Rendite die gleiche prozentuale Änderung erfährt, wie von Gleichung (8.1) unter-
stellt wird. Bei großen Renditeänderungen verhalten sich die Anleihen allerdings
unterschiedlich. Anleihe X hat bezüglich der Rendite eine größere Krümmung als
Anleihe Y . Ein Faktor, die Konvexität, misst diese Krümmung und kann zur genaue-
ren Abschätzung der Beziehung zwischen Anleihepreisen und Renditen verwendet
werden.

Die Konvexität einer Anleihe ist

C D 1
B

d2B
dy2 D

Pn
iD1 cit2

i e�yti

B
;

∆y

∆B
B

X

X

Y

Y

Abbildung 8.1: Zwei Anleihen mit der gleichen Duration
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8 Zinsrisiko

wobei y die in stetiger Verzinsung angegebene Anleiherendite ist. C gibt den gewich-
teten Mittelwert des Quadrats der Zeit bis zum Erhalt der Cash Flows an. Gemäß
◮Anhang G stellt

�B D dB
dy

�y C 1
2

d2B
dy2 .�y/2

eine Näherung zweiter Ordnung für die Änderung des Anleihepreises dar. Eine Divi-
sion durch B führt zu der Beziehung

�B
B

D �D�y C 1
2

C.�y/2 : (8.4)

Beispiel 8.3 Wir betrachten noch einmal die Anleihe aus Tabelle 8.3. Der
Anleihepreis beträgt 94,213, die Duration 2,653. Für die Kon-

vexität ergibt sich

0;05 � 0;52 C 0;047 � 1;02 C 0;044 � 1;52

C0;042 � 2;02 C 0;039 � 2;52 C 0;779 � 3;02 D 7;570 :

Die Konvexitätsbeziehung in ◮Gleichung (8.4) lautet somit

�B
B

D �2;653�y C 1
2

� 7;570 � .�y/2 :

Unterstellen wir nun eine Erhöhung der Anleiherendite von 12 % auf 14 %. Die
Durationsbeziehung gibt die Änderung des Anleihewertes mit �94;213 � 2;653 �
0;02 D �4;999 an. Aus der Konvexitätsbeziehung errechnet man eine Änderung
von

�94;213 � 2;653 � 0;02 C 0;5 � 94;213 � 7;570 � 0;022 D �4;856 :

Tatsächlich sinkt der Anleihepreis um �4,859. Dies zeigt, dass die Konvexitäts-
beziehung bei großen Änderungen der Anleiherendite genauere Resultate liefert
als die Durationsbeziehung.

Dollar-Konvexität

Die Dollar-Konvexität CDollar einer Anleihe ergibt sich analog zur Dollar-Duration aus
dem Produkt von Konvexität und Anleihewert:

CDollar D � d2B
dy2 :

Die Dollar-Konvexität ist somit ein Analogon zum Gamma-Maß aus ◮Kapitel 7.
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8.5 Verallgemeinerung

8.5 Verallgemeinerung

Bis hierhin haben wir Duration und Konvexität nur für die Ermittlung der Sensi-
tivität eines einzelnen Anleihepreises gegenüber Zinssätzen verwendet. Die Defini-
tionen der beiden Größen lassen sich aber auch auf ein Anleihe-Portfolio (oder ein
anderes Portfolio von zinsabhängigen Instrumenten) verallgemeinern. Wir definieren
eine Parallelverschiebung in der Spot-Rate-Strukturkurve als die Verschiebung, bei
der sich alle Nullkupon-Zinssätze (Spot Rates) um denselben Wert ändern, wie in
◮Abbildung 8.2 ausgewiesen.

Spot Rate
Verschobene Spot Rate

Laufzeit

Spot Rate

Abbildung 8.2: Parallelverschiebung der Nullkupon-Zinssätze um �y

Angenommen, P sei der Wert eines Portfolios von zinsabhängigen Wertpapieren.
Wir können eine kleine Parallelverschiebung in der Spot-Rate-Strukturkurve vorneh-
men und die Änderung �P beobachten. Die Duration ist definiert als

D D � 1
P

�P
�y

; (8.5)

wobei �y die kleine Parallelverschiebung der Spot-Rate-Strukturkurve beschreibt.4

◮Gleichung (8.5) ist äquivalent zu

�P
P

D �D�y : (8.6)

Angenommen, ein Portfolio besteht aus mehreren zinsabhängigen Assets. Das i-te
Asset habe einen Wert Xi und eine Duration Di (i D 1; 2; : : : ; n). �Xi ist die Ände-
rung im Wert von Xi, die durch eine Verschiebung der Zinsstrukturkurve um �y her-
vorgerufen wird. Damit ergeben sich P D Pn

iD1 Xi und �P D Pn
iD1 �Xi, sodass die

Duration gemäß Gleichung (8.5) gegeben ist durch

D D � 1
P

n
X

iD1

�Xi

�y
:

4 Eine kleine Parallelverschiebung �y der Spot-Rate-Strukturkurve führt dazu, dass sich für
alle Anleihen die jeweilige Rendite um ungefähr �y ändert.
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8 Zinsrisiko

Die Duration des i-ten Assets beträgt

Di D � 1
Xi

�Xi

�y
:

Daraus folgt

D D
n
X

iD1

�Xi

P
Di :

Hieraus ersieht man, dass die Duration D eines Portfolios der gewichtete Durch-
schnitt der Duration der einzelnen Assets ist, die das Portfolio bilden. Das Gewicht
eines Assets ist dabei proportional zu seinem Wert.

