CLOUD-NATIVE
COMPUTING

Software Engineering von
Diensten und Applikationen
fir die Cloud

BE) E£xTRA: E-Book inside HANSER

Leseprobe

ZU

Cloud-native Computing

von Nane Kratzke

Print-ISBN: 978-3-446-46228-1
E-Book-ISBN: 978-3-446-47284-6
epub-ISBN: 978-3-446-47285-3

Weitere Informationen und Bestellungen unter
https://www.hanser-kundencenter.de/fachbuch/artikel /9783446462281
sowie im Buchhandel

© Carl Hanser Verlag, Miinchen

https://www.hanser-kundencenter.de/fachbuch/artikel/9783446462281

Inhalt

R0 o Xl
1 Einleitung ... e 1
1.1 An wen sich dieses Buchrichtet i i 2
1.2 Was dieses Buch behandelt i 3
1.3 Sprachliche Konventionenoouniiniitn it iieiieennn 4
1.4 NotationSKonventionen.t 5
1.5 Erginzende Materialien.o e 7
Teil :Grundlagenciiiiiiiiiiiiiiiiiiiiinennnns 9
2 Cloud Computingcoviiiiiiniiiiiiineenneennesnncsnanss 11
2.1 Service-Modelle. e 12
2.1.1 Infrastructure as a Service (IaaS)........... ... oo, 15
2.1.2 Platform as a Service (PaaS) i il 15
2.1.3 Software as a Service (SaaS)ouuuit it e 16
2.2 Cloud-OKONOMUE\ttt ettt e e e e e e e 16
2.2.1 Eignung von unterschiedlichen Arten von Workloads................... 17
2.2.2 Effekt von Zuteilungsdauer und Ressourcengrofe...................... 19
2.3 Entwicklung der letztenJahre. 21
3 DEVOPS .ottt e e e it e e e et e 23
3.1 Prinzipien des FIOW i i e 25
3.1.1 Prinzip 1: Arbeit sichtbarmachen 25
3.1.2 Prinzip 2: Work in Progress beschranken.................. 26
3.1.3 Prinzip 3: Flaschenhdlse minimieren. 26
3.2 Prinzipien des Feedbacks.oouiti 27
3.2.1 Prinzip 4: Probleme frith erkennen 27
3.2.2 Prinzip 5: Probleme sofort 16sen.coo i, 28
3.2.3 Prinzip 6: Probleme professionell verantworten........................ 28
3.3 DevOps-geeignete Architekturen. i 29

3.3.1 Randbedingungen fiir die Entwicklung 29

Vi

Inhalt

4.1
4.2
4.3

Teil

5

6.2

6.3

7.2

7.3

8.1
8.2
8.3

3.3.2 Nutzung von Orchestrierungsplattformen. 30
3.3.3 Randbedingungen im Betrieb i 30
Cloud-nativecoiiiiiiiiiiiiiiiiiiiinrneneeensnonnnnns 33
Definitionen in Industrie und Forschung. 34
Die Cloud-native-Definition dieses Buchs. 35
Zusammenfassung und Ausblick auf Teil Il und Teil III. 37
Il: EverythingasCode..............iiiiiiiiiiinnnnnnn 39
EinleitungzuTeil Il. i i i i 41
Deployment-Pipelines oottt 43
Deployment-Pipelines as Code.oiiriiii ittt 44
6.1.1 Phasen-Pipelines.ouniiiii i e 45
6.1.2 Gerichtete Pipelines e 46
6.1.3 Hierarchische Pipelines.o iiiiiiii i 47
6.1.4 Steuerung von Pipelines ... 48
DevOps-geeignete Branching-Strategien. 50
60.2.1 GItFIOW . . oo e 51
6.2.2 GitHUD-FIOW . ..o o e 52
6.2.3 Trunk-basierte Entwicklungo, 53
ZuSsammentassUungttt e 54
InfrastructureasCode. oottt 57
Virtualisierungot 59
7.1.1 Virtualisierung von Hardware-Infrastruktur........................... 59
7.1.2 Virtualisierung von Software-Infrastruktur 60
ProvisSionierung.ot 62
7.2.1 Immutable Infrastructure ittt 62
7.2.2 JaC-ANSALZE . . .ottt e 63
7.2.3 Provisionierung von lokalen Umgebungen 66
7.2.4 Provisionierung von Multi-Host-Umgebungen 68
ZUuSammenfassSUNgottt e e 71
Standardisierung von Deployment Units (Container) 73
Hintergrund (PaaS).t e 73
Betriebssystem-Virtualisierung.t e 76
Container Runtime Environments. i 77
8.3.1 Kernel-Namespacesttt 78
8.3.2 Process Capabilities i 79

8.3.3 Control GTOUPS . .+« v vttt e et e e e e e e 80

Inhalt VII

8.3.4 Union Filesystemttt i 80
8.3.5 High-Level- und Low-Level-Container-Laufzeitumgebungen 81

8.4 Bau und Bereitstellung von Container-Images.coviiieinenn ... 82
8.5 Faktoren gut betreibbarer Containero i, 84
8.5.1 Codebase 85
8.5.2 Abhingigkeiten und Konfigurationen 85
8.5.3 Unterstiitzende Services und Port Binding 86
8.5.4 Build-, Release-und Run-Phase. i, 87
8.5.5 Horizontale Skalierung iiber Prozesse..............c.cooviiiiininnenn.. 88
8.5.6 Umgebungen, Logsund Betrieb 89

8.6 ZusammenfasSUNgttt e 90
9 Container-Plattformen........... i i i i, 93
0.1 SchedUuling.oit e 94
9.1.1 Heterogenitdat von Workloadst iiiiiinnann.. 95
9.1.2 Scheduling-Algorithmen i 96
9.1.2.1 Einfache Scheduling-Algorithmen. 96

9.1.2.2 Multidimensionale Scheduling-Algorithmen................... 97

9.1.2.3 Kapazitiatsbasierte Scheduling-Algorithmen................... 97

9.1.3 Scheduling-ArchiteKturenc..oo i, 98
9.1.3.1 Monolithischer Scheduler oot 99

0.1.3.2 2-Level-Schedulert 99

9.1.3.3 Shared-State Scheduler........... i, 100

0.2 Orchestrierungttt e e e 101
9.2.1 Definition von Betriebszustdnden. 101

9.2.2 Regelkreis: Desired versus Current State 102

0.3 Inside KUDEINetes.ttt e e 103
9.3.1 Kubernetes-ArchiteKtur.t 104
9.3.2 Verwaltete Ressourcen und Basis-Blueprint 106
9.3.3 Schedulbare Workloads 108
0.3.3.1 Deploymentsuiiuiiii i 108

0.3.3.2 (Crom-)JobS. . oot 110

0.3.3.3 Daemon-Setsttt e 111

0.3.3.4 Stateful-Sets....... ..ot 112

9.3.4 Scheduling Constraintsccouuiiiniiieiinin .. 115
9.3.4.1 Angabe des Ressourcenbedarfs mittels Requests und Limits 115

0.3.4.2 Knoten-SeleKtoren.t 116

9.3.4.3 Knotenaffinitdaten 117

9.3.4.4 Pod-(Anti-)Affinitdten. o i 118

9.3.5 Automatische Skalierung von Workloads 119
9.3.6 Exponieren von Workloads als interne und externe Services............ 120
9.3.7 Health Checking. i e 123

0.3.8 PerSiSteNZ . ..ot e 126

VIII Inhalt

9.3.9 Isolation von Workloads.ottt 127
9.3.9.1 Namespaces und Role-based Access Model (Multi-Tenancy)-. 127

9.3.9.2 Quotasund LimitRanges..................coiiiiiininn... 128

0.3.9.3 Network Policys.ot e 129

9.4 Zusammenfassungttt e 131
10 FunctionasaService...........oitiiiiininnnrennnennnanns 135
10.1 FaaS-Plattformen.oouu i e e 137
10.1.1 Das FaaS-Programmiermodell........... i, 139
10.1.2 Zu beriicksichtigende Randbedingungen. 140
10.1.3 Veranschaulichung des FaaS-Programmiermodells 141

10.2 Plattformagnostische FaaS-Frameworks. o .. 142
10.3 Ereignisbasierte Autoskalierung.t 145
10.4 Zusammenfassungttt e 148
Teil Ill: Cloud-native Architekturen 151
11 EinleitungzuTeil Il i, 153
12 Microservice und Serverless-Architekturen................... 155
12.1 Eigenschaften von MiCTOSEIVICES vvie ittt e e 156
12.2 Integrationsmuster fiir MiCrOSErviCeso, 160
12.2.1 Datenbankbasierte Integration........... 161
12.2.2 (g)RPC-basierte Interprozesskommunikation......................... 161
12.2.3 Representational State Transfer (REST).......... it 164
12.2.4 Ereignisbasierte Integration (asynchron) 167
12.2.5 API-VErsioningttt e 169

12.3 Architekturelle Sicherheit 172
12.3.1 Circuit-Breaker e 172
12.3.2 Bulkhead e 173
12.3.3 Idempotente API-Operationen.ooeuiiiinnneennneann. 174

12.4 Skalierung von MiCTOSEIVICES . . . ot v vttt e et e eee e e e 174
12.4.1 Load Balancing oottt e e et e 175
12.4.2 MeSSAZINg . oottt ettt e e e 175
12.4.3 Skalierung zustandsbehafteter Komponenten. 177
12.4.3.1 Scaling for Reads.ot 178

12.4.3.2 Scaling for Writes (Sharding)ot 178

12.4.3.3 Command Query Responsibility Segregation (CQRS)........... 179

1244 Cachingovii i e e e e 180

12.5 Prinzipien zur Entwicklung von Microservices.couuueennenn.... 181
12.5.1 Prinzip 1: Bilde Modelle um Geschaftskonzepte....................... 181

