

Leseprobe

zu

Cloud-native Computing

von Nane Kratzke

Print-ISBN: 978-3-446-46228-1
E-Book-ISBN: 978-3-446-47284-6
epub-ISBN: 978-3-446-47285-3

Weitere Informationen und Bestellungen unter

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446462281

sowie im Buchhandel

© Carl Hanser Verlag, München

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446462281

Inhalt

Vorwort . XI

1	 Einleitung . 1
1.1	 An wen sich dieses Buch richtet . 2
1.2	 Was dieses Buch behandelt . 3
1.3	 Sprachliche Konventionen . 4
1.4	 Notationskonventionen . 5
1.5	 Ergänzende Materialien . 7

Teil I: Grundlagen . 9

2	 Cloud Computing . 11
2.1	 Service-Modelle . 12

2.1.1	 Infrastructure as a Service (IaaS) . 15
2.1.2	 Platform as a Service (PaaS) . 15
2.1.3	 Software as a Service (SaaS) . 16

2.2	 Cloud-Ökonomie . 16
2.2.1	 Eignung von unterschiedlichen Arten von Workloads 17
2.2.2	 Effekt von Zuteilungsdauer und Ressourcengröße . 19

2.3	 Entwicklung der letzten Jahre . 21

3	 DevOps . 23
3.1	 Prinzipien des Flow . 25

3.1.1	 Prinzip 1: Arbeit sichtbar machen . 25
3.1.2	 Prinzip 2: Work in Progress beschränken . 26
3.1.3	 Prinzip 3: Flaschenhälse minimieren . 26

3.2	 Prinzipien des Feedbacks . 27
3.2.1	 Prinzip 4: Probleme früh erkennen . 27
3.2.2	 Prinzip 5: Probleme sofort lösen . 28
3.2.3	 Prinzip 6: Probleme professionell verantworten . 28

3.3	 DevOps-geeignete Architekturen . 29
3.3.1	 Randbedingungen für die Entwicklung . 29

VI ﻿Inhalt

3.3.2	 Nutzung von Orchestrierungsplattformen . 30
3.3.3	 Randbedingungen im Betrieb . 30

4	 Cloud-native . 33
4.1	 Definitionen in Industrie und Forschung . 34
4.2	 Die Cloud-native-Definition dieses Buchs . 35
4.3	 Zusammenfassung und Ausblick auf Teil II und Teil III . 37

Teil II: Everything as Code . 39

5	 Einleitung zu Teil II . 41

6	 Deployment-Pipelines . 43
6.1	 Deployment-Pipelines as Code . 44

6.1.1	 Phasen-Pipelines . 45
6.1.2	 Gerichtete Pipelines . 46
6.1.3	 Hierarchische Pipelines . 47
6.1.4	 Steuerung von Pipelines . 48

6.2	 DevOps-geeignete Branching-Strategien . 50
6.2.1	 Git-Flow . 51
6.2.2	 GitHub-Flow . 52
6.2.3	 Trunk-basierte Entwicklung . 53

6.3	 Zusammenfassung . 54

7	 Infrastructure as Code . 57
7.1	 Virtualisierung . 59

7.1.1	 Virtualisierung von Hardware-Infrastruktur . 59
7.1.2	 Virtualisierung von Software-Infrastruktur . 60

7.2	 Provisionierung . 62
7.2.1	 Immutable Infrastructure . 62
7.2.2	 IaC-Ansätze . 63
7.2.3	 Provisionierung von lokalen Umgebungen . 66
7.2.4	 Provisionierung von Multi-Host-Umgebungen . 68

7.3	 Zusammenfassung . 71

8	 Standardisierung von Deployment Units (Container) 73
8.1	 Hintergrund (PaaS) . 73
8.2	 Betriebssystem-Virtualisierung . 76
8.3	 Container Runtime Environments . 77

8.3.1	 Kernel-Namespaces . 78
8.3.2	 Process Capabilities . 79
8.3.3	 Control Groups . 80

﻿Inhalt VII

8.3.4	 Union Filesystem . 80
8.3.5	 High-Level- und Low-Level-Container-Laufzeitumgebungen 81

8.4	 Bau und Bereitstellung von Container‑Images . 82
8.5	 Faktoren gut betreibbarer Container . 84

8.5.1	 Codebase . 85
8.5.2	 Abhängigkeiten und Konfigurationen . 85
8.5.3	 Unterstützende Services und Port Binding . 86
8.5.4	 Build-, Release- und Run-Phase . 87
8.5.5	 Horizontale Skalierung über Prozesse . 88
8.5.6	 Umgebungen, Logs und Betrieb . 89

8.6	 Zusammenfassung . 90

9	 Container-Plattformen . 93
9.1	 Scheduling . 94

9.1.1	 Heterogenität von Workloads . 95
9.1.2	 Scheduling-Algorithmen . 96

9.1.2.1	 Einfache Scheduling-Algorithmen . 96
9.1.2.2	 Multidimensionale Scheduling-Algorithmen 97
9.1.2.3	 Kapazitätsbasierte Scheduling-Algorithmen 97

9.1.3	 Scheduling-Architekturen . 98
9.1.3.1	 Monolithischer Scheduler . 99
9.1.3.2	 2-Level-Scheduler . 99
9.1.3.3	 Shared-State Scheduler . 100

9.2	 Orchestrierung . 101
9.2.1	 Definition von Betriebszuständen . 101
9.2.2	 Regelkreis: Desired versus Current State . 102

9.3	 Inside Kubernetes . 103
9.3.1	 Kubernetes-Architektur . 104
9.3.2	 Verwaltete Ressourcen und Basis-Blueprint . 106
9.3.3	 Schedulbare Workloads . 108

9.3.3.1	 Deployments . 108
9.3.3.2	 (Cron-)Jobs . 110
9.3.3.3	 Daemon-Sets . 111
9.3.3.4	 Stateful-Sets . 112

9.3.4	 Scheduling Constraints . 115
9.3.4.1	 Angabe des Ressourcenbedarfs mittels Requests und Limits 115
9.3.4.2	 Knoten-Selektoren . 116
9.3.4.3	 Knotenaffinitäten . 117
9.3.4.4	 Pod-(Anti-)Affinitäten . 118

9.3.5	 Automatische Skalierung von Workloads . 119
9.3.6	 Exponieren von Workloads als interne und externe Services 120
9.3.7	 Health Checking . 123
9.3.8	 Persistenz . 126

VIII ﻿Inhalt

9.3.9	 Isolation von Workloads . 127
9.3.9.1	 Namespaces und Role-based Access Model (Multi-Tenancy) 127
9.3.9.2	 Quotas und Limit Ranges . 128
9.3.9.3	 Network Policys . 129

9.4	 Zusammenfassung . 131

10	 Function as a Service . 135
10.1	 FaaS-Plattformen . 137

10.1.1	 Das FaaS-Programmiermodell . 139
10.1.2	 Zu berücksichtigende Randbedingungen . 140
10.1.3	 Veranschaulichung des FaaS-Programmiermodells . 141

10.2	 Plattformagnostische FaaS‑Frameworks . 142
10.3	 Ereignisbasierte Autoskalierung . 145
10.4	 Zusammenfassung . 148

Teil III: Cloud-native Architekturen . 151

11	 Einleitung zu Teil III . 153

12	 Microservice und Serverless-Architekturen 155
12.1	 Eigenschaften von Microservices . 156
12.2	 Integrationsmuster für Microservices . 160

12.2.1	 Datenbankbasierte Integration . 161
12.2.2	 (g)RPC-basierte Interprozesskommunikation . 161
12.2.3	 Representational State Transfer (REST) . 164
12.2.4	 Ereignisbasierte Integration (asynchron) . 167
12.2.5	 API-Versioning . 169

12.3	 Architekturelle Sicherheit . 172
12.3.1	 Circuit-Breaker . 172
12.3.2	 Bulkhead . 173
12.3.3	 Idempotente API-Operationen . 174

12.4	 Skalierung von Microservices . 174
12.4.1	 Load Balancing . 175
12.4.2	 Messaging . 175
12.4.3	 Skalierung zustandsbehafteter Komponenten . 177

12.4.3.1	 Scaling for Reads . 178
12.4.3.2	 Scaling for Writes (Sharding) . 178
12.4.3.3	 Command Query Responsibility Segregation (CQRS) 179

12.4.4	 Caching . 180
12.5	 Prinzipien zur Entwicklung von Microservices . 181

12.5.1	 Prinzip 1: Bilde Modelle um Geschäftskonzepte . 181
12.5.2	 Prinzip 2: Erschaffe eine Kultur der Automatisierung 181

﻿Inhalt IX

12.5.3	 Prinzip 3: Blende interne Implementierungsdetails aus 182
12.5.4	 Prinzip 4: Dezentralisiere . 182
12.5.5	 Prinzip 5: Definiere unabhängig aktualisierbare Einheiten 182
12.5.6	 Prinzip 6: Isoliere Fehler . 183
12.5.7	 Prinzip 7: Baue gut beobachtbare Services . 183

12.6	 Serverless-Architekturen . 184
12.6.1	 Architekturelle Konsequenzen von Serverless-Limitierungen 185
12.6.2	 Das API-Gateway-Pattern . 187
12.6.3	 Abgrenzung zu Microservices . 189

