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2	 Cloud Computing

„It’s the economy, stupid!“

Bill Clinton, 42. Präsident der USA

Gemäß der sogenannten NIST-Definition versteht man unter Cloud Computing einen „all-
gegenwärtigen, bequemen, bedarfsgerechten Netzwerkzugriff auf einen gemeinsamen Pool 
konfigurierbarer Rechenressourcen, die schnell und mit minimalem Verwaltungsaufwand oder 
Interaktion mit Service-Providern bereitgestellt, aber auch wieder freigegeben werden können“ 
(Mell und Grance 2011).
Cloud Computing ordnet sich damit im Spektrum verteilter Systeme im Bereich des Service 
Computings und weniger im Bereich des High Performance bzw. Super-Computings ein, auch 
wenn die Einflussfaktoren mittlerweile mannigfaltig und keinesfalls mehr als trennscharf zu 
bezeichnen sind (siehe Bild 2.1). Insbesondere im NoSQL- sowie Machine Learning-/Big-Data-
Bereich gehen Super-Computing und Service Computing zunehmend mehr ineinander über.

Bild 2.1 Einflussfaktoren auf das Cloud Computing
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Während Super-Computing eine wichtige Rolle im Bereich der computergestützten Wissen­
schaften (Computational Science) spielt und für eine Vielzahl rechenintensiver wissen­
schaftlicher Aufgaben in verschiedensten Bereichen eingesetzt wird (z. B. Quantenmechanik, 
Wettervorhersage, Klimaforschung, physikalische Simulationen usw.), verstehen wir unter 
Service Computing eher einen interdisziplinären Ansatz, der sich mit der Frage beschäf­
tigt, wie Informationstechnologien die geschäftsrelevante Erzeugung von Produkten und 
Dienstleistungen substanziell unterstützen können. Dabei finden im Service Computing 
u. a. Webservices, Service-orientierte Architekturen (SOA), Geschäftsprozessmodellierung, 
Transformations- und Integrationstechnologien – aber eben auch vermehrt „Enabling 
Technologies“ wie Cloud Computing – Anwendung, die durchaus substanziellen Einfluss 
auf Architekturen und Systeme haben. So hat sich beispielsweise SOA aufgrund des Cloud 
Computing-Einflusses in den letzten Jahren mehr und mehr zu einem Microservice-basier­
ten Architekturansatz fortentwickelt. Warum das so ist, werden wir unter anderem in Ab­
schnitt 2.3 und Abschnitt 2.4 sehen.

 ■ 2.1 �Service-Modelle

Im Allgemeinen werden, wie in Bild 2.2 gezeigt, im Cloud Computing fünf wesentliche 
Service-Merkmale, vier Deployment-Modelle und drei Service-Modelle unterschieden (Mell 
und Grance 2011). Wir werden im weiteren Verlauf sehen, dass diese Darstellung an der 
ein oder anderen Stelle verfeinert werden kann (siehe beispielsweise Abschnitt 8.1 und 
Bild 8.3). Dennoch ist das zugrunde liegende NIST-Modell des Cloud Computings (Mell und 
Grance 2011) so prägend, dass es Sinn macht, sich an diesem Modell, seinen Merkmalen, 
Bereitstellungsformen und Service-Modellen zu orientieren.

Bild 2.2 NIST-Modell des Cloud Computings
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Zu den fünf wesentlichen Merkmalen des Cloud Computings sind die folgenden zu zählen:

1.	 On-Demand Self-Service: Ein Verbraucher kann Ressourcen, wie z. B. Serverzeit und 
Netzwerkspeicher, nach Bedarf automatisch anfordern, ohne dass hierfür eine manuelle 
Tätigkeit aufseiten des Cloud-Service-Providers erforderlich ist.

2.	 Netzwerkzugriff: Die Ressourcen werden über öffentliche Netzwerke bereitgestellt und 
der Zugriff auf diese Ressourcen erfolgt über standardisierte und weitverbreitete Inter­
netprotokolle, die die Nutzung von Cloud-Ressourcen durch heterogene Client-Plattformen 
ermöglichen.

3.	 Elastizität: Ressourcen können schnell und bedarfsgerecht bereitgestellt, aber auch wieder 
freigegeben werden. Für den Verbraucher erscheinen die für die Bereitstellung verfüg­
baren Ressourcen virtuell unbegrenzt und können in beliebiger Menge und zu jeder Zeit 
angefordert werden. Dies fördert horizontale Skalierungsformen.