12.5.2 Prinzip 2: Erschaffe eine Kultur der Automatisierung. 181

Inhalt IX

12.5.3 Prinzip 3: Blende interne Implementierungsdetails aus 182

12.5.4 Prinzip 4: Dezentralisi€rec..ouuiuiiieineiinneennnnenn. 182

12.5.5 Prinzip 5: Definiere unabhéangig aktualisierbare Einheiten 182

12.5.6 Prinzip 6: Isoliere Fehler........., 183

12.5.7 Prinzip 7: Baue gut beobachtbare Services............. 183

12.6 Serverless-ArchiteKturen. it 184

12.6.1 Architekturelle Konsequenzen von Serverless-Limitierungen 185

12.6.2 Das API-Gateway-Pattern........... ..., 187

12.6.3 Abgrenzung zu MiCTOSETVICEScvuuitn ettt 189

12.7 Z0Sammenfassungvv ettt e e e e 190

13 Beobachtbare Architekturen............. o i i, 193

13.1 Konsolidierung von Telemetriedatenooouuiiiiineennnneenn.. 194

13.2 Instrumentierung von SYStEMeN. ovut ettt et i ie e eee e 196

13,21 LOggiNg . oottt 196

13.2.2 MONIEOTING. « o e ettt et e e e e e e e e e e e 198

13.2.2.1 MetrikKartenoou et e 200

13.2.2.2 Empfehlungen fiir die Metrikinstrumentierung 201

13.2.3 TraCing. . . .o ottt 201

13.2.3.1 Empfehlungen fiir die Instrumentierung..................... 203

13.2.3.2 Tracing-Instrumentierung und Erzeugung von Spans.......... 206

13.2.3.3 Serverseitiges Tracing und Extraktion von Span-Kontexten 207

13.2.3.4 Clientseitiges Tracing und Weiterreichen von Span-Kontexten. . . 208

13.3 Automatisierte Instrumentierung.o.oo i i i 209

13.3.1 Eigenschaften von Service-Meshs. i 210

13.3.2 Traffic-Management. oottt 212

13.3.3 ReSilieNz .o oot 215

13.3.4 Sicherheit e 217

13.3.5 Management und Analyse von Verkehrstopologien.................... 220

13.4 ZuSammeEN asSSUNE . ..o ottt et e et e e e 221

14 Domain-driven Designottt iininrnennenns 223

14.1 FachlichKeit oo e e 224

14.2 Strategisches DeSign.t e 226

14.2.1 SUbdOmMEANEN o e 227

14.2.1.1 Kerndoméne (Core Subdomain) 227

14.2.1.2 Unterstiitzende Subdoméne (Supporting Subdomain) 228

14.2.1.3 Generische Subdoménen (Generic Subdomain) 228

14.2.1.4 Anmerkungen am Beispiel einer Fallstudie................... 228

14.2.2 Ubiquitous LanguUage oot i ettt it e e it i e et 230
14.2.2.1 Eine gemeinsame Sprache als Schliissel zu einem gemeinsamen

Verstandnisot 231

14.2.2.2 Mehrdeutige und synonyme Begriffe..................... ... 232

X Inhalt

14.2.3 Bounded CONteXtS. . ..o\ttt ettt e e e e 233

14.2.4 Context Mappingvvivrt it et 235
14.2.4.1 Partnerschaftliche Kooperationsmuster

(Partners und Shared-Kernel), 235

14.2.4.2 Customer-Supplier-Kooperation. 237

14.2.4.3 Separate Waysot 238

14.2.4.4 Context Maps als Landkarte von Machtverhéltnissen 239

14.3 Taktisches DeSign.ttt 240

14.3.1 Oft genutzte Pattern fiir Geschaftslogik.............................. 240

14.3.1.1 Das ETL-Pattern (primdr Supporting Subdomains)............. 240

14.3.1.2 Das Active Record-Pattern (primér Supporting Subdomains) 241

14.3.1.3 Das Domain Model-Pattern (primar Core Subdomains) 242

14.3.1.4 Das Event-Sourcing-Pattern (primar Core Subdomains). 244

14.3.2 Oft genutzte Pattern fiir die Architektur 245

14.3.2.1 Die Ebenen-Architektur oo 246

14.3.2.2 Das Ports & Adapter-Pattern 247

14.3.2.3 Das CORS-Patternouuit ittt 247

14.4 ZuSammeEN asSSUNEottt ettt e e et e e e e 250

15 Schlussbemerkungen o i, 253

Literaturverzeichnis.oiit ittt i i i it i 261

Stichwortverzeichnis. i ittt i ittt iiiieeennn 265

Vorwort

Dieses Buch basiert auf zwei Vorlesungen, ,Cloud-native Programmierung® und ,Cloud-native
Architekturen®, die ich an der Technischen Hochschule Liibeck gebe. Wahrend der Recherchen
fiir diese beiden Hochschulmodule war ich natiirlich auch auf der Suche nach geeigneter
Literatur. Das Resultat war ein Literaturumfang, der - auf einem Schreibtisch gestapelt -
leider mehr als einen halben Meter Hohe eingenommen hétte.

Meine Recherche mag unzureichend oder meine Anforderungen zu spezifisch gewesen seien,
aber ich fand leider nicht die eine oder zwei geeigneten Quellen, die man jemandem als Lehr-
buch zum Thema Cloud-native Computing hétte empfehlen und an die Hand geben konnen;
nur eben diesen Biicherstapel. Diese Literaturliste hitte mir aber vermutlich diverse kritische
Blicke meiner Studentinnen und Studenten eingebracht. Auch wenn ich grundsétzlich kein
Freund des Prinzips ,Setze dich zwischen zweier Biicher Mitte und schreib das Dritte“ bin, war
genau dies in diesem Fall der AnstoB zum Schreiben eines ersten Skripts, aus dem letztlich
dieses Buch fiir die beiden oben genannten Lehrveranstaltungen entstanden ist.

Dieses Buch hat somit auch einen gewissen Handbuch-Charakter, auch wenn es kein Hand-
buch im klassischen Sinne ist. Es kann dennoch bis zu einem gewissen Grad als Nachschlage-
werk genutzt werden, da es eine Vielzahl an hervorragender - aber eben leider isolierter -
Literatur zum Thema Cloud-native Computing zusammenfasst.

Ich mochte mich an dieser Stelle u. a. bei Dr. Josef Adersberger von der QAware GmbH bedan-
ken, der eine dhnliche Publikationsidee hatte, dann aber letztlich keine Zeit fand, sein Projekt
auch umzusetzen, und der mich darauthin mit dem Hanser Verlag in Kontakt brachte, um
es an seiner Stelle zu versuchen. Zu danken ist auch seinen Mitarbeitern. Deren auf GitHub
bereitgestellte Vorlesungsunterlagen ,Cloud Computing“ (Adersberger u. a. 2018) waren
insbesondere fiir den Teil II dieses Buchs wertvolle Inspiration und Gliederungshilfe. Dank
gebiihrt daher auch dem Hanser Verlag und hier vor allem Sylvia Hasselbach, die sich auf
diese Kontaktvermittlung und das damit einhergehende Wagnis denn auch eingelassen hat
und insbesondere in der Produktionsphase viel Unterstiitzung geleistet hat.

Besonderer Dank gebiihrt auch meinen Studierenden, die die undankbare Betatester-Rolle fiir
die praktischen Anteile (Labs) dieses Buchs tibernommen haben und mir wahrend der - auf-
grund Corona leider nur online stattfindenden - Vorlesungen und Praktika dennoch mit vielen
wertvollen Riickmeldungen geholfen haben, die Struktur und den Inhalt des Manuskripts
fiir die anvisierte Zielgruppe zu optimieren. Dabei sind insbesondere Jannik Kiithnemundt,
Felix Lohse, Lucian Schultz und Jana Schwieger zu nennen, die mehrere vertiefende Labs
entwickelt und fiir Folgejahrginge zur Verfiigung gestellt haben.

Liibeck, im Oktober 2021

Nane Kratzke

Cloud Computing

,It's the economy, stupid!“

Bill Clinton, 42. Prasident der USA

GemadB der sogenannten NIST-Definition versteht man unter Cloud Computing einen ,all-
gegenwidrtigen, bequemen, bedarfsgerechten Netzwerkzugriff auf einen gemeinsamen Pool
konfigurierbarer Rechenressourcen, die schnell und mit minimalem Verwaltungsaufwand oder
Interaktion mit Service-Providern bereitgestellt, aber auch wieder freigegeben werden kénnen*“
(Mell und Grance 2011).

Cloud Computing ordnet sich damit im Spektrum verteilter Systeme im Bereich des Service
Computings und weniger im Bereich des High Performance bzw. Super-Computings ein, auch
wenn die Einflussfaktoren mittlerweile mannigfaltig und keinesfalls mehr als trennscharf zu
bezeichnen sind (siehe Bild 2.1). Insbesondere im NoSQL- sowie Machine Learning-/Big-Data-
Bereich gehen Super-Computing und Service Computing zunehmend mehr ineinander tiber.

Bild 2.1 Einflussfaktoren auf das Cloud Computing

Cloud Computing
\ 4
. . Kommoditisierung
ngg::‘rfﬁmance Ve\r/ae:tt)eeliltt:n von HW + SW sowie Virtualisierung Service Computing
P 9 9 Internet
. Service-orientierte
» Parallel » Remote » Breitband- Hardware > ,
Algorithmen Protokolle Zugang Virtualisierung Arch(g(e)l;t)uren
Diiraniia Diverse Virtuelle
9 Parallelrechner I~ MSetr;nrc;g; I~ At Maschinen M Webservices
. Betriebssystem .
GPU- Grid-/Cluster- Hardware - o Business Process
P>) N~ : M~ Virtualisierung > >
Computing Computing (insb. Server) (Clsressise Eifor) Modeling (BPM)
> No-SQL > e » Betriebssysteme
Datenbanken [Rea{Ee-{Rae (insb. Linux)

12 2 Cloud Computing

Wihrend Super-Computing eine wichtige Rolle im Bereich der computergestiitzten Wissen-
schaften (Computational Science) spielt und fiir eine Vielzahl rechenintensiver wissen-
schaftlicher Aufgaben in verschiedensten Bereichen eingesetzt wird (z. B. Quantenmechanik,
Wettervorhersage, Klimaforschung, physikalische Simulationen usw.), verstehen wir unter
Service Computing eher einen interdisziplindren Ansatz, der sich mit der Frage beschaf-
tigt, wie Informationstechnologien die geschéftsrelevante Erzeugung von Produkten und
Dienstleistungen substanziell unterstiitzen konnen. Dabei finden im Service Computing
u. a. Webservices, Service-orientierte Architekturen (SOA), Geschiftsprozessmodellierung,
Transformations- und Integrationstechnologien - aber eben auch vermehrt ,Enabling
Technologies“ wie Cloud Computing - Anwendung, die durchaus substanziellen Einfluss
auf Architekturen und Systeme haben. So hat sich beispielsweise SOA aufgrund des Cloud
Computing-Einflusses in den letzten Jahren mehr und mehr zu einem Microservice-basier-
ten Architekturansatz fortentwickelt. Warum das so ist, werden wir unter anderem in Ab-
schnitt 2.3 und Abschnitt 2.4 sehen.