12.7	 Zusammenfassung . 190

13	 Beobachtbare Architekturen . 193
13.1	 Konsolidierung von Telemetriedaten . 194
13.2	 Instrumentierung von Systemen . 196

13.2.1	 Logging . 196
13.2.2	 Monitoring . 198

13.2.2.1	 Metrikarten . 200
13.2.2.2	 Empfehlungen für die Metrikinstrumentierung 201

13.2.3	 Tracing . 201
13.2.3.1	 Empfehlungen für die Instrumentierung . 203
13.2.3.2	 Tracing-Instrumentierung und Erzeugung von Spans 206
13.2.3.3	 Serverseitiges Tracing und Extraktion von Span-Kontexten 207
13.2.3.4	 Clientseitiges Tracing und Weiterreichen von Span-Kontexten . . 208

13.3	 Automatisierte Instrumentierung . 209
13.3.1	 Eigenschaften von Service-Meshs . 210
13.3.2	 Traffic-Management . 212
13.3.3	 Resilienz . 215
13.3.4	 Sicherheit . 217
13.3.5	 Management und Analyse von Verkehrstopologien . 220

13.4	 Zusammenfassung . 221

14	 Domain-driven Design . 223
14.1	 Fachlichkeit . 224
14.2	 Strategisches Design . 226

14.2.1	 Subdomänen . 227
14.2.1.1	 Kerndomäne (Core Subdomain) . 227
14.2.1.2	 Unterstützende Subdomäne (Supporting Subdomain) 228
14.2.1.3	 Generische Subdomänen (Generic Subdomain) 228
14.2.1.4	 Anmerkungen am Beispiel einer Fallstudie 228

14.2.2	 Ubiquitous Language . 230
14.2.2.1	 Eine gemeinsame Sprache als Schlüssel zu einem gemeinsamen

Verständnis . 231
14.2.2.2	 Mehrdeutige und synonyme Begriffe . 232

X ﻿Inhalt

14.2.3	 Bounded Contexts . 233
14.2.4	 Context Mapping . 235

14.2.4.1	 Partnerschaftliche Kooperationsmuster
(Partners und Shared‑Kernel) . 235

14.2.4.2	 Customer-Supplier-Kooperation . 237
14.2.4.3	 Separate Ways . 238
14.2.4.4	 Context Maps als Landkarte von Machtverhältnissen 239

14.3	 Taktisches Design . 240
14.3.1	 Oft genutzte Pattern für Geschäftslogik . 240

14.3.1.1	 Das ETL-Pattern (primär Supporting Subdomains) 240
14.3.1.2	 Das Active Record-Pattern (primär Supporting Subdomains) 241
14.3.1.3	 Das Domain Model-Pattern (primär Core Subdomains) 242
14.3.1.4	 Das Event-Sourcing-Pattern (primär Core Subdomains) 244

14.3.2	 Oft genutzte Pattern für die Architektur . 245
14.3.2.1	 Die Ebenen-Architektur . 246
14.3.2.2	 Das Ports & Adapter-Pattern . 247
14.3.2.3	 Das CQRS-Pattern . 247

14.4	 Zusammenfassung . 250

15	 Schlussbemerkungen . 253

Literaturverzeichnis . 261

Stichwortverzeichnis . 265

Vorwort

Dieses Buch basiert auf zwei Vorlesungen, „Cloud-native Programmierung“ und „Cloud-native
Architekturen“, die ich an der Technischen Hochschule Lübeck gebe. Während der Recherchen
für diese beiden Hochschulmodule war ich natürlich auch auf der Suche nach geeigneter
Literatur. Das Resultat war ein Literaturumfang, der – auf einem Schreibtisch gestapelt –
leider mehr als einen halben Meter Höhe eingenommen hätte.
Meine Recherche mag unzureichend oder meine Anforderungen zu spezifisch gewesen seien,
aber ich fand leider nicht die eine oder zwei geeigneten Quellen, die man jemandem als Lehr­
buch zum Thema Cloud-native Computing hätte empfehlen und an die Hand geben können;
nur eben diesen Bücherstapel. Diese Literaturliste hätte mir aber vermutlich diverse kritische
Blicke meiner Studentinnen und Studenten eingebracht. Auch wenn ich grundsätzlich kein
Freund des Prinzips „Setze dich zwischen zweier Bücher Mitte und schreib das Dritte“ bin, war
genau dies in diesem Fall der Anstoß zum Schreiben eines ersten Skripts, aus dem letztlich
dieses Buch für die beiden oben genannten Lehrveranstaltungen entstanden ist.
Dieses Buch hat somit auch einen gewissen Handbuch-Charakter, auch wenn es kein Hand­
buch im klassischen Sinne ist. Es kann dennoch bis zu einem gewissen Grad als Nachschlage­
werk genutzt werden, da es eine Vielzahl an hervorragender – aber eben leider isolierter –
Literatur zum Thema Cloud-native Computing zusammenfasst.
Ich möchte mich an dieser Stelle u. a. bei Dr. Josef Adersberger von der QAware GmbH bedan­
ken, der eine ähnliche Publikationsidee hatte, dann aber letztlich keine Zeit fand, sein Projekt
auch umzusetzen, und der mich daraufhin mit dem Hanser Verlag in Kontakt brachte, um
es an seiner Stelle zu versuchen. Zu danken ist auch seinen Mitarbeitern. Deren auf GitHub
bereitgestellte Vorlesungsunterlagen „Cloud Computing“ (Adersberger u. a. 2018) waren
insbesondere für den Teil II dieses Buchs wertvolle Inspiration und Gliederungshilfe. Dank
gebührt daher auch dem Hanser Verlag und hier vor allem Sylvia Hasselbach, die sich auf
diese Kontaktvermittlung und das damit einhergehende Wagnis denn auch eingelassen hat
und insbesondere in der Produktionsphase viel Unterstützung geleistet hat.
Besonderer Dank gebührt auch meinen Studierenden, die die undankbare Betatester-Rolle für
die praktischen Anteile (Labs) dieses Buchs übernommen haben und mir während der – auf­
grund Corona leider nur online stattfindenden – Vorlesungen und Praktika dennoch mit vielen
wertvollen Rückmeldungen geholfen haben, die Struktur und den Inhalt des Manuskripts
für die anvisierte Zielgruppe zu optimieren. Dabei sind insbesondere Jannik Kühnemundt,
Felix Lohse, Lucian Schultz und Jana Schwieger zu nennen, die mehrere vertiefende Labs
entwickelt und für Folgejahrgänge zur Verfügung gestellt haben.

Lübeck, im Oktober 2021
Nane Kratzke

2	 Cloud Computing

„It’s the economy, stupid!“

Bill Clinton, 42. Präsident der USA

Gemäß der sogenannten NIST-Definition versteht man unter Cloud Computing einen „all-
gegenwärtigen, bequemen, bedarfsgerechten Netzwerkzugriff auf einen gemeinsamen Pool
konfigurierbarer Rechenressourcen, die schnell und mit minimalem Verwaltungsaufwand oder
Interaktion mit Service-Providern bereitgestellt, aber auch wieder freigegeben werden können“
(Mell und Grance 2011).
Cloud Computing ordnet sich damit im Spektrum verteilter Systeme im Bereich des Service
Computings und weniger im Bereich des High Performance bzw. Super-Computings ein, auch
wenn die Einflussfaktoren mittlerweile mannigfaltig und keinesfalls mehr als trennscharf zu
bezeichnen sind (siehe Bild 2.1). Insbesondere im NoSQL- sowie Machine Learning-/Big-Data-
Bereich gehen Super-Computing und Service Computing zunehmend mehr ineinander über.

Bild 2.1 Einflussfaktoren auf das Cloud Computing

12 2 Cloud Computing

Während Super-Computing eine wichtige Rolle im Bereich der computergestützten Wissen­
schaften (Computational Science) spielt und für eine Vielzahl rechenintensiver wissen­
schaftlicher Aufgaben in verschiedensten Bereichen eingesetzt wird (z. B. Quantenmechanik,
Wettervorhersage, Klimaforschung, physikalische Simulationen usw.), verstehen wir unter
Service Computing eher einen interdisziplinären Ansatz, der sich mit der Frage beschäf­
tigt, wie Informationstechnologien die geschäftsrelevante Erzeugung von Produkten und
Dienstleistungen substanziell unterstützen können. Dabei finden im Service Computing
u. a. Webservices, Service-orientierte Architekturen (SOA), Geschäftsprozessmodellierung,
Transformations- und Integrationstechnologien – aber eben auch vermehrt „Enabling
Technologies“ wie Cloud Computing – Anwendung, die durchaus substanziellen Einfluss
auf Architekturen und Systeme haben. So hat sich beispielsweise SOA aufgrund des Cloud
Computing-Einflusses in den letzten Jahren mehr und mehr zu einem Microservice-basier­
ten Architekturansatz fortentwickelt. Warum das so ist, werden wir unter anderem in Ab­
schnitt 2.3 und Abschnitt 2.4 sehen.

