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Cloud Computing

,It's the economy, stupid!“

Bill Clinton, 42. Prasident der USA

GemadB der sogenannten NIST-Definition versteht man unter Cloud Computing einen ,all-
gegenwidrtigen, bequemen, bedarfsgerechten Netzwerkzugriff auf einen gemeinsamen Pool
konfigurierbarer Rechenressourcen, die schnell und mit minimalem Verwaltungsaufwand oder
Interaktion mit Service-Providern bereitgestellt, aber auch wieder freigegeben werden kénnen*“
(Mell und Grance 2011).

Cloud Computing ordnet sich damit im Spektrum verteilter Systeme im Bereich des Service
Computings und weniger im Bereich des High Performance bzw. Super-Computings ein, auch
wenn die Einflussfaktoren mittlerweile mannigfaltig und keinesfalls mehr als trennscharf zu
bezeichnen sind (siehe Bild 2.1). Insbesondere im NoSQL- sowie Machine Learning-/Big-Data-
Bereich gehen Super-Computing und Service Computing zunehmend mehr ineinander tiber.

Bild 2.1 Einflussfaktoren auf das Cloud Computing

Cloud Computing
\ 4
. . Kommoditisierung
ngg::‘rfﬁmance Ve\r/ae:tt)eeliltt:n von HW + SW sowie Virtualisierung Service Computing
P 9 9 Internet
. Service-orientierte
» Parallel » Remote » Breitband- Hardware > ,
Algorithmen Protokolle Zugang Virtualisierung Arch(g(e)l;t)uren
Diiraniia Diverse Virtuelle
9 Parallelrechner I~ MSetr;nrc;g; I~ At Maschinen M Webservices
. Betriebssystem .
GPU- Grid-/Cluster- Hardware - o Business Process
P> ) N~ : M~ Virtualisierung > >
Computing Computing (insb. Server) (Clsressise Eifor) Modeling (BPM)
> No-SQL > e » Betriebssysteme
Datenbanken [Rea{Ee-{Rae (insb. Linux)
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Wihrend Super-Computing eine wichtige Rolle im Bereich der computergestiitzten Wissen-
schaften (Computational Science) spielt und fiir eine Vielzahl rechenintensiver wissen-
schaftlicher Aufgaben in verschiedensten Bereichen eingesetzt wird (z. B. Quantenmechanik,
Wettervorhersage, Klimaforschung, physikalische Simulationen usw.), verstehen wir unter
Service Computing eher einen interdisziplindren Ansatz, der sich mit der Frage beschaf-
tigt, wie Informationstechnologien die geschéftsrelevante Erzeugung von Produkten und
Dienstleistungen substanziell unterstiitzen konnen. Dabei finden im Service Computing
u. a. Webservices, Service-orientierte Architekturen (SOA), Geschiftsprozessmodellierung,
Transformations- und Integrationstechnologien - aber eben auch vermehrt ,Enabling
Technologies“ wie Cloud Computing - Anwendung, die durchaus substanziellen Einfluss
auf Architekturen und Systeme haben. So hat sich beispielsweise SOA aufgrund des Cloud
Computing-Einflusses in den letzten Jahren mehr und mehr zu einem Microservice-basier-
ten Architekturansatz fortentwickelt. Warum das so ist, werden wir unter anderem in Ab-
schnitt 2.3 und Abschnitt 2.4 sehen.

B 2.1 Service-Modelle

Im Allgemeinen werden, wie in Bild 2.2 gezeigt, im Cloud Computing fiinf wesentliche
Service-Merkmale, vier Deployment-Modelle und drei Service-Modelle unterschieden (Mell
und Grance 2011). Wir werden im weiteren Verlauf sehen, dass diese Darstellung an der
ein oder anderen Stelle verfeinert werden kann (siehe beispielsweise Abschnitt 8.1 und
Bild 8.3). Dennoch ist das zugrunde liegende NIST-Modell des Cloud Computings (Mell und
Grance 2011) so priagend, dass es Sinn macht, sich an diesem Modell, seinen Merkmalen,

Bereitstellungsformen und Service-Modellen zu orientieren.
Deployment
Modelle Public Private Hybrid
Cloud Cloud Cloud
Software

Infrastructure

Community
Cloud

Platform

iﬂe(l;zl:ﬁe as a Service as a Service as a Service
(laaS) (PaaS) (Saas)
Ressourcen-Pooling
Service

Merkmale
Netzwerk- Mg Gl On-Demand R
: Ressourcen- " Elastizitat
zugriff Nutzung Self-Service

Bild 2.2 NIST-Modell des Cloud Computings
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Zu den fiinf wesentlichen Merkmalen des Cloud Computings sind die folgenden zu zdhlen:

1. On-Demand Self-Service: Ein Verbraucher kann Ressourcen, wie z. B. Serverzeit und
Netzwerkspeicher, nach Bedarf automatisch anfordern, ohne dass hierfiir eine manuelle
Tatigkeit aufseiten des Cloud-Service-Providers erforderlich ist.