B 2.1 Service-Modelle

Im Allgemeinen werden, wie in Bild 2.2 gezeigt, im Cloud Computing fiinf wesentliche
Service-Merkmale, vier Deployment-Modelle und drei Service-Modelle unterschieden (Mell
und Grance 2011). Wir werden im weiteren Verlauf sehen, dass diese Darstellung an der
ein oder anderen Stelle verfeinert werden kann (siehe beispielsweise Abschnitt 8.1 und
Bild 8.3). Dennoch ist das zugrunde liegende NIST-Modell des Cloud Computings (Mell und
Grance 2011) so priagend, dass es Sinn macht, sich an diesem Modell, seinen Merkmalen,

Bereitstellungsformen und Service-Modellen zu orientieren.
Deployment
Modelle Public Private Hybrid
Cloud Cloud Cloud
Software

Infrastructure

Community
Cloud

Platform

iﬂe(l;zl:ﬁe as a Service as a Service as a Service
(laaS) (PaaS) (Saas)
Ressourcen-Pooling
Service

Merkmale
Netzwerk- Mg Gl On-Demand R
: Ressourcen- " Elastizitat
zugriff Nutzung Self-Service

Bild 2.2 NIST-Modell des Cloud Computings

2.1 Service-Modelle 13

Zu den fiinf wesentlichen Merkmalen des Cloud Computings sind die folgenden zu zdhlen:

1. On-Demand Self-Service: Ein Verbraucher kann Ressourcen, wie z. B. Serverzeit und
Netzwerkspeicher, nach Bedarf automatisch anfordern, ohne dass hierfiir eine manuelle
Tatigkeit aufseiten des Cloud-Service-Providers erforderlich ist.

2. Netzwerkzugriff: Die Ressourcen werden iiber offentliche Netzwerke bereitgestellt und
der Zugriff auf diese Ressourcen erfolgt iiber standardisierte und weitverbreitete Inter-
netprotokolle, die die Nutzung von Cloud-Ressourcen durch heterogene Client-Plattformen
ermoglichen.

3. Elastizitit: Ressourcen konnen schnell und bedarfsgerecht bereitgestellt, aber auch wieder
freigegeben werden. Fiir den Verbraucher erscheinen die fiir die Bereitstellung verfiig-
baren Ressourcen virtuell unbegrenzt und konnen in beliebiger Menge und zu jeder Zeit
angefordert werden. Dies fordert horizontale Skalierungsformen.

4. Messung der Ressourcennutzung: Cloud-Systeme steuern und optimieren automatisch
ihre Ressourcennutzung, indem sie den Ressourcenverbrauch auf einer geeigneten Abs-
traktionsebene messen (z. B. Speicherverbrauch, Processing-Cycles, Bandbreite, aktive
Benutzerkonten usw.). Die Uberwachung und Messung der Ressourcennutzung schafft
sowohl fiir den Service-Provider als auch fiir den Nutzer von Cloud Services Transparenz.

5. Ressourcen-Pooling: Die Computing-Ressourcen des Providers werden gepoolt, um
mehrere Kunden mit einem Multi-Tenant-Modell zu bedienen. Dabei werden physische
und virtuelle Ressourcen dynamisch den Nutzern zugewiesen und bei Bedarf auch real-
lokiert. Der Kunde hat im Allgemeinen keine detaillierte Kontrolle oder Kenntnis tiber
den genauen Standort der bereitgestellten Ressourcen, kann aber den Standort auf einer
hoheren Abstraktionsebene (z. B. Land, Region oder Rechenzentrum) angeben.

Cloud Services werden zumeist in Private- bzw. Public Cloud-Formen unterschieden. Die
ebenfalls existierenden Hybrid- und Community-Formen sind oft nicht so prasent in der
offentlichen Diskussion, vermutlich weil sie im Service Computing kaum ihre Stirken aus-
spielen konnen.

= Unter einer Public Cloud versteht man eine Cloud-Infrastruktur fiir die offene Nutzung
durch die Allgemeinheit. Sie kann im Besitz einer geschéaftlichen, akademischen oder
staatlichen Organisation oder einer Kombination davon sein und von dieser verwaltet
und betrieben werden. Sie befindet sich auf den Liegenschaften des Cloud-Anbieters (d. h.
Off-Premise fiir die Cloud-Nutzer).

= Unter einer Private Cloud versteht man hingegen eine Cloud-Infrastruktur, die fiir die
exklusive Nutzung durch eine einzelne Organisation mit mehreren Verbrauchern (z. B.
Geschiftseinheiten) betrieben wird. Sie kann sich im Besitz der Organisation, eines Dritten
oder einer Kombination aus beiden befinden. Dabei ist es unerheblich, ob die Infrastruktur
sich auf den Liegenschaften der Organisation (d. h. On-Premise fiir die Cloud-Nutzer) oder
nicht befindet.

= Unter der weniger bekannten Form der Community Cloud wird eine Cloud-Infrastruktur
verstanden, die fiir die exklusive Nutzung durch eine bestimmte Gemeinschaft von Ver-
brauchern aus Organisationen betrieben wird. Diese Gemeinschaft hat meist gemeinsame
Anliegen (z. B. Mission, Sicherheitsanforderungen, Richtlinien und Compliance-Uber-
legungen). Sie kann im Besitz einer oder mehrerer Organisationen in der Community,
einer dritten Partei oder einer Kombination von ihnen sein und von diesen verwaltet und

14

Unter Kundenmanagement

2 Cloud Computing

betrieben werden. Dabei ist es unabhéngig, ob die Community Cloud ausschlieBlich auf
den Liegenschaften der Gemeinschaft betrieben wird. Community Clouds konnen also
sowohl On-Premise als auch Off-Premise betrieben werden.

= SchlieBlich wird als Hybrid Cloud eine Cloud-Infrastruktur verstanden, die eine Kom-
position aus zwei oder mehreren oben genannter Cloud-Infrastruktur-Formen (private,
public, community) bildet. Diese bleiben eigenstdndige Einheiten, werden aber durch
standardisierte oder proprietare Technologie miteinander verbunden, die die Portabili-
tat von Daten und Anwendungen ermdoglicht (z. B. Cloud Bursting fiir den Lastausgleich

zwischen Cloud-Infrastrukturen).

Mittels Cloud-Computing lassen sich Teile der [T-basierten Wertschopfung an externe Dienst-
leister (Cloud-Provider) auslagern. Der Auslagerungsumfang wird dabei haufig in die Kate-
gorien Infrastructure as a Service (IaaS, siehe Abschnitt 2.1.1), Platform as a Service (PaaS,
siehe Abschnitt 2.2) und Software as a Service (SaaS, siehe Abschnitt 2.2.1.1) eingeteilt. Von
[aaS tiber PaaS zu SaaS wird dabei der ausgelagerte Anteil immer groBer, wie Bild 2.3 zeigt.
Mit dem Umfang der Auslagerung wird allerdings auch die potenzielle Abhdngigkeit (Vendor
Lock-in) eines Kunden zu einem Cloud-Provider groBer. Unter einem Lock-in-Effekt versteht
man generell eine enge Kundenbindung an Produkte/Dienstleistungen eines Anbieters in
Form einer technisch-funktionalen Kundenbindung, die es dem Kunden wegen entstehender
Wechselkosten und sonstiger Wechselbarrieren erschwert, ein Produkt oder einen Service
eines Anbieters mit dem Produkt oder Service eines anderen Anbieters auszutauschen. Im
Cloud Computing entsteht dieser Effekt meist durch nichtstandardisierte Cloud-Service APIs
der einzelnen Provider. Je hoher man in den Schichten kommt, desto spezifischer und damit
weniger austauschbar werden die bereitgestellten Cloud-Services, und desto hoher ist die

Lock-in-Gefahr.

Infrastructure
(as a Service)

Unternehmens IT
(Legacy IT)

Platform
(as a Service)

Software
(as a Service)

Applikationen Applikationen

|

Applikationen

Applikationen

€
3
£
@
g . . X ’

Sicherheit < Sicherheit Sicherheit Sicherheit
£
B

Datenbanken s Datenbanken Datenbanken Datenbanken
2
g
g
Betriebssysteme > Betriebssysteme Betriebssysteme Betriebssysteme

Virtualisierung

Virtualisierung

Server Server

Server

Server

Unter Providermanagement

Speicher (Storage) Speicher (Storage)

Unter Providermanagement

Speicher (Storage)

Speicher (Storage)

Netzwerk Netzwerk

Netzwerk

Netzwerk

Unter Providermanagement

Rechenzentrum Rechenzentrum

Virtualisierung | ’ Virtualisierung

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Rechenzentrum

Rechenzentrum

Bild 2.3 Auslagerung der Wertschopfung bei laaS, PaaS und SaaS

2.1 Service-Modelle 15

2.1.1 Infrastructure as a Service (laaS)

Beim TaaS-Modell bietet ein Provider physische und virtuelle Hardware wie Server, Speicher
und Netzwerkinfrastruktur an, die iiber eine Self-Service-Schnittstelle schnell bereitgestellt
und auBer Betrieb genommen werden kann. Dies ermoglicht es z. B., im Rahmen von perio-
dischen Workloads mit wiederkehrenden Lastspitzen IT-Ressourcen flexibel und vor allem
lastgetrieben bereitzustellen.