 ■ 2.1 �Service-Modelle

Im Allgemeinen werden, wie in Bild 2.2 gezeigt, im Cloud Computing fünf wesentliche
Service-Merkmale, vier Deployment-Modelle und drei Service-Modelle unterschieden (Mell
und Grance 2011). Wir werden im weiteren Verlauf sehen, dass diese Darstellung an der
ein oder anderen Stelle verfeinert werden kann (siehe beispielsweise Abschnitt 8.1 und
Bild 8.3). Dennoch ist das zugrunde liegende NIST-Modell des Cloud Computings (Mell und
Grance 2011) so prägend, dass es Sinn macht, sich an diesem Modell, seinen Merkmalen,
Bereitstellungsformen und Service-Modellen zu orientieren.

Bild 2.2 NIST-Modell des Cloud Computings

2.1 Service-Modelle 13

Zu den fünf wesentlichen Merkmalen des Cloud Computings sind die folgenden zu zählen:

1.	 On-Demand Self-Service: Ein Verbraucher kann Ressourcen, wie z. B. Serverzeit und
Netzwerkspeicher, nach Bedarf automatisch anfordern, ohne dass hierfür eine manuelle
Tätigkeit aufseiten des Cloud-Service-Providers erforderlich ist.

2.	 Netzwerkzugriff: Die Ressourcen werden über öffentliche Netzwerke bereitgestellt und
der Zugriff auf diese Ressourcen erfolgt über standardisierte und weitverbreitete Inter­
netprotokolle, die die Nutzung von Cloud-Ressourcen durch heterogene Client-Plattformen
ermöglichen.

3.	 Elastizität: Ressourcen können schnell und bedarfsgerecht bereitgestellt, aber auch wieder
freigegeben werden. Für den Verbraucher erscheinen die für die Bereitstellung verfüg­
baren Ressourcen virtuell unbegrenzt und können in beliebiger Menge und zu jeder Zeit
angefordert werden. Dies fördert horizontale Skalierungsformen.

4.	 Messung der Ressourcennutzung: Cloud-Systeme steuern und optimieren automatisch
ihre Ressourcennutzung, indem sie den Ressourcenverbrauch auf einer geeigneten Abs­
traktionsebene messen (z. B. Speicherverbrauch, Processing-Cycles, Bandbreite, aktive
Benutzerkonten usw.). Die Überwachung und Messung der Ressourcennutzung schafft
sowohl für den Service-Provider als auch für den Nutzer von Cloud Services Transparenz.

5.	 Ressourcen-Pooling: Die Computing-Ressourcen des Providers werden gepoolt, um
mehrere Kunden mit einem Multi-Tenant-Modell zu bedienen. Dabei werden physische
und virtuelle Ressourcen dynamisch den Nutzern zugewiesen und bei Bedarf auch real­
lokiert. Der Kunde hat im Allgemeinen keine detaillierte Kontrolle oder Kenntnis über
den genauen Standort der bereitgestellten Ressourcen, kann aber den Standort auf einer
höheren Abstraktionsebene (z. B. Land, Region oder Rechenzentrum) angeben.

Cloud Services werden zumeist in Private- bzw. Public Cloud-Formen unterschieden. Die
ebenfalls existierenden Hybrid- und Community-Formen sind oft nicht so präsent in der
öffentlichen Diskussion, vermutlich weil sie im Service Computing kaum ihre Stärken aus­
spielen können.

	� Unter einer Public Cloud versteht man eine Cloud-Infrastruktur für die offene Nutzung
durch die Allgemeinheit. Sie kann im Besitz einer geschäftlichen, akademischen oder
staatlichen Organisation oder einer Kombination davon sein und von dieser verwaltet
und betrieben werden. Sie befindet sich auf den Liegenschaften des Cloud-Anbieters (d. h.
Off-Premise für die Cloud-Nutzer).

	� Unter einer Private Cloud versteht man hingegen eine Cloud-Infrastruktur, die für die
exklusive Nutzung durch eine einzelne Organisation mit mehreren Verbrauchern (z. B.
Geschäftseinheiten) betrieben wird. Sie kann sich im Besitz der Organisation, eines Dritten
oder einer Kombination aus beiden befinden. Dabei ist es unerheblich, ob die Infrastruktur
sich auf den Liegenschaften der Organisation (d. h. On-Premise für die Cloud-Nutzer) oder
nicht befindet.

	� Unter der weniger bekannten Form der Community Cloud wird eine Cloud-Infrastruktur
verstanden, die für die exklusive Nutzung durch eine bestimmte Gemeinschaft von Ver­
brauchern aus Organisationen betrieben wird. Diese Gemeinschaft hat meist gemeinsame
Anliegen (z. B. Mission, Sicherheitsanforderungen, Richtlinien und Compliance-Über­
legungen). Sie kann im Besitz einer oder mehrerer Organisationen in der Community,
einer dritten Partei oder einer Kombination von ihnen sein und von diesen verwaltet und

14 2 Cloud Computing

betrieben werden. Dabei ist es unabhängig, ob die Community Cloud ausschließlich auf
den Liegenschaften der Gemeinschaft betrieben wird. Community Clouds können also
sowohl On-Premise als auch Off-Premise betrieben werden.

	� Schließlich wird als Hybrid Cloud eine Cloud-Infrastruktur verstanden, die eine Kom­
position aus zwei oder mehreren oben genannter Cloud-Infrastruktur-Formen (private,
public, community) bildet. Diese bleiben eigenständige Einheiten, werden aber durch
standardisierte oder proprietäre Technologie miteinander verbunden, die die Portabili­
tät von Daten und Anwendungen ermöglicht (z. B. Cloud Bursting für den Lastausgleich
zwischen Cloud-Infrastrukturen).

Mittels Cloud-Computing lassen sich Teile der IT-basierten Wertschöpfung an externe Dienst­
leister (Cloud-Provider) auslagern. Der Auslagerungsumfang wird dabei häufig in die Kate­
gorien Infrastructure as a Service (IaaS, siehe Abschnitt 2.1.1), Platform as a Service (PaaS,
siehe Abschnitt 2.2) und Software as a Service (SaaS, siehe Abschnitt 2.2.1.1) eingeteilt. Von
IaaS über PaaS zu SaaS wird dabei der ausgelagerte Anteil immer größer, wie Bild 2.3 zeigt.
Mit dem Umfang der Auslagerung wird allerdings auch die potenzielle Abhängigkeit (Vendor
Lock-in) eines Kunden zu einem Cloud-Provider größer. Unter einem Lock-in-Effekt versteht
man generell eine enge Kundenbindung an Produkte/Dienstleistungen eines Anbieters in
Form einer technisch-funktionalen Kundenbindung, die es dem Kunden wegen entstehender
Wechselkosten und sonstiger Wechselbarrieren erschwert, ein Produkt oder einen Service
eines Anbieters mit dem Produkt oder Service eines anderen Anbieters auszutauschen. Im
Cloud Computing entsteht dieser Effekt meist durch nichtstandardisierte Cloud-Service APIs
der einzelnen Provider. Je höher man in den Schichten kommt, desto spezifischer und damit
weniger austauschbar werden die bereitgestellten Cloud-Services, und desto höher ist die
Lock-in-Gefahr.

Bild 2.3 Auslagerung der Wertschöpfung bei IaaS, PaaS und SaaS

2.1 Service-Modelle 15

2.1.1 �Infrastructure as a Service (IaaS)

Beim IaaS-Modell bietet ein Provider physische und virtuelle Hardware wie Server, Speicher
und Netzwerkinfrastruktur an, die über eine Self-Service-Schnittstelle schnell bereitgestellt
und außer Betrieb genommen werden kann. Dies ermöglicht es z. B., im Rahmen von perio­
dischen Workloads mit wiederkehrenden Lastspitzen IT-Ressourcen flexibel und vor allem
lastgetrieben bereitzustellen.
Die Fähigkeit, die dem Kunden zur Verfügung gestellt wird, besteht also in der schnellen
und elastischen Bereitstellung von Verarbeitungs-, Speicher-, Netzwerk- und anderen grund­
legenden Rechenressourcen, auf denen der Kunde beliebige Software, einschließlich Betriebs­
systemen und Anwendungen, einsetzen und ausführen kann.
Der Kunde verwaltet oder kontrolliert die zugrunde liegende Cloud-Infrastruktur zwar nicht,
hat aber die Kontrolle über Betriebssysteme, Speicher und bereitgestellte Anwendungen
sowie möglicherweise eine begrenzte Kontrolle über ausgewählte Netzwerkkomponenten
(z. B. Host-Firewalls).
In Anlehnung an (Fehling u. a. 2014) bezeichnen wir das zugehörige Service-Offering als
elastische Infrastruktur zum Zwecke des Bereitstellung von virtuellen Servern, persistenten
Speicher und Netzwerkkonnektivität. Eine elastische Infrastruktur bietet zumeist vorkonfi­
gurierte virtuelle Server-Images, persistenten Speicher und Netzwerkkonnektivität, die von
Kunden über eine Self-Service-Schnittstelle angefordert werden können. Ferner werden
Last- und Nutzungsdaten vom Provider bereitgestellt, um über die Ressourcenauslastung
zu informieren, die für eine nachvollziehbare Abrechnung und die Automatisierung von
Verwaltungsaufgaben erforderlich ist.