Die Dollar-Duration eines Portfolios kann als Produkt aus Duration des Portfolios
und Wert des Portfolios definiert werden.

DDollar D ��P
�y

:

Damit wird das Delta des Portfolios gegenüber den Zinssätzen angegeben. Die Dollar-
Duration eines Portfolios aus mehreren zinsabhängigen Assets ist die Summe der
Duration der einzelnen Assets.

Die Konvexität kann auf die gleiche Weise verallgemeinert werden wie die Dura-
tion. Bei einem zinsabhängigen Portfolio mit Wert P definieren wir die Konvexität
C als das 1=P-Fache der zweiten partiellen Ableitung des Portfoliowertes nach der
Gesamtrendite, die sich in einer Parallelverschiebung der Spot-Rate-Strukturkurve
äußert. Gleichung (8.4) bleibt gültig, wenn man B durch P ersetzt:

�P
P

D �D�y C 1
2

C.�y/2 : (8.7)

Die Beziehung zwischen der Konvexität eines Portfolios und der Konvexität der
einzelnen Assets, die das Portfolio bilden, ist ähnlich wie bei der Duration: Die
Konvexität des Portfolios ist das gewichtete Mittel der Asset-Konvexität, wobei die
Gewichtung proportional zum Wert des jeweiligen Assets erfolgt. Die Konvexität
eines Portfolios mit bestimmter Duration ist am größten, wenn sich die Zahlungen
um einen bestimmten Zeitpunkt herum konzentrieren.

Die Dollar-Konvexität eines Portfolios kann als Produkt aus Konvexität des Portfo-
lios und Wert P des Portfolios definiert werden. Damit wird das Gamma des Portfo-
lios gegenüber den Zinssätzen angegeben. Die Dollar-Konvexität eines Portfolios aus
mehreren zinsabhängigen Assets ist die Summe der Konvexität der einzelnen Assets.

Portfolio-Immunisierung

Man kann ein Portfolio aus Long- und Short-Positionen in zinsabhängigen Assets
gegen kleine Parallelverschiebungen der Renditekurve absichern, indem man sicher-
stellt, dass seine Duration null ist. Gegen große Parallelverschiebungen kann es
geschützt werden, wenn man Duration und Konvexität (fast) null werden lässt.
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8.6 Nichtparallele Verschiebungen der Zinsstrukturkurve

8.6 Nichtparallele Verschiebungen
der Zinsstrukturkurve

Leider kann die Durationsbeziehung aus ◮Gleichung (8.6) nur das Exposure
gegenüber Parallelverschiebungen der Zinsstrukturkurve beziffern. Die Durations-
Konvexitäts-Beziehung aus ◮Gleichung (8.7) funktioniert sogar für sehr große
Verschiebungen, doch auch sie erfasst nur Parallelverschiebungen.

Einige Forscher haben den Versuch unternommen, die Durationsmaße so zu erwei-
tern, dass auch nichtparallele Verschiebungen betrachtet werden können. Reitano
(1992) schlägt ein partielles Durationsmaß vor, bei dem nur ein Punkt der Spot-Rate-
Strukturkurve verschoben wird, während die anderen gleich bleiben.5 Angenommen,
es liegt die Nullkuponkurve von ◮Tabelle 8.4 und ◮Abbildung 8.3 vor. Die Verschie-
bung des Punktes für den Fünfjahres-Zinssatz ändert die Kurve, wie in Abbildung 8.4
gezeigt ist. Die partielle Duration des Portfolios für den i-ten Punkt der Nullkupon-
kurve ist

Di D � 1
P

�Pi

�yi
; (8.8)

Spot Rate (%) 

Laufzeit (Jahre) 

0
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3

4

5

6

0 2 4 6 8 10 12

Abbildung 8.3: Spot-Rate-Strukturkurve nach Tabelle 8.4

Laufzeit (in Jahren): 1 2 3 4 5 7 10

Zinssatz (in %) 4,0 4,5 4,8 5,0 5,1 5,2 5,3

Tabelle 8.4: Spot-Rate-Strukturkurve (Zinsraten bei stetiger Verzinsung)

5 Siehe R. Reitano, „Non-Parallel yield curve shifts and Immunization“, Journal of Portfolio
Management, Frühjahr 1992: 36–43.
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Spot Rate (%) 