Die Fahigkeit, die dem Kunden zur Verfiigung gestellt wird, besteht also in der schnellen
und elastischen Bereitstellung von Verarbeitungs-, Speicher-, Netzwerk- und anderen grund-
legenden Rechenressourcen, auf denen der Kunde beliebige Software, einschlieBlich Betriebs-
systemen und Anwendungen, einsetzen und ausfiihren kann.

Der Kunde verwaltet oder kontrolliert die zugrunde liegende Cloud-Infrastruktur zwar nicht,
hat aber die Kontrolle iiber Betriebssysteme, Speicher und bereitgestellte Anwendungen
sowie moglicherweise eine begrenzte Kontrolle iber ausgewahlte Netzwerkkomponenten
(z. B. Host-Firewalls).

In Anlehnung an (Fehling u. a. 2014) bezeichnen wir das zugehorige Service-Offering als
elastische Infrastruktur zum Zwecke des Bereitstellung von virtuellen Servern, persistenten
Speicher und Netzwerkkonnektivitét. Eine elastische Infrastruktur bietet zumeist vorkonfi-
gurierte virtuelle Server-Images, persistenten Speicher und Netzwerkkonnektivitit, die von
Kunden tiber eine Self-Service-Schnittstelle angefordert werden konnen. Ferner werden
Last- und Nutzungsdaten vom Provider bereitgestellt, um tiber die Ressourcenauslastung
zu informieren, die fiir eine nachvollziehbare Abrechnung und die Automatisierung von
Verwaltungsaufgaben erforderlich ist.

2.1.2 Platform as a Service (Paa$S)

Beim PaaS-Modell stellen Provider IT-Ressourcen in Form einer Applikations-Hosting-Umge-
bung fiir Kunden bereit. Ein Cloud-Provider bietet hierfiir verwaltete Betriebssysteme und
Middleware an. Auch viele Betriebsvorgdnge werden vom Anbieter iibernommen, wie z. B.
die elastische Skalierung und Ausfallsicherheit gehosteter Anwendungen.

Die dem Kunden zur Verfiigung gestellte Fihigkeit besteht somit darin, in einer Cloud-Infra-
struktur vom Kunden erstellte oder erworbene Anwendungen bereitzustellen, die mit vom
Anbieter unterstiitzten Programmiersprachen, Bibliotheken, Diensten und Tools erstellt
wurden. Der Kunde verwaltet oder kontrolliert somit zwar nicht die zugrunde liegende Cloud-
Infrastruktur, hat aber die Kontrolle iiber die bereitgestellten Anwendungen.

In Anlehnung an (Fehling u. a. 2014) bezeichnen wir das zugehdorige Service-Angebot als elas-
tische Plattform und verstehen dies als eine Middleware zur Ausfiihrung benutzerdefinierter
Anwendungen, deren Kommunikation und Datenspeicherung iiber eine netzwerkbasierte
Self-Service-Schnittstelle angeboten wird. Auf diese Weise konnen Anwendungskomponenten
verschiedener Kunden auf einer gemeinsamen Middleware gehostet werden, die vom An-
bieter bereitgestellt und gewartet wird. Diese Vereinheitlichung ermoglicht die gemeinsame
Nutzung von Ressourcen und eine Automatisierung bestimmter Verwaltungsaufgaben auf
Provider-Seite, z. B. die Bereitstellung von Anwendungen und die Verwaltung von Updates.

16 2 Cloud Computing

2.1.3 Software as a Service (SaaS)

Beim SaaS-Modell stellen Anbieter IT-Ressourcen in Form von fiir Menschen nutzbare
Anwendungssoftware fiir Kunden bereit, um Self-Service, schnelle Elastizitat und Pay-per-
Use-Preise zu ermdglichen. Insbesondere kleine und mittlere Unternehmen verfiigen oft
nicht iliber die Arbeitskraft und das Know-how, um individuelle Softwareanwendungen zu
entwickeln. Ferner sind viele Anwendungen zu Massenware geworden, die von vielen Unter-
nehmen verwendet werden, aber kaum dazu beitragen, sich von Wettbewerbern abzuheben
(siehe Abschnitt 14.2.1). Dies umfasst z. B. Office-Suiten, Software fiir die Zusammenarbeit
oder Kommunikationssoftware.

Die dem Verbraucher zur Verfiigung gestellte Fihigkeit besteht also bei SaaS darin, Anwen-
dungen eines Anbieters zu nutzen, ohne die dafiir erforderliche Infrastruktur oder Plattform
betreiben zu miissen. Der Zugriff auf die Anwendungen erfolgt zumeist von verschiedenen
Client-Geraten, wie z. B. einem Webbrowser (z. B. webbasierte E-Mail) oder iiber eine Pro-
grammschnittstelle.

Der Verbraucher verwaltet oder steuert die zugrunde liegende Cloud-Infrastruktur oder
Cloud-Plattform einschlieBlich Netzwerk, Server, Betriebssystem, Speicher oder sogar ein-
zelne Anwendungsfunktionen somit nicht selbst. Es sind jedoch - meist in sehr begrenztem
Umfang - benutzerspezifische Konfigurationseinstellungen moglich (z. B. Anpassung der
Benutzeroberflache an Unternehmens-Styleguide-Vorgaben).

B 2.2 Cloud-Okonomie

Alle genannten Service-Modelle (IaaS, PaaS, SaaS) folgen dabei denselben wirtschaftlichen
GesetzmaBigkeiten. Beim sogenannten Pay-as-you-go-Kostenmodell werden nur die Ressour-
cen abgerechnet, die auch tatsdchlich von einem Kunden angefordert werden. Aus Sicht des
Kunden besteht also das wirtschaftliche Interesse vor allem darin, Cloud-Systeme mit einem
moglichst geringen , Over-Provisioning“ zu betreiben, also Lastkurven mittels Skalierung
mdoglichst eng und schnell folgen zu kdnnen (siehe Bild 2.4). Dies ist in klassischen Rechen-
zentren nicht - oder nur sehr begrenzt - moglich.

Klassisches Rechenzentrum Cloud-basiertes Rechenzentrum
(Statische Provisionierung) (Elastische Provisionierung)
—-- Kapazitat Ungenutzte Ressourcen —-- Kapazitat Ungenutzte Ressourcen
—— Nachfrage —— Nachfrage

Ressourcen
Ressourcen

Zeit Zeit

Bild 2.4 Statische und elastische Provisionierung von Ressourcen

2.2 Cloud-Okonomie 17

2.2.1 Eignung von unterschiedlichen Arten von Workloads

Die Betrachtung von Workloads ist naturgegeben immer sehr anwendungsfallspezifisch, und
man muss vorsichtig sein, nicht zu tibergeneralisierende Ratschldge zu geben. Dennoch lassen
sich unterschiedliche Workload-Arten ausmachen, die 6konomisch unterschiedlich geeignet
fiir Cloud Computing sind. Dem Leser sei an dieser Stelle das Studium von (Weinman 2011)
empfohlen, dessen Uberlegungen hier zusammenfassend dargestellt werden.

Eine Pay-per-Use-Losung macht immer dann offensichtlich Sinn, wenn die Stiickkosten fiir
On-Demand-Cloud-Services ¢ niedriger sind als dedizierte, eigene Kapazitaten d. Oft konnen
Cloud-Provider diesen Kostenvorteil bieten - aber nicht immer. Dies hangt leicht nachvollzieh-
bar von den internen Kostenstrukturen eines Unternehmens ab und ist somit hochgradig
unternehmensspezifisch.

Obwohl es kontraintuitiv erscheint, macht eine reine Cloud-Losung aber auch in Szenarien
Sinn, in denen die Stiickkosten ¢ hoher als die Kosten fiir eigene Kapazitaten d sind. Aller-
dings nur, solange das Verhiltnis von Spitzenlast p zu Durchschnittslast a der Nachfrage-
kurve hoher ist als das Kostenverhiltnis der Stiickkosten von On-Demand-Kapazitit ¢ zu
dedizierter Kapazitat d.

== c<alB:>cmax =dl

d a a a
Mit anderen Worten: Selbst wenn Cloud-Dienste doppelt so viel kosten wie In-House-Dienste,
ist eine reine Cloud-Losung fiir solche Bedarfskurven sinnvoll, bei denen das Verhéltnis von
Spitzenwert zu Durchschnittswert zwei zu eins oder hoher ist. Dies ist in einer Vielzahl von
Branchen ofter der Fall, als man annehmen wiirde. Der Grund dafiir ist, dass die dedizierte
Losung mit fester Kapazitét fiir den Spitzenbedarf gebaut werden muss, wahrend die Kosten
der On-Demand-Pay-per-Use-Losung proportional zum Durchschnitt sind (siehe auch Bild 2.4).

Je groBer das Peak-to-Average-Verhiltnis P also ist, desto eher ist ein Anwendungsfall (rein

okonomisch betrachtet) fir cloud—basierte(iﬁsungen interessant. Betrachten wir vor diesem
Hintergrund einmal die folgenden prototypischen Workloads, die so entweder in Reinform
oder in lberlagerten Kombinationen (z. B. periodischer Workload, der durch einen konti-
nuierlich steigenden Workload iiberlagert wird) im echten Leben haufig anzutreffen sind.

Statische Workloads (siehe Bild 2.5 A) sind durch ein mehr oder weniger flaches Lastprofil
iiber die Zeit innerhalb bestimmter Grenzen gekennzeichnet. Eine Anwendung mit statischem
Workload wird kaum von elastischen Infrastrukturen oder Plattformen profitieren konnen,
da die Anzahl der bendtigten Ressourcen konstant ist. Diese Arten von Workloads sind aber
eher selten.