2.1.2 �Platform as a Service (PaaS)

Beim PaaS-Modell stellen Provider IT-Ressourcen in Form einer Applikations-Hosting-Umge­
bung für Kunden bereit. Ein Cloud-Provider bietet hierfür verwaltete Betriebssysteme und
Middleware an. Auch viele Betriebsvorgänge werden vom Anbieter übernommen, wie z. B.
die elastische Skalierung und Ausfallsicherheit gehosteter Anwendungen.
Die dem Kunden zur Verfügung gestellte Fähigkeit besteht somit darin, in einer Cloud-Infra­
struktur vom Kunden erstellte oder erworbene Anwendungen bereitzustellen, die mit vom
Anbieter unterstützten Programmiersprachen, Bibliotheken, Diensten und Tools erstellt
wurden. Der Kunde verwaltet oder kontrolliert somit zwar nicht die zugrunde liegende Cloud-
Infrastruktur, hat aber die Kontrolle über die bereitgestellten Anwendungen.
In Anlehnung an (Fehling u. a. 2014) bezeichnen wir das zugehörige Service-Angebot als elas-
tische Plattform und verstehen dies als eine Middleware zur Ausführung benutzerdefinierter
Anwendungen, deren Kommunikation und Datenspeicherung über eine netzwerkbasierte
Self-Service-Schnittstelle angeboten wird. Auf diese Weise können Anwendungskomponenten
verschiedener Kunden auf einer gemeinsamen Middleware gehostet werden, die vom An­
bieter bereitgestellt und gewartet wird. Diese Vereinheitlichung ermöglicht die gemeinsame
Nutzung von Ressourcen und eine Automatisierung bestimmter Verwaltungsaufgaben auf
Provider-Seite, z. B. die Bereitstellung von Anwendungen und die Verwaltung von Updates.

16 2 Cloud Computing

2.1.3 �Software as a Service (SaaS)

Beim SaaS-Modell stellen Anbieter IT-Ressourcen in Form von für Menschen nutzbare
Anwendungssoftware für Kunden bereit, um Self-Service, schnelle Elastizität und Pay-per-
Use-Preise zu ermöglichen. Insbesondere kleine und mittlere Unternehmen verfügen oft
nicht über die Arbeitskraft und das Know-how, um individuelle Softwareanwendungen zu
entwickeln. Ferner sind viele Anwendungen zu Massenware geworden, die von vielen Unter­
nehmen verwendet werden, aber kaum dazu beitragen, sich von Wettbewerbern abzuheben
(siehe Abschnitt 14.2.1). Dies umfasst z. B. Office-Suiten, Software für die Zusammenarbeit
oder Kommunikationssoftware.
Die dem Verbraucher zur Verfügung gestellte Fähigkeit besteht also bei SaaS darin, Anwen­
dungen eines Anbieters zu nutzen, ohne die dafür erforderliche Infrastruktur oder Plattform
betreiben zu müssen. Der Zugriff auf die Anwendungen erfolgt zumeist von verschiedenen
Client-Geräten, wie z. B. einem Webbrowser (z. B. webbasierte E-Mail) oder über eine Pro­
grammschnittstelle.
Der Verbraucher verwaltet oder steuert die zugrunde liegende Cloud-Infrastruktur oder
Cloud-Plattform einschließlich Netzwerk, Server, Betriebssystem, Speicher oder sogar ein­
zelne Anwendungsfunktionen somit nicht selbst. Es sind jedoch – meist in sehr begrenztem
Umfang – benutzerspezifische Konfigurationseinstellungen möglich (z. B. Anpassung der
Benutzeroberfläche an Unternehmens-Styleguide-Vorgaben).

 ■ 2.2 �Cloud-Ökonomie

Alle genannten Service-Modelle (IaaS, PaaS, SaaS) folgen dabei denselben wirtschaftlichen
Gesetzmäßigkeiten. Beim sogenannten Pay-as-you-go-Kostenmodell werden nur die Ressour­
cen abgerechnet, die auch tatsächlich von einem Kunden angefordert werden. Aus Sicht des
Kunden besteht also das wirtschaftliche Interesse vor allem darin, Cloud-Systeme mit einem
möglichst geringen „Over-Provisioning“ zu betreiben, also Lastkurven mittels Skalierung
möglichst eng und schnell folgen zu können (siehe Bild 2.4). Dies ist in klassischen Rechen­
zentren nicht – oder nur sehr begrenzt – möglich.

Bild 2.4 Statische und elastische Provisionierung von Ressourcen

2.2 Cloud-Ökonomie 17

2.2.1 �Eignung von unterschiedlichen Arten von Workloads

Die Betrachtung von Workloads ist naturgegeben immer sehr anwendungsfallspezifisch, und
man muss vorsichtig sein, nicht zu übergeneralisierende Ratschläge zu geben. Dennoch lassen
sich unterschiedliche Workload-Arten ausmachen, die ökonomisch unterschiedlich geeignet
für Cloud Computing sind. Dem Leser sei an dieser Stelle das Studium von (Weinman 2011)
empfohlen, dessen Überlegungen hier zusammenfassend dargestellt werden.
Eine Pay-per-Use-Lösung macht immer dann offensichtlich Sinn, wenn die Stückkosten für
On-Demand-Cloud-Services c niedriger sind als dedizierte, eigene Kapazitäten d. Oft können
Cloud-Provider diesen Kostenvorteil bieten – aber nicht immer. Dies hängt leicht nachvollzieh­
bar von den internen Kostenstrukturen eines Unternehmens ab und ist somit hochgradig
unternehmensspezifisch.
Obwohl es kontraintuitiv erscheint, macht eine reine Cloud-Lösung aber auch in Szenarien
Sinn, in denen die Stückkosten c höher als die Kosten für eigene Kapazitäten d sind. Aller­
dings nur, solange das Verhältnis von Spitzenlast p zu Durchschnittslast a der Nachfrage­
kurve höher ist als das Kostenverhältnis der Stückkosten von On-Demand-Kapazität c zu
dedizierter Kapazität d.

max :
c p p pc d c d
d a a a
< Û < Þ =

Mit anderen Worten: Selbst wenn Cloud-Dienste doppelt so viel kosten wie In-House-Dienste,
ist eine reine Cloud-Lösung für solche Bedarfskurven sinnvoll, bei denen das Verhältnis von
Spitzenwert zu Durchschnittswert zwei zu eins oder höher ist. Dies ist in einer Vielzahl von
Branchen öfter der Fall, als man annehmen würde. Der Grund dafür ist, dass die dedizierte
Lösung mit fester Kapazität für den Spitzenbedarf gebaut werden muss, während die Kosten
der On-Demand-Pay-per-Use-Lösung proportional zum Durchschnitt sind (siehe auch Bild 2.4).

Je größer das Peak-to-Average-Verhältnis
p
a

 also ist, desto eher ist ein Anwendungsfall (rein

ökonomisch betrachtet) für cloud-basierte Lösungen interessant. Betrachten wir vor diesem
Hintergrund einmal die folgenden prototypischen Workloads, die so entweder in Reinform
oder in überlagerten Kombinationen (z. B. periodischer Workload, der durch einen konti­
nuierlich steigenden Workload überlagert wird) im echten Leben häufig anzutreffen sind.
Statische Workloads (siehe Bild 2.5 A) sind durch ein mehr oder weniger flaches Lastprofil
über die Zeit innerhalb bestimmter Grenzen gekennzeichnet. Eine Anwendung mit statischem
Workload wird kaum von elastischen Infrastrukturen oder Plattformen profitieren können,
da die Anzahl der benötigten Ressourcen konstant ist. Diese Arten von Workloads sind aber
eher selten.
Häufiger sind hingegen periodische Aufgaben und Routinen (siehe Bild 2.5 B), zum Beispiel
monatliche Gehaltsabrechnungen, monatliche Telefonrechnungen, jährliche Autoinspektio­
nen, wöchentliche Statusberichte oder die tägliche Nutzung der öffentlichen Verkehrsmittel
während der Hauptverkehrszeit. Solche Aufgaben und Routinen treten in wohldefinierten
Intervallen auf und erzeugen daher periodische Workloads in der Nutzung involvierter IT-
Systeme. Aus Kundensicht besteht das Kosteneinsparungspotenzial bei periodischen Lasten
in der Außerbetriebnahme von Ressourcen in Nicht-Spitzenzeiten.