2. Netzwerkzugriff: Die Ressourcen werden iiber offentliche Netzwerke bereitgestellt und
der Zugriff auf diese Ressourcen erfolgt iiber standardisierte und weitverbreitete Inter-
netprotokolle, die die Nutzung von Cloud-Ressourcen durch heterogene Client-Plattformen
ermoglichen.

3. Elastizitit: Ressourcen konnen schnell und bedarfsgerecht bereitgestellt, aber auch wieder
freigegeben werden. Fiir den Verbraucher erscheinen die fiir die Bereitstellung verfiig-
baren Ressourcen virtuell unbegrenzt und konnen in beliebiger Menge und zu jeder Zeit
angefordert werden. Dies fordert horizontale Skalierungsformen.

4. Messung der Ressourcennutzung: Cloud-Systeme steuern und optimieren automatisch
ihre Ressourcennutzung, indem sie den Ressourcenverbrauch auf einer geeigneten Abs-
traktionsebene messen (z. B. Speicherverbrauch, Processing-Cycles, Bandbreite, aktive
Benutzerkonten usw.). Die Uberwachung und Messung der Ressourcennutzung schafft
sowohl fiir den Service-Provider als auch fiir den Nutzer von Cloud Services Transparenz.

5. Ressourcen-Pooling: Die Computing-Ressourcen des Providers werden gepoolt, um
mehrere Kunden mit einem Multi-Tenant-Modell zu bedienen. Dabei werden physische
und virtuelle Ressourcen dynamisch den Nutzern zugewiesen und bei Bedarf auch real-
lokiert. Der Kunde hat im Allgemeinen keine detaillierte Kontrolle oder Kenntnis tiber
den genauen Standort der bereitgestellten Ressourcen, kann aber den Standort auf einer
hoheren Abstraktionsebene (z. B. Land, Region oder Rechenzentrum) angeben.

Cloud Services werden zumeist in Private- bzw. Public Cloud-Formen unterschieden. Die
ebenfalls existierenden Hybrid- und Community-Formen sind oft nicht so prasent in der
offentlichen Diskussion, vermutlich weil sie im Service Computing kaum ihre Stirken aus-
spielen konnen.

= Unter einer Public Cloud versteht man eine Cloud-Infrastruktur fiir die offene Nutzung
durch die Allgemeinheit. Sie kann im Besitz einer geschéaftlichen, akademischen oder
staatlichen Organisation oder einer Kombination davon sein und von dieser verwaltet
und betrieben werden. Sie befindet sich auf den Liegenschaften des Cloud-Anbieters (d. h.
Off-Premise fiir die Cloud-Nutzer).

= Unter einer Private Cloud versteht man hingegen eine Cloud-Infrastruktur, die fiir die
exklusive Nutzung durch eine einzelne Organisation mit mehreren Verbrauchern (z. B.
Geschiftseinheiten) betrieben wird. Sie kann sich im Besitz der Organisation, eines Dritten
oder einer Kombination aus beiden befinden. Dabei ist es unerheblich, ob die Infrastruktur
sich auf den Liegenschaften der Organisation (d. h. On-Premise fiir die Cloud-Nutzer) oder
nicht befindet.

= Unter der weniger bekannten Form der Community Cloud wird eine Cloud-Infrastruktur
verstanden, die fiir die exklusive Nutzung durch eine bestimmte Gemeinschaft von Ver-
brauchern aus Organisationen betrieben wird. Diese Gemeinschaft hat meist gemeinsame
Anliegen (z. B. Mission, Sicherheitsanforderungen, Richtlinien und Compliance-Uber-
legungen). Sie kann im Besitz einer oder mehrerer Organisationen in der Community,
einer dritten Partei oder einer Kombination von ihnen sein und von diesen verwaltet und
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betrieben werden. Dabei ist es unabhéngig, ob die Community Cloud ausschlieBlich auf
den Liegenschaften der Gemeinschaft betrieben wird. Community Clouds konnen also
sowohl On-Premise als auch Off-Premise betrieben werden.