Haufiger sind hingegen periodische Aufgaben und Routinen (siehe Bild 2.5 B), zum Beispiel
monatliche Gehaltsabrechnungen, monatliche Telefonrechnungen, jahrliche Autoinspektio-
nen, wochentliche Statusberichte oder die tagliche Nutzung der 6ffentlichen Verkehrsmittel
wahrend der Hauptverkehrszeit. Solche Aufgaben und Routinen treten in wohldefinierten
Intervallen auf und erzeugen daher periodische Workloads in der Nutzung involvierter IT-
Systeme. Aus Kundensicht besteht das Kosteneinsparungspotenzial bei periodischen Lasten
in der AuBerbetriebnahme von Ressourcen in Nicht-Spitzenzeiten.

18

IT Ressourcen, Workload IT Ressourcen, Workload

IT Ressourcen, Workload

2 Cloud Computing

(A) Statischer Workload

Workload
Einsparpotenzial

—— |T Ressourcen (statisch)
—— IT Ressourcen (elastisch)

Zeit
(C) Einmaliger/seltener Workload

Workload
Einsparpotenzial

—— IT Ressourcen (statisch)
—— IT Ressourcen (elastisch)

A

Zeit
(E) Kontinuierlich wachsender Workload

Workload
Einsparpotenzial

—— |T Ressourcen (statisch)
—— |IT Ressourcen (elastisch)

Zeit

IT Ressourcen, Workload IT Ressourcen, Workload

IT Ressourcen, Workload

(B) Periodischer Workload

Workload
Einsparpotenzial

—— |T Ressourcen (statisch)
—— |IT Ressourcen (elastisch)

AVAVA

Zeit

(D) Zufalliger Workload

Workload
Einsparpotenzial

—— IT Ressourcen (statisch)
—— IT Ressourcen (elastisch)

W

Zeit
(F) Kontinuierlich fallender Workload

Workload
Einsparpotenzial

—— |T Ressourcen (statisch)
—— |T Ressourcen (elastisch)

Zeit

Bild 2.5 Zu beriicksichtigende Workloads im Cloud Computing

Als Spezialfall der periodischen Workloads konnen die Spitzen der periodischen Auslastung in
einem sehr langen Zeitraum auch in Form einmaliger/seltener Workloads auftreten (siehe
Bild 2.5 C). Oft ist diese Spitze im Voraus bekannt, da sie mit einem bestimmten Ereignis
(z. B. olympische Spiele alle vier Jahre) oder einer Aufgabe Kkorreliert. In solchen Szenarien
konnen die Bereitstellung und AuBerbetriebnahme von IT-Ressourcen oft als manuelle Auf-
gaben realisiert werden, da sie zu einem bekannten Zeitpunkt erfolgen.

Zufallige Workloads sind eine Verallgemeinerung der periodischen Workloads, da sie Elastizi-
tat erfordern, aber nicht vorhersehbar sind (siehe Bild 2.5 D). Solche Workloads treten in der
realen Welt recht haufig auf. Hier sind die ungeplante Bereitstellung und AuBerbetriebnahme

2.2 Cloud-Okonomie 19

von IT-Ressourcen erforderlich. Die notwendige Bereitstellung und AuBerbetriebnahme von
IT-Ressourcen miissen daher automatisiert erfolgen, um die Anzahl der Ressourcen an die
sich dndernde Last anzupassen.

Bei vielen Anwendungen dndert sich auch die Last kontinuierlich iiber einen ldngeren Zeit-
raum. Haufig sind solche Lasten in Form eines Basistrends als Hintergrund-Workload in
anderen Workloads (z. B. periodischen Workloads) enthalten. Sich kontinuierlich indernde
Workloads sind durch ein kontinuierliches Wachstum oder einen kontinuierlichen Riickgang
der Auslastung gekennzeichnet (siehe Bild 2.5 E/F). Rein wirtschaftlich ist es dabei egal, ob
ein Workload steigt oder sinkt, denn der Flacheninhalt (also die Einsparung) ergibt sich ja
aus der Differenz der statischen und elastischen Provisionierungskurven. Der Bedarf per-
sistenten Speichers unterliegt oft solch einem kontinuierlich wachsenden Trend. Es wird in

vielen Anwendungsfillen eben mehr gespeichert als geloscht.

Wenn man diese Workloads hinsichtlich ihres P aufsteigend sortiert, erhédlt man grundsatzli-
a

che folgende rein 6konomische Eignungsreihenfolge von Workloads fiir das Cloud Computing:
= Statische Workloads (eher ungeeignet, siehe Bild 2.5 A)

= Kontinuierlich steigende/sinkende Workloads (siehe Bild 2.5 E/F)

= Zuféllige und periodische Workloads (siehe Bild 2.5 B/D)

= Einmalige/seltene Workloads (extrem geeignet, Bild 2.5 C)

Fiir einen konkreten Anwendungsfall ist dieses % natiirlich immer genau zu bestimmen.

Dennoch hilft das Verstandnis dieser grundsatzlichen Zusammenhédnge erheblich dabei,
iiberhaupt erst einmal interessante Anwendungsfélle zu identifizieren und uninteressante
Anwendungsfille auszuschlieBen. Grundsatzlich ermdglicht die Elastizitdt von Cloud-Infra-
strukturen und -Plattformen, Ressourcen mit der gleichen Rate bereitzustellen oder freizu-
geben, mit der sich die Arbeitslast eines Dienstes dndert, um diese Effekte fiir sich zu nutzen.

2.2.2 Effekt von Zuteilungsdauer und RessourcengroBBe

Wie wir also sehen, sind Cloud-Ressourcen vor allem dann wirtschaftlich, wenn Last-
schwankungen in einem Anwendungsfall auftreten. Die Kosten pro Cloud-Ressource kénnen
sogar deutlich hoher als die In-House-Kosten liegen - solange das Verhéltnis von Cloud zu
In-House-Kosten nicht das Verhéltnis von Spitzen- zu Durchschnittslast ibersteigt.

Ziel ist also, im Betrieb eine moglichst niedrige Durchschnittslast zu ermdoglichen (bzw. die
Flache zur Abdeckung der Lastkurve zu minimieren). Hierzu strebt man im Betrieb an, Last-
kurven moglichst eng zu folgen. Kann man sich moglichst eng an Lastkurven ,anschmiegen®,
erzeugt dies wenig Over-Provisioning. Viele Innovationen des Cloud-native Computings wie
beispielsweise Container-und FaaS-Technologien sind im Kern auf diese Erkenntnis zuriickzu-
fiihren. Bei der Ressourcenzuteilung lasst sich dabei letztlich an zwei Stellschrauben drehen.

1. Man kann Ressourcen feingranularer zuteilen (vertikale Stellschraube).
2. Man kann Ressourcen kiirzer zuteilen (horizontale Stellschraube).

Bild 2.6 zeigt den Effekt beider Stellschrauben (Ressourcengrofe und Zuteilungsdauer) auf
den Ressourcenverbrauch (und damit die Kosten) am Beispiel eines synthetischen periodi-
schen Workload-Verlaufs.

Bereitgestellte vCPUs Bereitgestellte vCPUs Bereitgestellte vCPUs

Bereitgestellte vCPUs

20

2 Cloud Computing

RessourcengréBe: 4 vCPU, Zuteilungsdauer: 120 Minuten

Zeit

Maximallast (p)

Durchschnittslast (a)

RessourcengroBe: 2 vCPU, Zuteilungsdauer: 30 Minuten

Zeit

Maximallast (p)

Durchschnittslast (a)

RessourcengréBe: 1 vCPU, Zuteilungsdauer: 30 Minuten

Maximallast (p)

Durchschnittslast (a)

Zeit

RessourcengroBe: 1 vCPU, Zuteilungsdauer: 5 Minuten

Maximallast (p)

Durchschnittslast (a)

Zeit

<= 50% Nutzung
26%

> 50% Nutzung

120.00
vCPU
Stunden
73%
<= 50% Nutzung

Volle 100% Nutzung
26%

68.00
vCPU
Stunden

> 50% Nutzung

Volle 100% Nutzung
48%

64.00
vCPU
Stunden

34% > 50% Nutzung

<= 50% Nutzung

Volle 100% Nutzung
66%

56.42

vCPU
Stunden
> 50% Nutzung

23%
<= 50% Nutzung

Bild 2.6 Effekt von Ressourcengrofe und Zuteilungsdauer

Wie Bild 2.6 zeigt, ermdglichen es kleinere RessourcengroBen und kiirzere Zuteilungsdauern,
Lastkurven enger folgen zu konnen. Damit kann das Over-Provisioning verringert werden.
Dies spart letztlich Geld im Betrieb eines Cloud-nativen Systems. An dem - zugegeben syn-
thetischen - Beispiel von Bild 2.6 zeigt sich dennoch, dass sich durch die Reduzierung von
RessourcengroBen und kiirzere Zuteilungsdauern der rechnerische Ressourcenbedarf durch-

2.3 Entwicklung der letzten Jahre 21

aus halbieren ldsst. Dies ist natiirlich immer von den dahinterliegenden Workload-Arten und
dem Anwendungsfall abhéngig. Auch noch groBere Einsparungen sind nicht ungewohnlich.

Diese einfache Erkenntnis hatte in den letzten Jahren einen tiefgreifenden Einfluss auf
Cloud-native Architekturen und Technologien (Kratzke und Quint 2017). So konnte man in
den vergangenen Jahren beobachten, wie diese beiden Stellschrauben (Zuteilungsdauer und
RessourcengroBe) systematisch reduziert wurden. Wahrend in der Anfangszeit des Cloud
Computings virtuelle Maschinen {iblicherweise auf Stundenbasis abgerechnet wurden, ist
dies im Verlaufe der Zeit auf eine dreiBigminiitige, dann fiinfzehnminiitige bis schlieBlich
zu einer minutengenauen oder mittlerweile sogar einer sekundengenauen Abrechnung bei
vielen Providern umgestellt worden. Auch die RessourcengroBe wurde durch Technologien
reduziert. Mittels laaS kommt man nicht wirklich effizient unter die Auflosung von einer
vCPU. Doch mittels der zunehmend beliebteren Container-Technologie sind wesentlich fein-
granularere Ressourcen moglich (siehe Kapitel 8), mit denen man problemlos unter diese
1 vCPU-Schwelle kommt. Auch die seit einigen Jahren beliebter werdende Technologie
Function as a Service (FaasS, siehe Kapitel 10) kombiniert letztlich feingranularere Container
mit einer Reduktion der zeitlichen Zuteilungsdauer im Subsekunden-Bereich. FaaS erlaubt
es sogar, Ressourcen komplett auf null zu skalieren, wenn ein System in einem Zeitintervall
keine Aufgaben zu verarbeiten hat. Daran zeigt sich, dass viele Trendtechnologien zur fein-
granulareren Ressourcenallokation im Cloud-nativen Umfeld ihren Grund auch immer in
der innewohnenden Cloud-Okonomie haben - auch wenn dies hiufig nicht (mehr) bewusst
wahrgenommen wird.