18 2 Cloud Computing

Bild 2.5 Zu berücksichtigende Workloads im Cloud Computing

Als Spezialfall der periodischen Workloads können die Spitzen der periodischen Auslastung in
einem sehr langen Zeitraum auch in Form einmaliger/seltener Workloads auftreten (siehe
Bild 2.5 C). Oft ist diese Spitze im Voraus bekannt, da sie mit einem bestimmten Ereignis
(z. B. olympische Spiele alle vier Jahre) oder einer Aufgabe korreliert. In solchen Szenarien
können die Bereitstellung und Außerbetriebnahme von IT-Ressourcen oft als manuelle Auf­
gaben realisiert werden, da sie zu einem bekannten Zeitpunkt erfolgen.
Zufällige Workloads sind eine Verallgemeinerung der periodischen Workloads, da sie Elastizi­
tät erfordern, aber nicht vorhersehbar sind (siehe Bild 2.5 D). Solche Workloads treten in der
realen Welt recht häufig auf. Hier sind die ungeplante Bereitstellung und Außerbetriebnahme

2.2 Cloud-Ökonomie 19

von IT-Ressourcen erforderlich. Die notwendige Bereitstellung und Außerbetriebnahme von
IT-Ressourcen müssen daher automatisiert erfolgen, um die Anzahl der Ressourcen an die
sich ändernde Last anzupassen.
Bei vielen Anwendungen ändert sich auch die Last kontinuierlich über einen längeren Zeit­
raum. Häufig sind solche Lasten in Form eines Basistrends als Hintergrund-Workload in
anderen Workloads (z. B. periodischen Workloads) enthalten. Sich kontinuierlich ändernde
Workloads sind durch ein kontinuierliches Wachstum oder einen kontinuierlichen Rückgang
der Auslastung gekennzeichnet (siehe Bild 2.5 E/F). Rein wirtschaftlich ist es dabei egal, ob
ein Workload steigt oder sinkt, denn der Flächeninhalt (also die Einsparung) ergibt sich ja
aus der Differenz der statischen und elastischen Provisionierungskurven. Der Bedarf per­
sistenten Speichers unterliegt oft solch einem kontinuierlich wachsenden Trend. Es wird in
vielen Anwendungsfällen eben mehr gespeichert als gelöscht.
Wenn man diese Workloads hinsichtlich ihres

p
a

 aufsteigend sortiert, erhält man grundsätzli­

che folgende rein ökonomische Eignungsreihenfolge von Workloads für das Cloud Computing:
	� Statische Workloads (eher ungeeignet, siehe Bild 2.5 A)
	� Kontinuierlich steigende/sinkende Workloads (siehe Bild 2.5 E/F)
	� Zufällige und periodische Workloads (siehe Bild 2.5 B/D)
	� Einmalige/seltene Workloads (extrem geeignet, Bild 2.5 C)

Für einen konkreten Anwendungsfall ist dieses
p
a

 natürlich immer genau zu bestimmen.

Dennoch hilft das Verständnis dieser grundsätzlichen Zusammenhänge erheblich dabei,
überhaupt erst einmal interessante Anwendungsfälle zu identifizieren und uninteressante
Anwendungsfälle auszuschließen. Grundsätzlich ermöglicht die Elastizität von Cloud-Infra­
strukturen und -Plattformen, Ressourcen mit der gleichen Rate bereitzustellen oder freizu­
geben, mit der sich die Arbeitslast eines Dienstes ändert, um diese Effekte für sich zu nutzen.

2.2.2 �Effekt von Zuteilungsdauer und Ressourcengröße

Wie wir also sehen, sind Cloud-Ressourcen vor allem dann wirtschaftlich, wenn Last­
schwankungen in einem Anwendungsfall auftreten. Die Kosten pro Cloud-Ressource können
sogar deutlich höher als die In-House-Kosten liegen – solange das Verhältnis von Cloud zu
In-House-Kosten nicht das Verhältnis von Spitzen- zu Durchschnittslast übersteigt.
Ziel ist also, im Betrieb eine möglichst niedrige Durchschnittslast zu ermöglichen (bzw. die
Fläche zur Abdeckung der Lastkurve zu minimieren). Hierzu strebt man im Betrieb an, Last­
kurven möglichst eng zu folgen. Kann man sich möglichst eng an Lastkurven „anschmiegen“,
erzeugt dies wenig Over-Provisioning. Viele Innovationen des Cloud-native Computings wie
beispielsweise Container- und FaaS-Technologien sind im Kern auf diese Erkenntnis zurückzu­
führen. Bei der Ressourcenzuteilung lässt sich dabei letztlich an zwei Stellschrauben drehen.
1.	 Man kann Ressourcen feingranularer zuteilen (vertikale Stellschraube).
2.	 Man kann Ressourcen kürzer zuteilen (horizontale Stellschraube).
Bild 2.6 zeigt den Effekt beider Stellschrauben (Ressourcengröße und Zuteilungsdauer) auf
den Ressourcenverbrauch (und damit die Kosten) am Beispiel eines synthetischen periodi­
schen Workload-Verlaufs.

20 2 Cloud Computing

Bild 2.6 Effekt von Ressourcengröße und Zuteilungsdauer

Wie Bild 2.6 zeigt, ermöglichen es kleinere Ressourcengrößen und kürzere Zuteilungsdauern,
Lastkurven enger folgen zu können. Damit kann das Over-Provisioning verringert werden.
Dies spart letztlich Geld im Betrieb eines Cloud-nativen Systems. An dem – zugegeben syn­
thetischen – Beispiel von Bild 2.6 zeigt sich dennoch, dass sich durch die Reduzierung von
Ressourcengrößen und kürzere Zuteilungsdauern der rechnerische Ressourcenbedarf durch­

2.3 Entwicklung der letzten Jahre 21

aus halbieren lässt. Dies ist natürlich immer von den dahinterliegenden Workload-Arten und
dem Anwendungsfall abhängig. Auch noch größere Einsparungen sind nicht ungewöhnlich.
Diese einfache Erkenntnis hatte in den letzten Jahren einen tiefgreifenden Einfluss auf
Cloud-native Architekturen und Technologien (Kratzke und Quint 2017). So konnte man in
den vergangenen Jahren beobachten, wie diese beiden Stellschrauben (Zuteilungsdauer und
Ressourcengröße) systematisch reduziert wurden. Während in der Anfangszeit des Cloud
Computings virtuelle Maschinen üblicherweise auf Stundenbasis abgerechnet wurden, ist
dies im Verlaufe der Zeit auf eine dreißigminütige, dann fünfzehnminütige bis schließlich
zu einer minutengenauen oder mittlerweile sogar einer sekundengenauen Abrechnung bei
vielen Providern umgestellt worden. Auch die Ressourcengröße wurde durch Technologien
reduziert. Mittels IaaS kommt man nicht wirklich effizient unter die Auflösung von einer
vCPU. Doch mittels der zunehmend beliebteren Container-Technologie sind wesentlich fein­
granularere Ressourcen möglich (siehe Kapitel 8), mit denen man problemlos unter diese
1 vCPU-Schwelle kommt. Auch die seit einigen Jahren beliebter werdende Technologie
Function as a Service (FaaS, siehe Kapitel 10) kombiniert letztlich feingranularere Container
mit einer Reduktion der zeitlichen Zuteilungsdauer im Subsekunden-Bereich. FaaS erlaubt
es sogar, Ressourcen komplett auf null zu skalieren, wenn ein System in einem Zeitintervall
keine Aufgaben zu verarbeiten hat. Daran zeigt sich, dass viele Trendtechnologien zur fein­
granulareren Ressourcenallokation im Cloud-nativen Umfeld ihren Grund auch immer in
der innewohnenden Cloud-Ökonomie haben – auch wenn dies häufig nicht (mehr) bewusst
wahrgenommen wird.

 ■ 2.3 �Entwicklung der letzten Jahre

Cloud Computing ist vor etwa zehn bis 15 Jahren entstanden. Dabei wurden in der ersten
Adoptionsphase bestehende IT-Systeme lediglich in Cloud-Umgebungen übertragen, ohne
das ursprüngliche Design und die Architektur dieser Anwendungen zu ändern. Multi-Tier-
Anwendungen wurden lediglich von dedizierter Hardware auf virtualisierte Hardware in der
Cloud migriert. Cloud-Systemingenieure haben im Laufe der Jahre allerdings bemerkenswerte
Verbesserungen an Cloud-Plattformen (PaaS) und -Infrastrukturen (IaaS) vorgenommen
und mehrere technische Trends etabliert, die derzeit zu beobachten sind. Ein wesentlicher
Treiber hierfür sind die erläuterten ökonomischen Gesetzmäßigkeiten des Pay-per-use-Prin­
zips. Wer Cloud-native Systeme wirtschaftlich betreiben will, muss die Ressourcennutzung
optimieren und minimieren.
Cloud-Infrastrukturen (IaaS) und -Plattformen (PaaS) sind daher insbesondere für den
elastischen Betrieb von Cloud-nativen Anwendungen gebaut, um Over-Provisioning von
Ressourcen zu vermeiden. Unter Elastizität versteht man den Grad, in dem sich ein System
an Laständerungen anpasst, indem es automatisch Ressourcen bereitstellt und entnimmt.
Ohne diese Elastizität ist Cloud Computing aus wirtschaftlicher Sicht sehr oft nicht sinnvoll.
Mit der Zeit lernten Systemingenieure, diese Elastizitätsoptionen moderner Cloud-Umge­
bungen besser zu verstehen. Schließlich wurden Systeme für solche elastischen Cloud-Infra­