= SchlieBlich wird als Hybrid Cloud eine Cloud-Infrastruktur verstanden, die eine Kom-
position aus zwei oder mehreren oben genannter Cloud-Infrastruktur-Formen (private,
public, community) bildet. Diese bleiben eigenstdndige Einheiten, werden aber durch
standardisierte oder proprietare Technologie miteinander verbunden, die die Portabili-
tat von Daten und Anwendungen ermdoglicht (z. B. Cloud Bursting fiir den Lastausgleich

zwischen Cloud-Infrastrukturen).

Mittels Cloud-Computing lassen sich Teile der [T-basierten Wertschopfung an externe Dienst-
leister (Cloud-Provider) auslagern. Der Auslagerungsumfang wird dabei haufig in die Kate-
gorien Infrastructure as a Service (IaaS, siehe Abschnitt 2.1.1), Platform as a Service (PaaS,
siehe Abschnitt 2.2) und Software as a Service (SaaS, siehe Abschnitt 2.2.1.1) eingeteilt. Von
[aaS tiber PaaS zu SaaS wird dabei der ausgelagerte Anteil immer groBer, wie Bild 2.3 zeigt.
Mit dem Umfang der Auslagerung wird allerdings auch die potenzielle Abhdngigkeit (Vendor
Lock-in) eines Kunden zu einem Cloud-Provider groBer. Unter einem Lock-in-Effekt versteht
man generell eine enge Kundenbindung an Produkte/Dienstleistungen eines Anbieters in
Form einer technisch-funktionalen Kundenbindung, die es dem Kunden wegen entstehender
Wechselkosten und sonstiger Wechselbarrieren erschwert, ein Produkt oder einen Service
eines Anbieters mit dem Produkt oder Service eines anderen Anbieters auszutauschen. Im
Cloud Computing entsteht dieser Effekt meist durch nichtstandardisierte Cloud-Service APIs
der einzelnen Provider. Je hoher man in den Schichten kommt, desto spezifischer und damit
weniger austauschbar werden die bereitgestellten Cloud-Services, und desto hoher ist die

Lock-in-Gefahr.
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Bild 2.3 Auslagerung der Wertschopfung bei laaS, PaaS und SaaS
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2.1.1 Infrastructure as a Service (laaS)

Beim TaaS-Modell bietet ein Provider physische und virtuelle Hardware wie Server, Speicher
und Netzwerkinfrastruktur an, die iiber eine Self-Service-Schnittstelle schnell bereitgestellt
und auBer Betrieb genommen werden kann. Dies ermoglicht es z. B., im Rahmen von perio-
dischen Workloads mit wiederkehrenden Lastspitzen IT-Ressourcen flexibel und vor allem
lastgetrieben bereitzustellen.

Die Fahigkeit, die dem Kunden zur Verfiigung gestellt wird, besteht also in der schnellen
und elastischen Bereitstellung von Verarbeitungs-, Speicher-, Netzwerk- und anderen grund-
legenden Rechenressourcen, auf denen der Kunde beliebige Software, einschlieBlich Betriebs-
systemen und Anwendungen, einsetzen und ausfiihren kann.

Der Kunde verwaltet oder kontrolliert die zugrunde liegende Cloud-Infrastruktur zwar nicht,
hat aber die Kontrolle iiber Betriebssysteme, Speicher und bereitgestellte Anwendungen
sowie moglicherweise eine begrenzte Kontrolle iber ausgewahlte Netzwerkkomponenten
(z. B. Host-Firewalls).

In Anlehnung an (Fehling u. a. 2014) bezeichnen wir das zugehorige Service-Offering als
elastische Infrastruktur zum Zwecke des Bereitstellung von virtuellen Servern, persistenten
Speicher und Netzwerkkonnektivitét. Eine elastische Infrastruktur bietet zumeist vorkonfi-
gurierte virtuelle Server-Images, persistenten Speicher und Netzwerkkonnektivitit, die von
Kunden tiber eine Self-Service-Schnittstelle angefordert werden konnen. Ferner werden
Last- und Nutzungsdaten vom Provider bereitgestellt, um tiber die Ressourcenauslastung
zu informieren, die fiir eine nachvollziehbare Abrechnung und die Automatisierung von
Verwaltungsaufgaben erforderlich ist.