B 2.3 Entwicklung der letzten Jahre

Cloud Computing ist vor etwa zehn bis 15 Jahren entstanden. Dabei wurden in der ersten
Adoptionsphase bestehende IT-Systeme lediglich in Cloud-Umgebungen {iibertragen, ohne
das urspriingliche Design und die Architektur dieser Anwendungen zu dndern. Multi-Tier-
Anwendungen wurden lediglich von dedizierter Hardware auf virtualisierte Hardware in der
Cloud migriert. Cloud-Systemingenieure haben im Laufe der Jahre allerdings bemerkenswerte
Verbesserungen an Cloud-Plattformen (PaaS) und -Infrastrukturen (IaaS) vorgenommen
und mehrere technische Trends etabliert, die derzeit zu beobachten sind. Ein wesentlicher
Treiber hierfiir sind die erlauterten 6konomischen GesetzméBigkeiten des Pay-per-use-Prin-
zips. Wer Cloud-native Systeme wirtschaftlich betreiben will, muss die Ressourcennutzung
optimieren und minimieren.

Cloud-Infrastrukturen (IaaS) und -Plattformen (PaaS) sind daher insbesondere fiir den
elastischen Betrieb von Cloud-nativen Anwendungen gebaut, um Over-Provisioning von
Ressourcen zu vermeiden. Unter Elastizitit versteht man den Grad, in dem sich ein System
an Lastinderungen anpasst, indem es automatisch Ressourcen bereitstellt und entnimmt.
Ohne diese Elastizitat ist Cloud Computing aus wirtschaftlicher Sicht sehr oft nicht sinnvoll.

Mit der Zeit lernten Systemingenieure, diese Elastizitatsoptionen moderner Cloud-Umge-
bungen besser zu verstehen. SchlieBlich wurden Systeme fiir solche elastischen Cloud-Infra-

22 2 Cloud Computing

strukturen von Grund auf entworfen, die dank neuer Deployment- und Design-Ansétze wie
Container (siehe Kapitel 8), Microservices oder serverloser Architekturen (siehe Kapitel 12)
den bereitzustellenden Ressourcenbedarf der zugrunde liegenden Computing-Infrastruktu-
ren minimieren. Diese Designabsicht wird oft unbewusst mit dem Begriff ,Cloud-native®
ausgedriickt.

Die Maschinenvirtualisierung hat sich insbesondere deshalb durchgesetzt, um eine Vielzahl
von Bare-Metal-Maschinen zu konsolidieren und so die physischen Ressourcen in Rechen-
zentren effizienter nutzen zu konnen. Diese Maschinenvirtualisierung bildet bis heute
das technologische Riickgrat des (IaaS-)Cloud Computings. Virtuelle Maschinen sind zwar
leichtgewichtiger als Bare-Metal-Server, aber sie sind nicht unbedingt als leichtgewichtig
zu bezeichnen, vor allem in Bezug auf ihre Image-GroBen. Diese [aaS-Ebene wird vor allem
in Kapitel 7 behandelt.

Vor diesem Hintergrund wurden leichtgewichtigere Container entwickelt. Container er-
lebten ihren Siegeszug primar, weil sie einerseits die Art und Weise der standardisierten
Bereitstellung von Anwendungskomponenten vereinfachen. Container erhohen aber auch
die Auslastung der virtuellen Maschinen, da sie auf leichtgewichtigeren Betriebssystem-Vir-
tualisierungskonzepten beruhen. Man kann also meist deutlich mehr Container auf einem
physischen Host betreiben als virtuelle Maschinen. Wir werden uns mit diesen Aspekten
vor allem in Kapitel 8 und in Kapitel 9 befassen. Dennoch sind Container, obwohl sie leicht-
gewichtig und schnell skalierbar sind, immer noch Always-on-Komponenten. Es muss also
immer einen ,letzten“ Container geben, der Requests bearbeiten kann. Zumindest dieser
Jletzte“ Container fallt damit weiterhin in den Bereich eines statischen Workloads, also dem
aus Kundensicht teuersten Workload fiir Cloud Computing.

Daher wurden Function-as-a-Service-(FaaS-)Ansétze entwickelt, die eine Art Time-Sharing
von Containern auf darunterliegenden Container-Plattformen anwenden. Wir werden uns vor
allem in Kapitel 10 mit diesen Aspekten befassen. Bei FaaS werden nur Einheiten (Funktio-
nen) ausgefiihrt, die Requests zu bearbeiten haben. Durch diese zeitlich geteilte Ausfiihrung
von Containern auf der gleichen Hardware ermdglicht FaaS sogar eine Skalierbarkeit bis auf
null. Studien konnten diese verbesserte FaaS-Ressourceneffizienz sogar monetir messen
(Villamizar u. a. 2017). All dies hat letztlich mit der Minimierung der statischen Workload-
Anteile zu tun, die den ineffektivsten Workload fiir Cloud Computing ausmachen.

Riickblickend betrachtet wurde der Technologie-Stack zur Verwaltung von Ressourcen in der
Cloud also im Laufe der Zeit durch zusitzliche Ebenen (Virtualisierung, Container Runtime,
FaaS Runtime) erweitert und damit immer komplexer. Das folgte aber einem grundséatzlichen
Trend - mehr Workload auf der gleichen Anzahl physischer Maschinen auszufiihren, also
die Ressourceneffizienz insgesamt zu erhohen.

Symbole

1 vCPU-Schwelle 21, 78,136

3-Tier-Architektur 246

12-Faktoren

- Abhéngigkeiten 85

- Administrative Prozesse (update, backup,
restore) 90

- Build, Release, Run 87

- Codebase 85, 87

- Environment 89

- Horizontale Skalierung 88

- Konfigurationen 85

- Logging 89

- Port Binding 86

- Skalierung tber Prozesse 88

- Umgebung 89

- Unterstltzende Services 86

12-Faktoren-Methodik 107,137,198

A

Ablaufverfolgung 193
A/B-Tests 31
A/B-Testszenarien 214, 215
Abwartskompatibilitat 169
ACID 177

Active Record 241

Active Record-Pattern 241, 246
Affinitat 117

Affinity 116

Aggregat 242, 243, 244
Aggregate Root 243
Aggregatgrenze 243
Aggregatwurzel 243
Alert-Manager 194, 199
ALLOW-Regel 219
Analysemodell 230
Anforderungen 230
Anti-Corruption-Layer 237
Anwendungsschicht 247

Stichwortverzeichnis

Anwendungsvirtualisierung 60, 61
APl 169

API-Gateway 171,187,188
API-Versioning 161, 169
APM 195

Append-Only-Log 244
Architektur 35

- DevOps-geeignet 29

- Serverless 137
Architekturelle Sicherheit 172
Architekturmuster 245
Asynchrone Architektur 167
Auditierbarkeit 245
Auditing 217
Audit-Protokolle 245
Authentication Policy 218
Authentifizierung 217

- Peer 219

- Request 219
Authorisation 217
Authorisation Policy 218, 219
Automatisierte Instrumentierung 209
Automatisierung 181
Autoskalierung 119

- ereignisbasiert 145

- horizontal, Pod 119

AWS Lambda 144

Azure Lambda 144

B

Backend as a Service (BaaS) 185
BASE 177

Batch-Job 95

Batch-System 201
Beobachtbare Architekturen 193
Beobachtbarkeit 35, 183

Best Practices 140, 254
Betriebssystem-Virtualisierung 60
Betriebszustand 101

266 Stichwortverzeichnis

Big Five 1 Command Query Responsibility Segregation
Binpack 96 (CQRS) 179, 247
Blackbox-Monitoring 199 Community Cloud 13
Black-Box-Tracing 202 Config Map 107
Blackbox-Uberwachung 196 Constraint 116
Block-Storage 59 Container 22, 35, 36, 60, 73,77,103,104, 182
Blue/Green Deployment 29 - Laufzeitumgebung 78
Blue/Green-Release 183 - Runtime 78
Blueprint 101,106 Container as a Service 76
Borg 99 Container-lmage 82
Bounded Context 181, 225, 233, 234, 246, Container Network Interface (CNI) 104

248 Container Runtime Environment 82, 106
Branching-Strategien 50 Container Storage Interface (CSI) 104
Breaking-Change 160, 170, 182 Content-Delivery-Netzwerks (CDN) 181
Build Phase 43 Context Mapping 225, 235
Bulkhead 173 Continuous Deployment 43

Continuous Integration 43

C Controller 102
CaaS 76 Control Plane 211
Caching 88, 164, 180 Conway’s Law 159, 223, 235
- clientseitig 180 Copy-on-Write 80
- Proxy-Caching 181 Core Subdomain 227, 242, 244, 245, 247, 248
- serverseitig 180 CORS 179,247
Canary 213,215 Creative Commons-Lizenz (CCO) 7
Canary-Release 29, 183 Cron-Job 110
CAP-Theorem 177 CRUD 166, 241, 247
Chaos Engineering 28 CSI 104
Checkpoint 249 Current State 102, 119
Chef 64 Customer-Supplier 235, 237
Choreography-over-Orchestration 182
Cl/CD 43 D
Circuit-Breaker 172,183, 216 Daemon-Set 108, 111
C-Level-Funktion 3 DAG Pipeline 46
Clientseitiges Tracing 208 Dapper 202
Client-Server 162, 164 Data Plane 211
Cloud Computing 11 Datenbankbasierte Integration 161
- NIST-Definition 11 Datenbasierte Integration 161
Cloud-native 2, 22, 33, 254 Datenkopplung 161, 182
- Definition 35 Defense in Depth 217
Cloud-native Computing Foundation (CNCF) Dekomposition 155, 223