22 2 Cloud Computing

strukturen von Grund auf entworfen, die dank neuer Deployment- und Design-Ansätze wie
Container (siehe Kapitel 8), Microservices oder serverloser Architekturen (siehe Kapitel 12)
den bereitzustellenden Ressourcenbedarf der zugrunde liegenden Computing-Infrastruktu­
ren minimieren. Diese Designabsicht wird oft unbewusst mit dem Begriff „Cloud-native“
ausgedrückt.
Die Maschinenvirtualisierung hat sich insbesondere deshalb durchgesetzt, um eine Vielzahl
von Bare-Metal-Maschinen zu konsolidieren und so die physischen Ressourcen in Rechen­
zentren effizienter nutzen zu können. Diese Maschinenvirtualisierung bildet bis heute
das technologische Rückgrat des (IaaS-)Cloud Computings. Virtuelle Maschinen sind zwar
leichtgewichtiger als Bare-Metal-Server, aber sie sind nicht unbedingt als leichtgewichtig
zu bezeichnen, vor allem in Bezug auf ihre Image-Größen. Diese IaaS-Ebene wird vor allem
in Kapitel 7 behandelt.
Vor diesem Hintergrund wurden leichtgewichtigere Container entwickelt. Container er­
lebten ihren Siegeszug primär, weil sie einerseits die Art und Weise der standardisierten
Bereitstellung von Anwendungskomponenten vereinfachen. Container erhöhen aber auch
die Auslastung der virtuellen Maschinen, da sie auf leichtgewichtigeren Betriebssystem-Vir­
tualisierungskonzepten beruhen. Man kann also meist deutlich mehr Container auf einem
physischen Host betreiben als virtuelle Maschinen. Wir werden uns mit diesen Aspekten
vor allem in Kapitel 8 und in Kapitel 9 befassen. Dennoch sind Container, obwohl sie leicht­
gewichtig und schnell skalierbar sind, immer noch Always-on-Komponenten. Es muss also
immer einen „letzten“ Container geben, der Requests bearbeiten kann. Zumindest dieser
„letzte“ Container fällt damit weiterhin in den Bereich eines statischen Workloads, also dem
aus Kundensicht teuersten Workload für Cloud Computing.
Daher wurden Function-as-a-Service-(FaaS-)Ansätze entwickelt, die eine Art Time-Sharing
von Containern auf darunterliegenden Container-Plattformen anwenden. Wir werden uns vor
allem in Kapitel 10 mit diesen Aspekten befassen. Bei FaaS werden nur Einheiten (Funktio­
nen) ausgeführt, die Requests zu bearbeiten haben. Durch diese zeitlich geteilte Ausführung
von Containern auf der gleichen Hardware ermöglicht FaaS sogar eine Skalierbarkeit bis auf
null. Studien konnten diese verbesserte FaaS-Ressourceneffizienz sogar monetär messen
(Villamizar u. a. 2017). All dies hat letztlich mit der Minimierung der statischen Workload-
Anteile zu tun, die den ineffektivsten Workload für Cloud Computing ausmachen.
Rückblickend betrachtet wurde der Technologie-Stack zur Verwaltung von Ressourcen in der
Cloud also im Laufe der Zeit durch zusätzliche Ebenen (Virtualisierung, Container Runtime,
FaaS Runtime) erweitert und damit immer komplexer. Das folgte aber einem grundsätzlichen
Trend – mehr Workload auf der gleichen Anzahl physischer Maschinen auszuführen, also
die Ressourceneffizienz insgesamt zu erhöhen.

Stichwortverzeichnis

Symbole
1 vCPU-Schwelle 21, 78, 136
3-Tier-Architektur 246
12-Faktoren
	– Abhängigkeiten 85
	– Administrative Prozesse (update, backup,
restore) 90

	– Build, Release, Run 87
	– Codebase 85, 87
	– Environment 89
	– Horizontale Skalierung 88
	– Konfigurationen 85
	– Logging 89
	– Port Binding 86
	– Skalierung über Prozesse 88
	– Umgebung 89
	– Unterstützende Services 86

12-Faktoren-Methodik 107, 137, 198

A
Ablaufverfolgung 193
A/B-Tests 31
A/B-Testszenarien 214, 215
Abwärtskompatibilität 169
ACID 177
Active Record 241
Active Record-Pattern 241, 246
Affinität 117
Affinity 116
Aggregat 242, 243, 244
Aggregate Root 243
Aggregatgrenze 243
Aggregatwurzel 243
Alert-Manager 194, 199
ALLOW-Regel 219
Analysemodell 230
Anforderungen 230
Anti-Corruption-Layer 237
Anwendungsschicht 247

Anwendungsvirtualisierung 60, 61
API 169
API-Gateway 171, 187, 188
API-Versioning 161, 169
APM 195
Append-Only-Log 244
Architektur 35
	– DevOps-geeignet 29
	– Serverless 137

Architekturelle Sicherheit 172
Architekturmuster 245
Asynchrone Architektur 167
Auditierbarkeit 245
Auditing 217
Audit-Protokolle 245
Authentication Policy 218
Authentifizierung 217
	– Peer 219
	– Request 219

Authorisation 217
Authorisation Policy 218, 219
Automatisierte Instrumentierung 209
Automatisierung 181
Autoskalierung 119

	– ereignisbasiert 145
	– horizontal, Pod 119

AWS Lambda 144
Azure Lambda 144

B
Backend as a Service (BaaS) 185
BASE 177
Batch-Job 95
Batch-System 201
Beobachtbare Architekturen 193
Beobachtbarkeit 35, 183
Best Practices 140, 254
Betriebssystem-Virtualisierung 60
Betriebszustand 101

266 ﻿Stichwortverzeichnis

Big Five 1
Binpack 96
Blackbox-Monitoring 199
Black-Box-Tracing 202
Blackbox-Überwachung 196
Block-Storage 59
Blue/Green Deployment 29
Blue/Green-Release 183
Blueprint 101, 106
Borg 99
Bounded Context 181, 225, 233, 234, 246,

248
Branching-Strategien 50
Breaking-Change 160, 170, 182
Build Phase 43
Bulkhead 173

C
CaaS 76
Caching 88, 164, 180
	– clientseitig 180
	– Proxy-Caching 181
	– serverseitig 180

Canary 213, 215
Canary-Release 29, 183
CAP-Theorem 177
Chaos Engineering 28
Checkpoint 249
Chef 64
Choreography-over-Orchestration 182
CI/CD 43
Circuit-Breaker 172, 183, 216
C-Level-Funktion 3
Clientseitiges Tracing 208
Client-Server 162, 164
Cloud Computing 11
	– NIST-Definition 11

Cloud-native 2, 22, 33, 254
	– Definition 35

Cloud-native Computing Foundation (CNCF)
34, 103

Cloud-Ökonomie 16, 136
Cluster 94, 101, 116
Cluster-Awareness 94
Cluster-Scheduler 104
CNCF 103
CNI 104
Code Repository 43
Command 248
Command Execution-Modell 248

Command Query Responsibility Segregation
(CQRS) 179, 247

Community Cloud 13
Config Map 107
Constraint 116
Container 22, 35, 36, 60, 73, 77, 103, 104, 182
	– Laufzeitumgebung 78
	– Runtime 78

Container as a Service 76
Container-Image 82
Container Network Interface (CNI) 104
Container Runtime Environment 82, 106
Container Storage Interface (CSI) 104
Content-Delivery-Netzwerks (CDN) 181
Context Mapping 225, 235
Continuous Deployment 43
Continuous Integration 43
Controller 102
Control Plane 211
Conway’s Law 159, 223, 235
Copy-on-Write 80
Core Subdomain 227, 242, 244, 245, 247, 248
CQRS 179, 247
Creative Commons-Lizenz (CC0) 7
Cron-Job 110
CRUD 166, 241, 247
CSI 104
Current State 102, 119
Customer-Supplier 235, 237

D
Daemon-Set 108, 111
DAG Pipeline 46
Dapper 202
Data Plane 211
Datenbankbasierte Integration 161
Datenbasierte Integration 161
Datenkopplung 161, 182
Defense in Depth 217
Dekomposition 155, 223
DENY-Regel 219
Dependency Injection 247
Deployment 107, 108, 120
Deployment-Pipeline 27, 29, 43, 83
	– Job 44
	– Phase 43
	– Trigger 44

Deployment Unit 35, 36, 60, 73, 159
Deploy Phase 43
Desired State 102, 119

﻿Stichwortverzeichnis 267

Development 50
Development-Branch 52
DevOps 23, 84, 159, 188, 194
	– Flaschenhälse 26
	– Kultur 26
	– Prinzipien des Feedbacks 27, 36
	– Prinzipien des Flow 25, 36
	– Work in Progress 26
	– Zyklus 24, 30

Docker 77
Dockerfile 82
Domain-driven 181
Domain-driven Design 223
Domain-Event 226, 243, 244
Domain Model-Pattern 242
Domänenmodell 223, 226, 242, 244
Domänenwissen 230
Dominant Resource Fairness 97
Double-Spending-Problem 138, 185, 187
Downstream-Service 156
Dumb-Middleware-with-Smart-Endpoints 182

E
Ebenen-Architektur 246
Effektives Design 224
ElasticSearch 195
Elastisches System 168
Elastizität 36, 137, 167
Emulation 60
Endbenutzer-Choreografie 187
End-to-End-Tracing 206
Enterprise-Architectur-Management (EAM)

233
Entkopplung 59
Environment 48, 50
Ereignis-basiert 182
Ereignisbasierte Integration 161, 167
Ereignisbasierte Systeme 167
Ereignisgesteuert 167
Ereignisquelle 139
ETL-Pattern 240
Event-driven 139
Event-Emitting-Service 167
Event-Sourcing 248
Event-Sourcing-Pattern 244
Event Store 244
Eventual Consistency 178, 243
Everything as Code, Deployment Pipeline 44
Evolutionäres Design 158, 223
Execution-Monitor 98