Laufzeit (Jahre) 
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Abbildung 8.4: Veränderung in der Spot-Rate-Strukturkurve bei Verschiebung eines Punktes

wobei �yi die Verschiebung des i-ten Punktes der Nullkuponkurve bezeichnet und
�Pi die resultierende Änderung im Portfoliowert. Die Summe aller partiellen Dura-
tionsmaße ergibt das geläufige Durationsmaß6 Die aus �yi resultierende prozentuale
Änderung im Wert des Portfolios beträgt �Di�yi. Angenommen, ein bestimmtes Port-
folio weist partielle Durationsmaße wie in Tabelle 8.5 auf. Die Duration des Portfolios
(die Summe der partiellen Durationsmaße) beträgt nur 0,2. Das heißt, das Portfolio
ist relativ insensitiv gegenüber Parallelverschiebungen der Renditekurve. Allerdings
sind die Durationsmaße für kurze Laufzeiten positiv und für lange Laufzeiten nega-
tiv. Daher verliert (gewinnt) das Portfolio an Wert, wenn die kurzfristigen Zinssätze
steigen (fallen) bzw. die langfristigen Zinssätze fallen (steigen).

Wir sind nun in der Lage, einen Schritt weiter zu gehen und die Sensitivität des
Wertes eines Portfolios gegenüber beliebigen nichtparallelen Verschiebungen zu
berechnen. Angenommen, wir legen für die Zinsstrukturkurve aus Abbildung 8.3
eine Drehung fest, bei der die Änderungen für Instrumente mit einjähriger, zwei-
jähriger, dreijähriger, vierjähriger, fünfjähriger, siebenjähriger, zehnjähriger Laufzeit
�3e, �2e, �e, 0, e, 3e bzw. 6e betragen, wobei e eine beliebige kleine Zahl ist. Diese
Situation wird in ◮Abbildung 8.5 illustriert. Mit den Werten von Tabelle 8.5 ergibt
sich für die aus der Drehung der Zinsstrukturkurve resultierende Änderung des
Portfoliowertes

�Œ0;2 � .�3e/ C 0;6 � .�2e/ C 0;9 � .�e/ C 1;6 � 0 C 2;0 � e � 2;1 � 3e � 3;0 � 6e� D 25;0e :

Laufzeit (in Jahren): 1 2 3 4 5 7 10 Gesamt

Duration 0,2 0,6 0,9 1,6 2,0 �2,1 �3,0 0,2

Tabelle 8.5: Partielle Duration eines Portfolios

6 Wenn der i-te Punkt der Nullkuponkurve verschoben wird, werden die anderen Punkte nicht
verschoben und die Sätze der verschobenen Abschnitte der Kurve interpoliert (siehe Abbil-
dung 8.4).
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8.7 Zinsdeltas in der Realität

Spot Rate (%) 

Laufzeit (Jahre) 
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Abbildung 8.5: Drehung der Zinsstrukturkurve

Eine Parallelverschiebung der Renditekurve um e hätte dagegen nur eine Änderung
des Portfoliowertes von �0;2e zur Folge. Ein Portfolio mit den partiellen Durations-
maßen von Tabelle 8.5 ist also von einer Drehung der Zinsstrukturkurve viel schwerer
betroffen als von einer Parallelverschiebung.

8.7 Zinsdeltas in der Realität

In der Realität werden zur Ermittlung der Zinsdeltas verschiedene Ansätze verwen-
det. Einer davon setzt das Delta gleich der Dollar-Duration, die die Sensitivität des
Portfoliowertes gegenüber einer Parallelverschiebung der Spot-Rate-Strukturkurve
beschreibt. Hierfür wird das Maß DV01 eingeführt. Es beschreibt die Auswirkung
einer Parallelverschiebung um einen Basispunkt, ist also das 0,0001-Fache der Dollar-
Duration bzw. das 0,0001-Fache des Produktes aus der Duration des Portfolios und
dem Wert des Portfolios.

Analysten ermitteln gern mehrere Deltas, um die Exposures gegenüber allen
möglichen Änderungen der Zinsstrukturkurve ausdrücken zu können. Eine (von
mehreren) Möglichkeiten dafür knüpft an den Ansatz der partiellen Duration aus
dem vorigen Abschnitt an. Für jeden Punkt der Spot-Rate-Strukturkurve wird die
Auswirkung einer Änderung des Zinssatzes um einen Basispunkt (analog zu Abbil-
dung 8.4) berechnet. Das sich ergebende Delta ist die jeweilige partielle Duration
für den Punkt multipliziert mit dem 0,0001-fachen Portfoliowert. Die Summe der
Deltas aller Punkte auf der Zinsstrukturkurve ist gleich DV01. Hat das Portfolio von
Tabelle 8.5 einen Wert von 1 Million Dollar, dann gibt ◮Tabelle 8.6 die Deltas für die
einzelnen Punkte an.

Eine Variante dieses Ansatzes ist die Unterteilung der Zinsstrukturkurve in ein-
zelne Segmente, sogenannte Buckets und die Untersuchung der Auswirkung von
Zinssatzänderungen um einen Basispunkt für alle Punkte des Bucket, wobei die
Zinssätze für alle anderen Punkte der Kurve konstant bleiben. Dieser Ansatz, das
GAP Management, wird oft im Asset-Liability-Management (siehe ◮Abschnitt 8.1)
verwendet. ◮Abbildung 8.6 zeigt, welche Änderung für das Segment der Kurve aus
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