34,103 DENY-Regel 219
Cloud-Okonomie 16, 136 Dependency Injection 247
Cluster 94,101,116 Deployment 107, 108, 120
Cluster-Awareness 94 Deployment-Pipeline 27, 29, 43, 83
Cluster-Scheduler 104 - Job 44
CNCF 103 - Phase 43
CNI' 104 - Trigger 44
Code Repository 43 Deployment Unit 35, 36, 60, 73, 159
Command 248 Deploy Phase 43

Command Execution-Modell 248 Desired State 102, 119

Stichwortverzeichnis 267

Development 50 Executor 99

Development-Branch 52 Exporter 198

DevOps 23, 84,159, 188, 194 Extract-Transform-Load (ETL) 240
- Flaschenhélse 26 Extraktion von Span-Kontexten 207
- Kultur 26

- Prinzipien des Feedbacks 27, 36 F

- Prinzipien des Flow 25, 36 FaaS 120

- Work in Progress 26 - Best Practices 140

- Zyklus 24, 30 FaaS-Framework 142

Docker 77 FaaS-Plattform 136, 184
Dockerfile 82 FaaS-Programmiermodell 139, 184
Domain-driven 181 Fachlichkeit 223, 224, 242
Domain-driven Design 223 Fail early 216

Domain-Event 226, 243, 244 Fairness 96

Domain Model-Pattern 242 Fallacies of Distributed Computing 249
Domanenmodell 223, 226, 242, 244 Feature-Branch 52
Domanenwissen 230 Feature Release 170

Dominant Resource Fairness 97 Feature-Schalter 29
Double-Spending-Problem 138, 185, 187 Fehlertoleranz 96
Downstream-Service 156 File-Storage 59

Dumb-Middleware-with-Smart-Endpoints 182 Fluentd 195
Function 194

E Function as a Service (FaaS) 21,135
Ebenen-Architektur 246 Funktion 139
Effektives Design 224
ElasticSearch 195 G
Elastisches System 168 GAE 74
Elastizitdt 36, 137,167 GAIA-X 1
Emulation 60 Gegenseitige Authentifizierung 218
Endbenutzer-Choreografie 187 Gegenseitige TLS-Authentifizierung (mTLS) 218
End-to-End-Tracing 206 Generic Subdomain 228, 238
Enterprise-Architectur-Management (EAM) Generische Subdoméne 228

233 Gerichtete Pipeline 46
Entkopplung 59 Geschéftskonzept 181
Environment 48, 50 Geschéftslogik 240, 241, 244, 246, 247
Ereignis-basiert 182 Gesetz von Conway 159
Ereignisbasierte Integration 161, 167 Git-Flow 51
Ereignisbasierte Systeme 167 GitHub-Flow 52
Ereignisgesteuert 167 GitLab CI/CD 44
Ereignisquelle 139 Google App Engine 74
ETL-Pattern 240 Google Cloud Functions 141, 144
Event-driven 139 Grafana 195
Event-Emitting-Service 167 gRPC (gRPC Remote Procedure Call) 123,
Event-Sourcing 248 162, 204
Event-Sourcing-Pattern 244
Event Store 244 H
Eventual Consistency 178, 243 Hadoop 98
Everything as Code, Deployment Pipeline 44 HashiCorp Configuration Language 69
Evolutionéres Design 158, 223 HATEOAS 165

Execution-Monitor 98 HCL 69

268 Stichwortverzeichnis

Health Checking 123

Heroku 75

Hexagonale Architektur 247

Hierarchische Pipeline 47

High-Level Container Runtime 81

High-Level-Design 239

Horizontale Pod-Autoskalierung 119

Horizontale Skalierung 174

Horizontal Pod Autoscaler 119

Horizontal Pod Autoscaling (HPA) 145

HPA 119

HTTP-/REST-basierte Integration 161

Hybrid Cloud 14

Hypermedia as the Engine of Application State
(HATEOAS) 165

Hyperthread 116

Hypervisor 59

I

laC 63

IDEAL-Modell 34

|dempotente Operation 174
|dempotenz 174

Immutable 242

Immutable Infrastructure 62
Implementierungsdetail 160, 182
Infrastructure as a Service (laaS) 14, 15
Infrastructure as Code 57
Infrastruktur

- als Code 63

- elastisch 15
Infrastrukturkomponente 247
Infrastrukturschicht 247
Ingress 107,122
In-Process-Komponenten 155
Instrumentierung 196
Instrumentierungsbibliothek 203
Instrumenting Library 194
Integrations-Branch 52
Interprozesskommunikation 161
Isolation 59, 61
Isolationsmechanismus 82
Istio 211,215,218, 220

J
Jaeger 195

Job 108, 110, 194, 200, 201

K
Kanban 25

KEDA 145

- ScaledJob 146

- ScaledObject 146
Kerndomane 227

Kiali 220

Kibana 195

Knotenaffinitat 117

Kohasion 223
Kommunikationsmuster 239
Konfigurations-API-Server 218
Konfigurationsmanagement 64
Konformist-Pattern 237
Kontrollgruppe 214
Kritischer Pfad 203

Kubeless 141, 144
Kubernetes 30, 99, 103, 194, 212
- Affinitat 117

- API-Server 105, 106

- Architektur 105

- Cloud-Manager 105

- Cluster Role 127

- Controller-Manager 105

- Daemon-Set 111

- Deployment 109

- Horizontal Pod Autoscaler (HPA) 119
- Ingress 122,162,189

- Job 110

- Kubelet 106

- Kube-Proxy 106

- Limit 115,128

- Master Node 105

- Namespace 127

- Network-Plug-in 105

- Network Policy 129, 219

- Persistent Volume Claim (PVC) 126
- Persistent Volume (PV) 126
- Quota 129

- RBAC 127

- Request 115

- Resource Quota 128

- Role 127

- Role Binding 127

- Scheduler 105

- Secret 127

- Selektor 116

- Service 122,175

- Service Account 127

- Stateful-Set 113

- Storage-Plug-in 105

- Worker Node 106

- Workload 108
Kubernetes-Ressourcen 106

L

Lambda 141
Lastausgleich 175
Laufzeitumgebung 61
Layered Architecture 246
Ledger 244

Limits 115

Liveness Probe 123
Load Balancer 121

Load Balancing 175,178
Local Procedure Call (LPC) 162
Log-Aggregation 196
Logge auf stdout 198
Logging 36,183,193,196
Logikebene 246
Log-Level 197

- Debug 197

Error 197

- Fatal 197

Info 197

- Trace 197

- Warning 197

Lokalitat 96

Lose Kopplung 158, 223
Low-Level Container Runtime 81

M

Machtgefélle 235

Machtverhéltnis 239

Manifest 104, 106

Man-in-the-Middle-Angriff

Marathon 108

Materialien 7, 38, 72, 91, 133, 251

Materialien (Slides, Handouts)

- 12-Faktoren-Methodik 91

- Architektur-Pattern flir Core Subdomains
(DDD) 251

- Architektur-Pattern fiir Supporting
Subdomains (DDD) 251

- Beobachtbarkeit 222

- Betriebssystemvirtualisierung 91

- Cloud Computing Historie 38

- Cloud-native Systeme 38

- Cloud-Okonomie 38

- Container-Orchestrierung 133

- Context Mapping (DDD) 251

- Deployment Pipelines 55

217,218

- Deployment Units (Container) 91

- DevOps 38, 55

- DevOps-geeignete Architekturen 55
- Docker 91

- Domain-driven Design 251

- Effektives Software-Design 251

- FaaS-Plattformen 149

- FaaS-Programmiermodell 149

- Function as a Service (FaaS) 149,191
- Immutable Architectures 72

- Infrastructure as a Service 72

- Infrastructure as Code 72

- Kubernetes 133

- Kubernetes Blueprints (Manifests) 133
- Logging 222

- Materialien (Slides, Handouts) 91

- Metriken und Monitoring 222

- Microservices 191

Stichwortverzeichnis 269

- Pattern flr Geschaftslogiken (DDD) 251

- Platform as a Service (PaaS) 133
- Prinzipien des Feedbacks 55

- Prinzipien des Flow 55
- Resilienz 222

- Serverless Computing
- Service-Meshs 222
- Sheduling 133

- Sicherheit 222

- Strategisches Design (DDD) 251

- Subdomains (DDD) 251

- Taktisches Design (DDD) 251

- Telemetriedaten 222

- Terraform 72

- Tracing 222

- Traffic-Management 222

- Ubiquituous Language (DDD) 251

- Vagrant 72

- Visualisierung von Verkehrstopologien
- Was ist Cloud Computing? 38
Mehrdeutiger Begriff 232
Memory-Ballooning 59

Mentales Modell 233

Mesos 30, 97,100, 104, 108
Messaging 175

Metriken 35, 183,193, 198

- Messung (Gauge) 200

- Verteilung (Histogramm) 200

- Zahler (Counter) 200
Metrikinstrumentierung 201
Microservice 27, 35, 156, 225
Microservice-Architektur 138, 193, 223