2.1.2 Platform as a Service (Paa$S)

Beim PaaS-Modell stellen Provider IT-Ressourcen in Form einer Applikations-Hosting-Umge-
bung fiir Kunden bereit. Ein Cloud-Provider bietet hierfiir verwaltete Betriebssysteme und
Middleware an. Auch viele Betriebsvorgdnge werden vom Anbieter iibernommen, wie z. B.
die elastische Skalierung und Ausfallsicherheit gehosteter Anwendungen.

Die dem Kunden zur Verfiigung gestellte Fihigkeit besteht somit darin, in einer Cloud-Infra-
struktur vom Kunden erstellte oder erworbene Anwendungen bereitzustellen, die mit vom
Anbieter unterstiitzten Programmiersprachen, Bibliotheken, Diensten und Tools erstellt
wurden. Der Kunde verwaltet oder kontrolliert somit zwar nicht die zugrunde liegende Cloud-
Infrastruktur, hat aber die Kontrolle iiber die bereitgestellten Anwendungen.

In Anlehnung an (Fehling u. a. 2014) bezeichnen wir das zugehdorige Service-Angebot als elas-
tische Plattform und verstehen dies als eine Middleware zur Ausfiihrung benutzerdefinierter
Anwendungen, deren Kommunikation und Datenspeicherung iiber eine netzwerkbasierte
Self-Service-Schnittstelle angeboten wird. Auf diese Weise konnen Anwendungskomponenten
verschiedener Kunden auf einer gemeinsamen Middleware gehostet werden, die vom An-
bieter bereitgestellt und gewartet wird. Diese Vereinheitlichung ermoglicht die gemeinsame
Nutzung von Ressourcen und eine Automatisierung bestimmter Verwaltungsaufgaben auf
Provider-Seite, z. B. die Bereitstellung von Anwendungen und die Verwaltung von Updates.
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2.1.3 Software as a Service (SaaS)

Beim SaaS-Modell stellen Anbieter IT-Ressourcen in Form von fiir Menschen nutzbare
Anwendungssoftware fiir Kunden bereit, um Self-Service, schnelle Elastizitat und Pay-per-
Use-Preise zu ermdglichen. Insbesondere kleine und mittlere Unternehmen verfiigen oft
nicht iliber die Arbeitskraft und das Know-how, um individuelle Softwareanwendungen zu
entwickeln. Ferner sind viele Anwendungen zu Massenware geworden, die von vielen Unter-
nehmen verwendet werden, aber kaum dazu beitragen, sich von Wettbewerbern abzuheben
(siehe Abschnitt 14.2.1). Dies umfasst z. B. Office-Suiten, Software fiir die Zusammenarbeit
oder Kommunikationssoftware.

Die dem Verbraucher zur Verfiigung gestellte Fihigkeit besteht also bei SaaS darin, Anwen-
dungen eines Anbieters zu nutzen, ohne die dafiir erforderliche Infrastruktur oder Plattform
betreiben zu miissen. Der Zugriff auf die Anwendungen erfolgt zumeist von verschiedenen
Client-Geraten, wie z. B. einem Webbrowser (z. B. webbasierte E-Mail) oder iiber eine Pro-
grammschnittstelle.

Der Verbraucher verwaltet oder steuert die zugrunde liegende Cloud-Infrastruktur oder
Cloud-Plattform einschlieBlich Netzwerk, Server, Betriebssystem, Speicher oder sogar ein-
zelne Anwendungsfunktionen somit nicht selbst. Es sind jedoch - meist in sehr begrenztem
Umfang - benutzerspezifische Konfigurationseinstellungen moglich (z. B. Anpassung der
Benutzeroberflache an Unternehmens-Styleguide-Vorgaben).

B 2.2 Cloud-Okonomie

Alle genannten Service-Modelle (IaaS, PaaS, SaaS) folgen dabei denselben wirtschaftlichen
GesetzmaBigkeiten. Beim sogenannten Pay-as-you-go-Kostenmodell werden nur die Ressour-
cen abgerechnet, die auch tatsdchlich von einem Kunden angefordert werden. Aus Sicht des
Kunden besteht also das wirtschaftliche Interesse vor allem darin, Cloud-Systeme mit einem
moglichst geringen , Over-Provisioning“ zu betreiben, also Lastkurven mittels Skalierung
mdoglichst eng und schnell folgen zu kdnnen (siehe Bild 2.4). Dies ist in klassischen Rechen-
zentren nicht - oder nur sehr begrenzt - moglich.