Executor 99
Exporter 198
Extract-Transform-Load (ETL) 240
Extraktion von Span-Kontexten 207

F
FaaS 120
	– Best Practices 140

FaaS-Framework 142
FaaS-Plattform 136, 184
FaaS-Programmiermodell 139, 184
Fachlichkeit 223, 224, 242
Fail early 216
Fairness 96
Fallacies of Distributed Computing 249
Feature-Branch 52
Feature Release 170
Feature-Schalter 29
Fehlertoleranz 96
File-Storage 59
Fluentd 195
Function 194
Function as a Service (FaaS) 21, 135
Funktion 139

G
GAE 74
GAIA-X 1
Gegenseitige Authentifizierung 218
Gegenseitige TLS-Authentifizierung (mTLS) 218
Generic Subdomain 228, 238
Generische Subdomäne 228
Gerichtete Pipeline 46
Geschäftskonzept 181
Geschäftslogik 240, 241, 244, 246, 247
Gesetz von Conway 159
Git-Flow 51
GitHub-Flow 52
GitLab CI/CD 44
Google App Engine 74
Google Cloud Functions 141, 144
Grafana 195
gRPC (gRPC Remote Procedure Call) 123,

162, 204

H
Hadoop 98
HashiCorp Configuration Language 69
HATEOAS 165
HCL 69

268 ﻿Stichwortverzeichnis

Health Checking 123
Heroku 75
Hexagonale Architektur 247
Hierarchische Pipeline 47
High-Level Container Runtime 81
High-Level-Design 239
Horizontale Pod-Autoskalierung 119
Horizontale Skalierung 174
Horizontal Pod Autoscaler 119
Horizontal Pod Autoscaling (HPA) 145
HPA 119
HTTP-/REST-basierte Integration 161
Hybrid Cloud 14
Hypermedia as the Engine of Application State

(HATEOAS) 165
Hyperthread 116
Hypervisor 59

I
IaC 63
IDEAL-Modell 34
Idempotente Operation 174
Idempotenz 174
Immutable 242
Immutable Infrastructure 62
Implementierungsdetail 160, 182
Infrastructure as a Service (IaaS) 14, 15
Infrastructure as Code 57
Infrastruktur
	– als Code 63
	– elastisch 15

Infrastrukturkomponente 247
Infrastrukturschicht 247
Ingress 107, 122
In-Process-Komponenten 155
Instrumentierung 196
Instrumentierungsbibliothek 203
Instrumenting Library 194
Integrations-Branch 52
Interprozesskommunikation 161
Isolation 59, 61
Isolationsmechanismus 82
Istio 211, 215, 218, 220

J
Jaeger 195
Job 108, 110, 194, 200, 201

K
Kanban 25

KEDA 145
	– ScaledJob 146
	– ScaledObject 146

Kerndomäne 227
Kiali 220
Kibana 195
Knotenaffinität 117
Kohäsion 223
Kommunikationsmuster 239
Konfigurations-API-Server 218
Konfigurationsmanagement 64
Konformist-Pattern 237
Kontrollgruppe 214
Kritischer Pfad 203
Kubeless 141, 144
Kubernetes 30, 99, 103, 194, 212

	– Affinität 117
	– API-Server 105, 106
	– Architektur 105
	– Cloud-Manager 105
	– Cluster Role 127
	– Controller-Manager 105
	– Daemon-Set 111
	– Deployment 109
	– Horizontal Pod Autoscaler (HPA) 119
	– Ingress 122, 162, 189
	– Job 110
	– Kubelet 106
	– Kube-Proxy 106
	– Limit 115, 128
	– Master Node 105
	– Namespace 127
	– Network-Plug-in 105
	– Network Policy 129, 219
	– Persistent Volume Claim (PVC) 126
	– Persistent Volume (PV) 126
	– Quota 129
	– RBAC 127
	– Request 115
	– Resource Quota 128
	– Role 127
	– Role Binding 127
	– Scheduler 105
	– Secret 127
	– Selektor 116
	– Service 122, 175
	– Service Account 127
	– Stateful-Set 113
	– Storage-Plug-in 105
	– Worker Node 106

﻿Stichwortverzeichnis 269

	– Workload 108
Kubernetes-Ressourcen 106

L
Lambda 141
Lastausgleich 175
Laufzeitumgebung 61
Layered Architecture 246
Ledger 244
Limits 115
Liveness Probe 123
Load Balancer 121
Load Balancing 175, 178
Local Procedure Call (LPC) 162
Log-Aggregation 196
Logge auf stdout 198
Logging 36, 183, 193, 196
Logikebene 246
Log-Level 197
	– Debug 197
	– Error 197
	– Fatal 197
	– Info 197
	– Trace 197
	– Warning 197

Lokalität 96
Lose Kopplung 158, 223
Low-Level Container Runtime 81

M
Machtgefälle 235
Machtverhältnis 239
Manifest 104, 106
Man-in-the-Middle-Angriff 217, 218
Marathon 108
Materialien 7, 38, 72, 91, 133, 251
Materialien (Slides, Handouts)
	– 12-Faktoren-Methodik 91
	– Architektur-Pattern für Core Subdomains
(DDD) 251

	– Architektur-Pattern für Supporting
Subdomains (DDD) 251

	– Beobachtbarkeit 222
	– Betriebssystemvirtualisierung 91
	– Cloud Computing Historie 38
	– Cloud-native Systeme 38
	– Cloud-Ökonomie 38
	– Container-Orchestrierung 133
	– Context Mapping (DDD) 251
	– Deployment Pipelines 55

	– Deployment Units (Container) 91
	– DevOps 38, 55
	– DevOps-geeignete Architekturen 55
	– Docker 91
	– Domain-driven Design 251
	– Effektives Software-Design 251
	– FaaS-Plattformen 149
	– FaaS-Programmiermodell 149
	– Function as a Service (FaaS) 149, 191
	– Immutable Architectures 72
	– Infrastructure as a Service 72
	– Infrastructure as Code 72
	– Kubernetes 133
	– Kubernetes Blueprints (Manifests) 133
	– Logging 222
	– Materialien (Slides, Handouts) 91
	– Metriken und Monitoring 222
	– Microservices 191
	– Pattern für Geschäftslogiken (DDD) 251
	– Platform as a Service (PaaS) 133
	– Prinzipien des Feedbacks 55
	– Prinzipien des Flow 55
	– Resilienz 222
	– Serverless Computing 149, 191
	– Service-Meshs 222
	– Sheduling 133
	– Sicherheit 222
	– Strategisches Design (DDD) 251
	– Subdomains (DDD) 251
	– Taktisches Design (DDD) 251
	– Telemetriedaten 222
	– Terraform 72
	– Tracing 222
	– Traffic-Management 222
	– Ubiquituous Language (DDD) 251
	– Vagrant 72
	– Visualisierung von Verkehrstopologien 222
	– Was ist Cloud Computing? 38

Mehrdeutiger Begriff 232
Memory-Ballooning 59
Mentales Modell 233
Mesos 30, 97, 100, 104, 108
Messaging 175
Metriken 35, 183, 193, 198
	– Messung (Gauge) 200
	– Verteilung (Histogramm) 200
	– Zähler (Counter) 200

Metrikinstrumentierung 201
Microservice 27, 35, 156, 225
Microservice-Architektur 138, 193, 223

270 ﻿Stichwortverzeichnis

Microservice-basierte Anwendung 157
Millicore 116
Monitoring 193, 198
Monolithische Anwendung 157
Monorepository 48
mTLS 218, 219
Multi-Cloud 66
Multiplizität 59
Multi-Tenancy 127, 129, 219
Mutable 242
Mutual Authentication 218

N
Nachrichtenorientiertes System 168
Netzwerkpartition 183
Nomad 30, 104
NoSQL 179
NoSQL-Datenbanken 177

O
Objektmodell 248
	– lesend 247
	– schreibend 247

Objektrelationales Mapping (ORM) 241
Observability 35, 183, 196
Observable 168
OCI 78, 103
Omega 100
One-Service-per-Container 183
Online-System 201
OpenAPI 238
Open-Container-Initiative 78
Open-Host-Service 238
OpenTracing-API 203, 206
OpenWhisk 141, 144
Orchestrierung 93, 101
Orchestrierungsplattform 30, 182
Orchestrierungsregelkreis 103, 120
Ortsunabhängigkeit 168
Out-of-Process-Komponenten 155
Output Stream 90
Overlay Network 104
Over-Provisioning 21

P
PaaS 73, 76
Para-Virtualisierung 59
Partnerschaftliche Kooperation 235
Partnerschaftsmodell 235
Partnership 235

Pattern 254
Pay-as-you-go 2, 16
Peak-to-Average 17
Peer-to-Peer Computing 185
Persistent Volume 126
Persistent Volume Claim 107, 126
Persistenzebene 246
Phasen- 45
Platform as a Service (PaaS) 14, 15, 73, 76
Plattform
	– Container 76
	– elastisch 15, 36
	– Function as a Service (FaaS) 137
	– PaaS 74