149,191

222

270 Stichwortverzeichnis

Microservice-basierte Anwendung 157 Pattern 254
Millicore 116 Pay-as-you-go 2,16
Monitoring 193, 198 Peak-to-Average 17
Monolithische Anwendung 157 Peer-to-Peer Computing 185
Monorepository 48 Persistent Volume 126
mTLS 218,219 Persistent Volume Claim 107, 126
Multi-Cloud 66 Persistenzebene 246
Multiplizitat 59 Phasen- 45
Multi-Tenancy 127,129, 219 Platform as a Service (PaaS) 14,15, 73,76
Mutable 242 Plattform
Mutual Authentication 218 - Container 76
- elastisch 15, 36
N - Function as a Service (FaaS) 137
Nachrichtenorientiertes System 168 - PaaS 74
Netzwerkpartition 183 Pod 104, 145
Nomad 30, 104 Pod-Affinitdt 118
NoSQL 179 Policy Enforcement Point (PEP) 218
NoSQL-Datenbanken 177 Polyglotte Persistenz 248
Polyglott Programming 61
(0] Ports & Adapter-Pattern 247
Objektmodell 248 Présentationsebene 246
- lesend 247 Private Cloud 13
- schreibend 247 Probe 123
Objektrelationales Mapping (ORM) 241 Production 50
Observability 35, 183,196 Produktivsystem 28
Observable 168 Projektion
OCl 78,103 - asynchron 249
Omega 100 - synchron 248
One-Service-per-Container 183 Projektions-Engine 249
Online-System 201 Prometheus 195
OpenAPI 238 Protocol Buffers 162
Open-Container-Initiative 78 Protokollierung 36, 196
Open-Host-Service 238 Provisionierung 62
OpenTracing-APl 203, 206 - deklarativ 64
OpenWhisk 141, 144 - imperativ. = 64
Orchestrierung 93, 101 - Pull-basiert 64
Orchestrierungsplattform 30, 182 Proxy 210, 218
Orchestrierungsregelkreis 103, 120 Prozessisolation
Ortsunabhéngigkeit 168 - Control Group (cgroup) 80
Out-of-Process-Komponenten 155 - Namensraume fir Dateisysteme 80
Output Stream 90 - Namespace 78
Overlay Network 104 - Priorisierung 80
Over-Provisioning 21 - Process Capabilities 79
- Quota 80
P Public Cloud 13
PaaS 73,76 Publish/Subscribe 176, 244
Para-Virtualisierung 59 Puppet 64
Partnerschaftliche Kooperation 235 Push-Gateway 200, 201
Partnerschaftsmodell 235 pPvC 107

Partnership 235 Python 6

Stichwortverzeichnis 271

Q Scaling for Writes 178
Query 248 Scaling out 174
Querying-System 199 Scalingup 174
Queueing 175, 244 Scheduler 94,116
- 2-Level 99
R - monolithisch 99
RAFT 113 - Shared-State 100
RBAC 127,128,129 Scheduling 93
ReactiveX-Programmiermodell 168 - Algorithmus 96
Readiness Probe 124 - Architekturen 98
Reaktive Erweiterung (Rx) 168 - Constraints 115
Reaktives System 167 - einfache Algorithmen 96
Regel 139 - kapazitatsbasierte Algorithmen 97
Regelkreis 102, 119 - multidimensionale Algorithmen 97
Regelkreis-basierte Orchestrierung 103 Secret 107
Region 57 Security by Default 217
Release 29 Selektor 116, 219
Releaserisiken 29 Self-Healing 34, 103
Remote Procedure Call (RPC) 161, 171 Self-Service 182,194
Replay-Angriff 218 Self-Service-Cluster 65
Replaying Time Machine 245 Semantic Versioning 170
Replicas 112 Separate Way 235, 238
Replica-Set 108 Serverless-Architektur 138, 184, 189
Replication Controler 107 Serverless Computing 136, 185
Representational State Transfer (REST) 164 Serverless-Effekt 186
Requests 115 Serverseitiges Tracing 207
Resilient Software Design 28 Service 95,107,120, 182
Resilienz 28, 167, 215 Service-APlI 123
Resilienz-Pattern 215 Service Computing 12
Responsivitat 167 Service-Discovery 120
Ressourceneffizienz 22 Service-Interaktion 201
RessourcengroBe 19 Servicekohdsion 182
Ressourcenkontingent 129 Service-Merkmale 13
REST 35,123,164, 174,182, 186, 190, 204 Service-Mesh 172,183, 210
REST-API 171 Service-Mesh Interface (SMI) 212
Restart Policy 111 Service-Modell 12
Reverse-Proxy 181, 188 - laaS 15
Role-based Access Model (RBAC) 127 - PaaS 15
Rolling-Updates 29 - SaaS 16
RPC Service-of-Services 36, 155
- Bidirectional-Streaming 163 Service Ownership 158, 159
- Client-Streaming 163 Sharding 178
- Server-Streaming 163 Shared-Database-Pattern 161
- Unary 163 Shared-Kernel 236
Runtime 61 Shared Nothing 88
Sidecar 210, 218
S Single-Responsibility-Prinzip 158, 223
Sandbox 75 Single Source of Truth 179, 244, 248
Scale-to-Zero 120, 135, 147, 156 Skalierbarkeit 36, 137

Scaling for Reads 178 Skalierung 119

- horizontal 174

- vertikal 174
Skalierungserfordernis 190
Software as a Service (SaaS)
Software-Virtualisierung 60
Span 202, 203
Span-Kontext 202, 208
Spoofing-Angriff 218
Spread 96
Stabilitdtsmuster 172
Staging 50

Start-up Probe 125
Stateful-Service 177, 191
Stateful-Set 108, 112
Stateless 81, 164
Storage Class 107,126
Strategisches Design 225, 226

Strict Consistency 243

Stub 162

Subdomain 226

Subdoméne 226, 234

Supporting Subdomain 228, 240, 241, 245, 246
Swarm 30, 96, 99, 104, 108

Synonymer Begriff 232

Systementwurf 230

14,16

T
Taktisches Design 240
Telemetriedaten 27, 30, 35, 193
- Konsolidierung 194
Terraform 68

- Ausflihrungsplan 68

- Data Source 69

- Provider 69

- Provisioner 70

- Ressource 70

- Ressourcengraph 68

- Ressourcen-Scheduler 69
Testing 50

Test Phase 43

Timeout 183, 215
Time-to-Market 74, 189
TLS-Endpunkt-Termination 217
Topologieschlissel 118

Trace 201, 202

Tracing 35, 183, 193, 201
Tracing Backend 206
Tracing-Instrumentierung 206
Traffic Definition 212
Traffic-Management 211,212

272 Stichwortverzeichnis

Traffic Policy 211
Traffic Spec 212
Traffic-Split 213
Traffic Telemetry 211

Transaktion 204, 241
Trigger 139, 142
Trunk 53

Trunk-basierte Entwicklung 53
Typ-1-Virtualisierung 59
Typ-2-Virtualisierung 60, 67

u

Ubiquitous Language

Ubungen (Labs)

- Autoskalierung 133

- Beobachtbarkeit 222

- Container-Image Builds 91

- Container-Image Builds durch Deployment
Pipelines 91

- Container-Image Shrinking 91

- Containerisierung 91

- Deployment Pipeline

- Docker 91

- FaaS-Programmiermodell 191

- GitLlab ClI/CD 55

- Google Cloud Functions 149

- Google Compute Engine 72

- gRPC 191

- laC-basierte Provisionierung 72

- Kubeless 149

- Kubernetes 133

- Logging 222

- Log-Konsolidierung 222

- Observability 222

- OpenWhisk 149

- Orchestrierung 133

- Publish/Subscribe 191

- Queuing 191

- Representational State Transfer (REST) 191

- Self-Healing 133

- Service-Meshs und Traffic-Management 222

- Service-Meshs und Verkehrstopologien 222

- Software-defined Infrastructure 72

- Swarm 133

- Terraform 72

- Tracing 222

- Vagrant 72

- Workload (interaktives Jupyter Notebook) 38

Umgebungsvariable 48

Unabhéangige Aktualisierbarkeit

225, 230, 231, 233, 238

55,133

157,223

Stichwortverzeichnis 273

Unabhéngige Austauschbarkeit 223 Whitebox-Instrumentierung 196
Uniform Resource Identifier (URI) 164 Whitebox-Monitoring 199
Union Filesystem 80 Whitebox-Tracing 202
- Copy-on-Write 80 Whitebox-Uberwachung 196
- Layer 80 Widerstandsfahigkeit 168
- Namensraum 80 Wiederholung (Retry) 216
Unterstitzende Subdoméne 228 Workload 17, 94
Upstream-Service 156 - einmalig/selten 18
US CLOUD Act 1 - Heterogenitat 95
- Isolation 127
\ - kontinuierlich sinkend 19
Vagrant 66 - kontinuierlich steigend 19
- Box 66 - periodisch 17
- Provider 67 - statisch 17
- Provisioner 67 - zuféllig 18
- Vagrantfile 66 Workload-Allokation 94, 101
Value Object 242 Workload-Ausfiihrung 95
vCPU 59,116 Workload-Queue 98
Vendor Lock-in 14,76 Workload-Scheduler 98
Verfligbarkeitszone 57
Verhaltensanalyse 245 X
Verkehrsfluss 130 X.509 218
Verkehrstopologie 220 X-Trace 202
Verschllisselung 217
Versionierungsschema 170 Y
Versionsverwaltungssysteme 25 YAML, Notation 6
Vertikale Skalierung 174 YARN 98, 99
Virtualisierung 22, 59 You build it, you run it 28, 223
- Betriebssystem 76
- Hardware 59 zZ
Virtual Private Network (VPN) 218 Zeitreihe 198
Virtual Service 215 Zeitreihen-Datenbank 194, 199
Virtuelle Netzwerkschnittstelle 59 Zero-Trust Networking 217
VLAN 59 Zertifikat-Handling 217
Voll-Virtualisierung 60 Zertifizierungsstelle (CA) 218
Volume Provisioner 126 Zone 57
Volunteer Computing 185 Zugriffskontrolle 212
Vorwartskompatibilitat 169 Zustandsanalyse 245
Zustandslosigkeit 137, 164
W Zuteilungsdauer 19
Wegwerf-Komponente 89 Zwei-Wege-Authentifizierung 218
Wegwerf-Umgebung 65 Zwolf-Faktoren-Methodik 84

Wertschopfungskette 26 Zwolf-Faktoren-Modell 35

	Deckblatt_Leseprobe
	Inhalt
	Vorwort
	Kapitel_2
	Stichwortverzeichnis