Klassisches Rechenzentrum Cloud-basiertes Rechenzentrum
(Statische Provisionierung) (Elastische Provisionierung)
—-- Kapazitat Ungenutzte Ressourcen —-- Kapazitat Ungenutzte Ressourcen
—— Nachfrage —— Nachfrage

Ressourcen
Ressourcen

Zeit Zeit

Bild 2.4 Statische und elastische Provisionierung von Ressourcen
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2.2.1 Eignung von unterschiedlichen Arten von Workloads

Die Betrachtung von Workloads ist naturgegeben immer sehr anwendungsfallspezifisch, und
man muss vorsichtig sein, nicht zu tibergeneralisierende Ratschldge zu geben. Dennoch lassen
sich unterschiedliche Workload-Arten ausmachen, die 6konomisch unterschiedlich geeignet
fiir Cloud Computing sind. Dem Leser sei an dieser Stelle das Studium von (Weinman 2011)
empfohlen, dessen Uberlegungen hier zusammenfassend dargestellt werden.

Eine Pay-per-Use-Losung macht immer dann offensichtlich Sinn, wenn die Stiickkosten fiir
On-Demand-Cloud-Services ¢ niedriger sind als dedizierte, eigene Kapazitaten d. Oft konnen
Cloud-Provider diesen Kostenvorteil bieten - aber nicht immer. Dies hangt leicht nachvollzieh-
bar von den internen Kostenstrukturen eines Unternehmens ab und ist somit hochgradig
unternehmensspezifisch.

Obwohl es kontraintuitiv erscheint, macht eine reine Cloud-Losung aber auch in Szenarien
Sinn, in denen die Stiickkosten ¢ hoher als die Kosten fiir eigene Kapazitaten d sind. Aller-
dings nur, solange das Verhiltnis von Spitzenlast p zu Durchschnittslast a der Nachfrage-
kurve hoher ist als das Kostenverhiltnis der Stiickkosten von On-Demand-Kapazitit ¢ zu
dedizierter Kapazitat d.

== c<alB:>cmax =dl

d a a a
Mit anderen Worten: Selbst wenn Cloud-Dienste doppelt so viel kosten wie In-House-Dienste,
ist eine reine Cloud-Losung fiir solche Bedarfskurven sinnvoll, bei denen das Verhéltnis von
Spitzenwert zu Durchschnittswert zwei zu eins oder hoher ist. Dies ist in einer Vielzahl von
Branchen ofter der Fall, als man annehmen wiirde. Der Grund dafiir ist, dass die dedizierte
Losung mit fester Kapazitét fiir den Spitzenbedarf gebaut werden muss, wahrend die Kosten
der On-Demand-Pay-per-Use-Losung proportional zum Durchschnitt sind (siehe auch Bild 2.4).

Je groBer das Peak-to-Average-Verhiltnis P also ist, desto eher ist ein Anwendungsfall (rein

okonomisch betrachtet) fir cloud—basierte(iﬁsungen interessant. Betrachten wir vor diesem
Hintergrund einmal die folgenden prototypischen Workloads, die so entweder in Reinform
oder in lberlagerten Kombinationen (z. B. periodischer Workload, der durch einen konti-
nuierlich steigenden Workload iiberlagert wird) im echten Leben haufig anzutreffen sind.

Statische Workloads (siehe Bild 2.5 A) sind durch ein mehr oder weniger flaches Lastprofil
iiber die Zeit innerhalb bestimmter Grenzen gekennzeichnet. Eine Anwendung mit statischem
Workload wird kaum von elastischen Infrastrukturen oder Plattformen profitieren konnen,
da die Anzahl der bendtigten Ressourcen konstant ist. Diese Arten von Workloads sind aber
eher selten.

Haufiger sind hingegen periodische Aufgaben und Routinen (siehe Bild 2.5 B), zum Beispiel
monatliche Gehaltsabrechnungen, monatliche Telefonrechnungen, jahrliche Autoinspektio-
nen, wochentliche Statusberichte oder die tagliche Nutzung der 6ffentlichen Verkehrsmittel
wahrend der Hauptverkehrszeit. Solche Aufgaben und Routinen treten in wohldefinierten
Intervallen auf und erzeugen daher periodische Workloads in der Nutzung involvierter IT-
Systeme. Aus Kundensicht besteht das Kosteneinsparungspotenzial bei periodischen Lasten
in der AuBerbetriebnahme von Ressourcen in Nicht-Spitzenzeiten.
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Bild 2.5 Zu beriicksichtigende Workloads im Cloud Computing