Pod 104, 145
Pod-Affinität 118
Policy Enforcement Point (PEP) 218
Polyglotte Persistenz 248
Polyglott Programming 61
Ports & Adapter-Pattern 247
Präsentationsebene 246
Private Cloud 13
Probe 123
Production 50
Produktivsystem 28
Projektion
	– asynchron 249
	– synchron 248

Projektions-Engine 249
Prometheus 195
Protocol Buffers 162
Protokollierung 36, 196
Provisionierung 62

	– deklarativ 64
	– imperativ 64
	– Pull-basiert 64

Proxy 210, 218
Prozessisolation
	– Control Group (cgroup) 80
	– Namensräume für Dateisysteme 80
	– Namespace 78
	– Priorisierung 80
	– Process Capabilities 79
	– Quota 80

Public Cloud 13
Publish/Subscribe 176, 244
Puppet 64
Push-Gateway 200, 201
PVC 107
Python 6

﻿Stichwortverzeichnis 271

Q
Query 248
Querying-System 199
Queueing 175, 244

R
RAFT 113
RBAC 127, 128, 129
ReactiveX-Programmiermodell 168
Readiness Probe 124
Reaktive Erweiterung (Rx) 168
Reaktives System 167
Regel 139
Regelkreis 102, 119
Regelkreis-basierte Orchestrierung 103
Region 57
Release 29
Releaserisiken 29
Remote Procedure Call (RPC) 161, 171
Replay-Angriff 218
Replaying Time Machine 245
Replicas 112
Replica-Set 108
Replication Controler 107
Representational State Transfer (REST) 164
Requests 115
Resilient Software Design 28
Resilienz 28, 167, 215
Resilienz-Pattern 215
Responsivität 167
Ressourceneffizienz 22
Ressourcengröße 19
Ressourcenkontingent 129
REST 35, 123, 164, 174, 182, 186, 190, 204
REST-API 171
Restart Policy 111
Reverse-Proxy 181, 188
Role-based Access Model (RBAC) 127
Rolling-Updates 29
RPC
	– Bidirectional-Streaming 163
	– Client-Streaming 163
	– Server-Streaming 163
	– Unary 163

Runtime 61

S
Sandbox 75
Scale-to-Zero 120, 135, 147, 156
Scaling for Reads 178

Scaling for Writes 178
Scaling out 174
Scaling up 174
Scheduler 94, 116
	– 2-Level 99
	– monolithisch 99
	– Shared-State 100

Scheduling 93
	– Algorithmus 96
	– Architekturen 98
	– Constraints 115
	– einfache Algorithmen 96
	– kapazitätsbasierte Algorithmen 97
	– multidimensionale Algorithmen 97

Secret 107
Security by Default 217
Selektor 116, 219
Self-Healing 34, 103
Self-Service 182, 194
Self-Service-Cluster 65
Semantic Versioning 170
Separate Way 235, 238
Serverless-Architektur 138, 184, 189
Serverless Computing 136, 185
Serverless-Effekt 186
Serverseitiges Tracing 207
Service 95, 107, 120, 182
Service-API 123
Service Computing 12
Service-Discovery 120
Service-Interaktion 201
Servicekohäsion 182
Service-Merkmale 13
Service-Mesh 172, 183, 210
Service-Mesh Interface (SMI) 212
Service-Modell 12
	– IaaS 15
	– PaaS 15
	– SaaS 16

Service-of-Services 36, 155
Service Ownership 158, 159
Sharding 178
Shared-Database-Pattern 161
Shared-Kernel 236
Shared Nothing 88
Sidecar 210, 218
Single-Responsibility-Prinzip 158, 223
Single Source of Truth 179, 244, 248
Skalierbarkeit 36, 137
Skalierung 119

272 ﻿Stichwortverzeichnis

	– horizontal 174
	– vertikal 174

Skalierungserfordernis 190
Software as a Service (SaaS) 14, 16
Software-Virtualisierung 60
Span 202, 203
Span-Kontext 202, 208
Spoofing-Angriff 218
Spread 96
Stabilitätsmuster 172
Staging 50
Start-up Probe 125
Stateful-Service 177, 191
Stateful-Set 108, 112
Stateless 81, 164
Storage Class 107, 126
Strategisches Design 225, 226
Strict Consistency 243
Stub 162
Subdomain 226
Subdomäne 226, 234
Supporting Subdomain 228, 240, 241, 245, 246
Swarm 30, 96, 99, 104, 108
Synonymer Begriff 232
Systementwurf 230

T
Taktisches Design 240
Telemetriedaten 27, 30, 35, 193
	– Konsolidierung 194

Terraform 68
	– Ausführungsplan 68
	– Data Source 69
	– Provider 69
	– Provisioner 70
	– Ressource 70
	– Ressourcengraph 68
	– Ressourcen-Scheduler 69

Testing 50
Test Phase 43
Timeout 183, 215
Time-to-Market 74, 189
TLS-Endpunkt-Termination 217
Topologieschlüssel 118
Trace 201, 202
Tracing 35, 183, 193, 201
Tracing Backend 206
Tracing-Instrumentierung 206
Traffic Definition 212
Traffic-Management 211, 212

Traffic Policy 211
Traffic Spec 212
Traffic-Split 213
Traffic Telemetry 211
Transaktion 204, 241
Trigger 139, 142
Trunk 53
Trunk-basierte Entwicklung 53
Typ-1-Virtualisierung 59
Typ-2-Virtualisierung 60, 67

U
Ubiquitous Language 225, 230, 231, 233, 238
Übungen (Labs)
	– Autoskalierung 133
	– Beobachtbarkeit 222
	– Container-Image Builds 91
	– Container-Image Builds durch Deployment
Pipelines 91

	– Container-Image Shrinking 91
	– Containerisierung 91
	– Deployment Pipeline 55, 133
	– Docker 91
	– FaaS-Programmiermodell 191
	– GitLab CI/CD 55
	– Google Cloud Functions 149
	– Google Compute Engine 72
	– gRPC 191
	– IaC-basierte Provisionierung 72
	– Kubeless 149
	– Kubernetes 133
	– Logging 222
	– Log-Konsolidierung 222
	– Observability 222
	– OpenWhisk 149
	– Orchestrierung 133
	– Publish/Subscribe 191
	– Queuing 191
	– Representational State Transfer (REST) 191
	– Self-Healing 133
	– Service-Meshs und Traffic-Management 222
	– Service-Meshs und Verkehrstopologien 222
	– Software-defined Infrastructure 72
	– Swarm 133
	– Terraform 72
	– Tracing 222
	– Vagrant 72
	– Workload (interaktives Jupyter Notebook) 38

Umgebungsvariable 48
Unabhängige Aktualisierbarkeit 157, 223

﻿Stichwortverzeichnis 273

Unabhängige Austauschbarkeit 223
Uniform Resource Identifier (URI) 164
Union Filesystem 80
	– Copy-on-Write 80
	– Layer 80
	– Namensraum 80

Unterstützende Subdomäne 228
Upstream-Service 156
US CLOUD Act 1

V
Vagrant 66
	– Box 66
	– Provider 67
	– Provisioner 67
	– Vagrantfile 66

Value Object 242
vCPU 59, 116
Vendor Lock-in 14, 76
Verfügbarkeitszone 57
Verhaltensanalyse 245
Verkehrsfluss 130
Verkehrstopologie 220
Verschlüsselung 217
Versionierungsschema 170
Versionsverwaltungssysteme 25
Vertikale Skalierung 174
Virtualisierung 22, 59
	– Betriebssystem 76
	– Hardware 59

Virtual Private Network (VPN) 218
Virtual Service 215
Virtuelle Netzwerkschnittstelle 59
VLAN 59
Voll-Virtualisierung 60
Volume Provisioner 126
Volunteer Computing 185
Vorwärtskompatibilität 169

W
Wegwerf-Komponente 89
Wegwerf-Umgebung 65
Wertschöpfungskette 26

Whitebox-Instrumentierung 196
Whitebox-Monitoring 199
Whitebox-Tracing 202
Whitebox-Überwachung 196
Widerstandsfähigkeit 168
Wiederholung (Retry) 216
Workload 17, 94
	– einmalig/selten 18
	– Heterogenität 95
	– Isolation 127
	– kontinuierlich sinkend 19
	– kontinuierlich steigend 19
	– periodisch 17
	– statisch 17
	– zufällig 18

Workload-Allokation 94, 101
Workload-Ausführung 95
Workload-Queue 98
Workload-Scheduler 98

X
X.509 218
X-Trace 202

Y
YAML, Notation 6
YARN 98, 99
You build it, you run it 28, 223

Z
Zeitreihe 198
Zeitreihen-Datenbank 194, 199
Zero-Trust Networking 217
Zertifikat-Handling 217
Zertifizierungsstelle (CA) 218
Zone 57
Zugriffskontrolle 212
Zustandsanalyse 245
Zustandslosigkeit 137, 164
Zuteilungsdauer 19
Zwei-Wege-Authentifizierung 218
Zwölf-Faktoren-Methodik 84
Zwölf-Faktoren-Modell 35

	Deckblatt_Leseprobe
	Inhalt
	Vorwort
	Kapitel_2
	Stichwortverzeichnis