Als Spezialfall der periodischen Workloads konnen die Spitzen der periodischen Auslastung in
einem sehr langen Zeitraum auch in Form einmaliger/seltener Workloads auftreten (siehe
Bild 2.5 C). Oft ist diese Spitze im Voraus bekannt, da sie mit einem bestimmten Ereignis
(z. B. olympische Spiele alle vier Jahre) oder einer Aufgabe Kkorreliert. In solchen Szenarien
konnen die Bereitstellung und AuBerbetriebnahme von IT-Ressourcen oft als manuelle Auf-
gaben realisiert werden, da sie zu einem bekannten Zeitpunkt erfolgen.

Zufallige Workloads sind eine Verallgemeinerung der periodischen Workloads, da sie Elastizi-
tat erfordern, aber nicht vorhersehbar sind (siehe Bild 2.5 D). Solche Workloads treten in der
realen Welt recht haufig auf. Hier sind die ungeplante Bereitstellung und AuBerbetriebnahme
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von IT-Ressourcen erforderlich. Die notwendige Bereitstellung und AuBerbetriebnahme von
IT-Ressourcen miissen daher automatisiert erfolgen, um die Anzahl der Ressourcen an die
sich dndernde Last anzupassen.

Bei vielen Anwendungen dndert sich auch die Last kontinuierlich iiber einen ldngeren Zeit-
raum. Haufig sind solche Lasten in Form eines Basistrends als Hintergrund-Workload in
anderen Workloads (z. B. periodischen Workloads) enthalten. Sich kontinuierlich indernde
Workloads sind durch ein kontinuierliches Wachstum oder einen kontinuierlichen Riickgang
der Auslastung gekennzeichnet (siehe Bild 2.5 E/F). Rein wirtschaftlich ist es dabei egal, ob
ein Workload steigt oder sinkt, denn der Flacheninhalt (also die Einsparung) ergibt sich ja
aus der Differenz der statischen und elastischen Provisionierungskurven. Der Bedarf per-
sistenten Speichers unterliegt oft solch einem kontinuierlich wachsenden Trend. Es wird in

vielen Anwendungsfillen eben mehr gespeichert als geloscht.

Wenn man diese Workloads hinsichtlich ihres P aufsteigend sortiert, erhédlt man grundsatzli-
a

che folgende rein 6konomische Eignungsreihenfolge von Workloads fiir das Cloud Computing:
= Statische Workloads (eher ungeeignet, siehe Bild 2.5 A)

= Kontinuierlich steigende/sinkende Workloads (siehe Bild 2.5 E/F)

= Zuféllige und periodische Workloads (siehe Bild 2.5 B/D)

= Einmalige/seltene Workloads (extrem geeignet, Bild 2.5 C)

Fiir einen konkreten Anwendungsfall ist dieses % natiirlich immer genau zu bestimmen.

Dennoch hilft das Verstandnis dieser grundsatzlichen Zusammenhédnge erheblich dabei,
iiberhaupt erst einmal interessante Anwendungsfélle zu identifizieren und uninteressante
Anwendungsfille auszuschlieBen. Grundsatzlich ermdglicht die Elastizitdt von Cloud-Infra-
strukturen und -Plattformen, Ressourcen mit der gleichen Rate bereitzustellen oder freizu-
geben, mit der sich die Arbeitslast eines Dienstes dndert, um diese Effekte fiir sich zu nutzen.

2.2.2 Effekt von Zuteilungsdauer und RessourcengroBBe

Wie wir also sehen, sind Cloud-Ressourcen vor allem dann wirtschaftlich, wenn Last-
schwankungen in einem Anwendungsfall auftreten. Die Kosten pro Cloud-Ressource kénnen
sogar deutlich hoher als die In-House-Kosten liegen - solange das Verhéltnis von Cloud zu
In-House-Kosten nicht das Verhéltnis von Spitzen- zu Durchschnittslast ibersteigt.

Ziel ist also, im Betrieb eine moglichst niedrige Durchschnittslast zu ermdoglichen (bzw. die
Flache zur Abdeckung der Lastkurve zu minimieren). Hierzu strebt man im Betrieb an, Last-
kurven moglichst eng zu folgen. Kann man sich moglichst eng an Lastkurven ,anschmiegen®,
erzeugt dies wenig Over-Provisioning. Viele Innovationen des Cloud-native Computings wie
beispielsweise Container-und FaaS-Technologien sind im Kern auf diese Erkenntnis zuriickzu-
fiihren. Bei der Ressourcenzuteilung lasst sich dabei letztlich an zwei Stellschrauben drehen.

1. Man kann Ressourcen feingranularer zuteilen (vertikale Stellschraube).
2. Man kann Ressourcen kiirzer zuteilen (horizontale Stellschraube).

Bild 2.6 zeigt den Effekt beider Stellschrauben (Ressourcengrofe und Zuteilungsdauer) auf
den Ressourcenverbrauch (und damit die Kosten) am Beispiel eines synthetischen periodi-
schen Workload-Verlaufs.
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Bild 2.6 Effekt von Ressourcengrofe und Zuteilungsdauer

Wie Bild 2.6 zeigt, ermdglichen es kleinere RessourcengroBen und kiirzere Zuteilungsdauern,
Lastkurven enger folgen zu konnen. Damit kann das Over-Provisioning verringert werden.
Dies spart letztlich Geld im Betrieb eines Cloud-nativen Systems. An dem - zugegeben syn-
thetischen - Beispiel von Bild 2.6 zeigt sich dennoch, dass sich durch die Reduzierung von
RessourcengroBen und kiirzere Zuteilungsdauern der rechnerische Ressourcenbedarf durch-
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aus halbieren ldsst. Dies ist natiirlich immer von den dahinterliegenden Workload-Arten und
dem Anwendungsfall abhéngig. Auch noch groBere Einsparungen sind nicht ungewohnlich.

Diese einfache Erkenntnis hatte in den letzten Jahren einen tiefgreifenden Einfluss auf
Cloud-native Architekturen und Technologien (Kratzke und Quint 2017). So konnte man in
den vergangenen Jahren beobachten, wie diese beiden Stellschrauben (Zuteilungsdauer und
RessourcengroBe) systematisch reduziert wurden. Wahrend in der Anfangszeit des Cloud
Computings virtuelle Maschinen {iblicherweise auf Stundenbasis abgerechnet wurden, ist
dies im Verlaufe der Zeit auf eine dreiBigminiitige, dann fiinfzehnminiitige bis schlieBlich
zu einer minutengenauen oder mittlerweile sogar einer sekundengenauen Abrechnung bei
vielen Providern umgestellt worden. Auch die RessourcengroBe wurde durch Technologien
reduziert. Mittels laaS kommt man nicht wirklich effizient unter die Auflosung von einer
vCPU. Doch mittels der zunehmend beliebteren Container-Technologie sind wesentlich fein-
granularere Ressourcen moglich (siehe Kapitel 8), mit denen man problemlos unter diese
1 vCPU-Schwelle kommt. Auch die seit einigen Jahren beliebter werdende Technologie
Function as a Service (FaasS, siehe Kapitel 10) kombiniert letztlich feingranularere Container
mit einer Reduktion der zeitlichen Zuteilungsdauer im Subsekunden-Bereich. FaaS erlaubt
es sogar, Ressourcen komplett auf null zu skalieren, wenn ein System in einem Zeitintervall
keine Aufgaben zu verarbeiten hat. Daran zeigt sich, dass viele Trendtechnologien zur fein-
granulareren Ressourcenallokation im Cloud-nativen Umfeld ihren Grund auch immer in
der innewohnenden Cloud-Okonomie haben - auch wenn dies hiufig nicht (mehr) bewusst
wahrgenommen wird.

B 2.3 Entwicklung der letzten Jahre

Cloud Computing ist vor etwa zehn bis 15 Jahren entstanden. Dabei wurden in der ersten
Adoptionsphase bestehende IT-Systeme lediglich in Cloud-Umgebungen {iibertragen, ohne
das urspriingliche Design und die Architektur dieser Anwendungen zu dndern. Multi-Tier-
Anwendungen wurden lediglich von dedizierter Hardware auf virtualisierte Hardware in der
Cloud migriert. Cloud-Systemingenieure haben im Laufe der Jahre allerdings bemerkenswerte
Verbesserungen an Cloud-Plattformen (PaaS) und -Infrastrukturen (IaaS) vorgenommen
und mehrere technische Trends etabliert, die derzeit zu beobachten sind. Ein wesentlicher
Treiber hierfiir sind die erlauterten 6konomischen GesetzméBigkeiten des Pay-per-use-Prin-
zips. Wer Cloud-native Systeme wirtschaftlich betreiben will, muss die Ressourcennutzung
optimieren und minimieren.

Cloud-Infrastrukturen (IaaS) und -Plattformen (PaaS) sind daher insbesondere fiir den
elastischen Betrieb von Cloud-nativen Anwendungen gebaut, um Over-Provisioning von
Ressourcen zu vermeiden. Unter Elastizitit versteht man den Grad, in dem sich ein System
an Lastinderungen anpasst, indem es automatisch Ressourcen bereitstellt und entnimmt.
Ohne diese Elastizitat ist Cloud Computing aus wirtschaftlicher Sicht sehr oft nicht sinnvoll.

Mit der Zeit lernten Systemingenieure, diese Elastizitatsoptionen moderner Cloud-Umge-
bungen besser zu verstehen. SchlieBlich wurden Systeme fiir solche elastischen Cloud-Infra-
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strukturen von Grund auf entworfen, die dank neuer Deployment- und Design-Ansétze wie
Container (siehe Kapitel 8), Microservices oder serverloser Architekturen (siehe Kapitel 12)
den bereitzustellenden Ressourcenbedarf der zugrunde liegenden Computing-Infrastruktu-
ren minimieren. Diese Designabsicht wird oft unbewusst mit dem Begriff ,Cloud-native®
ausgedriickt.

Die Maschinenvirtualisierung hat sich insbesondere deshalb durchgesetzt, um eine Vielzahl
von Bare-Metal-Maschinen zu konsolidieren und so die physischen Ressourcen in Rechen-
zentren effizienter nutzen zu konnen. Diese Maschinenvirtualisierung bildet bis heute
das technologische Riickgrat des (IaaS-)Cloud Computings. Virtuelle Maschinen sind zwar
leichtgewichtiger als Bare-Metal-Server, aber sie sind nicht unbedingt als leichtgewichtig
zu bezeichnen, vor allem in Bezug auf ihre Image-GroBen. Diese [aaS-Ebene wird vor allem
in Kapitel 7 behandelt.

Vor diesem Hintergrund wurden leichtgewichtigere Container entwickelt. Container er-
lebten ihren Siegeszug primar, weil sie einerseits die Art und Weise der standardisierten
Bereitstellung von Anwendungskomponenten vereinfachen. Container erhohen aber auch
die Auslastung der virtuellen Maschinen, da sie auf leichtgewichtigeren Betriebssystem-Vir-
tualisierungskonzepten beruhen. Man kann also meist deutlich mehr Container auf einem
physischen Host betreiben als virtuelle Maschinen. Wir werden uns mit diesen Aspekten
vor allem in Kapitel 8 und in Kapitel 9 befassen. Dennoch sind Container, obwohl sie leicht-
gewichtig und schnell skalierbar sind, immer noch Always-on-Komponenten. Es muss also
immer einen ,letzten“ Container geben, der Requests bearbeiten kann. Zumindest dieser
Jletzte“ Container fallt damit weiterhin in den Bereich eines statischen Workloads, also dem
aus Kundensicht teuersten Workload fiir Cloud Computing.

Daher wurden Function-as-a-Service-(FaaS-)Ansétze entwickelt, die eine Art Time-Sharing
von Containern auf darunterliegenden Container-Plattformen anwenden. Wir werden uns vor
allem in Kapitel 10 mit diesen Aspekten befassen. Bei FaaS werden nur Einheiten (Funktio-
nen) ausgefiihrt, die Requests zu bearbeiten haben. Durch diese zeitlich geteilte Ausfiihrung
von Containern auf der gleichen Hardware ermdglicht FaaS sogar eine Skalierbarkeit bis auf
null. Studien konnten diese verbesserte FaaS-Ressourceneffizienz sogar monetir messen
(Villamizar u. a. 2017). All dies hat letztlich mit der Minimierung der statischen Workload-
Anteile zu tun, die den ineffektivsten Workload fiir Cloud Computing ausmachen.

Riickblickend betrachtet wurde der Technologie-Stack zur Verwaltung von Ressourcen in der
Cloud also im Laufe der Zeit durch zusitzliche Ebenen (Virtualisierung, Container Runtime,
FaaS Runtime) erweitert und damit immer komplexer. Das folgte aber einem grundséatzlichen
Trend - mehr Workload auf der gleichen Anzahl physischer Maschinen auszufiihren, also
die Ressourceneffizienz insgesamt zu erhohen.
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