4.	 Messung der Ressourcennutzung: Cloud-Systeme steuern und optimieren automatisch 
ihre Ressourcennutzung, indem sie den Ressourcenverbrauch auf einer geeigneten Abs­
traktionsebene messen (z. B. Speicherverbrauch, Processing-Cycles, Bandbreite, aktive 
Benutzerkonten usw.). Die Überwachung und Messung der Ressourcennutzung schafft 
sowohl für den Service-Provider als auch für den Nutzer von Cloud Services Transparenz.

5.	 Ressourcen-Pooling: Die Computing-Ressourcen des Providers werden gepoolt, um 
mehrere Kunden mit einem Multi-Tenant-Modell zu bedienen. Dabei werden physische 
und virtuelle Ressourcen dynamisch den Nutzern zugewiesen und bei Bedarf auch real­
lokiert. Der Kunde hat im Allgemeinen keine detaillierte Kontrolle oder Kenntnis über 
den genauen Standort der bereitgestellten Ressourcen, kann aber den Standort auf einer 
höheren Abstraktionsebene (z. B. Land, Region oder Rechenzentrum) angeben.

Cloud Services werden zumeist in Private- bzw. Public Cloud-Formen unterschieden. Die 
ebenfalls existierenden Hybrid- und Community-Formen sind oft nicht so präsent in der 
öffentlichen Diskussion, vermutlich weil sie im Service Computing kaum ihre Stärken aus­
spielen können.

	� Unter einer Public Cloud versteht man eine Cloud-Infrastruktur für die offene Nutzung 
durch die Allgemeinheit. Sie kann im Besitz einer geschäftlichen, akademischen oder 
staatlichen Organisation oder einer Kombination davon sein und von dieser verwaltet 
und betrieben werden. Sie befindet sich auf den Liegenschaften des Cloud-Anbieters (d. h. 
Off-Premise für die Cloud-Nutzer).

	� Unter einer Private Cloud versteht man hingegen eine Cloud-Infrastruktur, die für die 
exklusive Nutzung durch eine einzelne Organisation mit mehreren Verbrauchern (z. B. 
Geschäftseinheiten) betrieben wird. Sie kann sich im Besitz der Organisation, eines Dritten 
oder einer Kombination aus beiden befinden. Dabei ist es unerheblich, ob die Infrastruktur 
sich auf den Liegenschaften der Organisation (d. h. On-Premise für die Cloud-Nutzer) oder 
nicht befindet.

	� Unter der weniger bekannten Form der Community Cloud wird eine Cloud-Infrastruktur 
verstanden, die für die exklusive Nutzung durch eine bestimmte Gemeinschaft von Ver­
brauchern aus Organisationen betrieben wird. Diese Gemeinschaft hat meist gemeinsame 
Anliegen (z. B. Mission, Sicherheitsanforderungen, Richtlinien und Compliance-Über­
legungen). Sie kann im Besitz einer oder mehrerer Organisationen in der Community, 
einer dritten Partei oder einer Kombination von ihnen sein und von diesen verwaltet und 
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betrieben werden. Dabei ist es unabhängig, ob die Community Cloud ausschließlich auf 
den Liegenschaften der Gemeinschaft betrieben wird. Community Clouds können also 
sowohl On-Premise als auch Off-Premise betrieben werden.

	� Schließlich wird als Hybrid Cloud eine Cloud-Infrastruktur verstanden, die eine Kom­
position aus zwei oder mehreren oben genannter Cloud-Infrastruktur-Formen (private, 
public, community) bildet. Diese bleiben eigenständige Einheiten, werden aber durch 
standardisierte oder proprietäre Technologie miteinander verbunden, die die Portabili­
tät von Daten und Anwendungen ermöglicht (z. B. Cloud Bursting für den Lastausgleich 
zwischen Cloud-Infrastrukturen).

Mittels Cloud-Computing lassen sich Teile der IT-basierten Wertschöpfung an externe Dienst­
leister (Cloud-Provider) auslagern. Der Auslagerungsumfang wird dabei häufig in die Kate­
gorien Infrastructure as a Service (IaaS, siehe Abschnitt 2.1.1), Platform as a Service (PaaS, 
siehe Abschnitt 2.2) und Software as a Service (SaaS, siehe Abschnitt 2.2.1.1) eingeteilt. Von 
IaaS über PaaS zu SaaS wird dabei der ausgelagerte Anteil immer größer, wie Bild 2.3 zeigt. 
Mit dem Umfang der Auslagerung wird allerdings auch die potenzielle Abhängigkeit (Vendor 
Lock-in) eines Kunden zu einem Cloud-Provider größer. Unter einem Lock-in-Effekt versteht 
man generell eine enge Kundenbindung an Produkte/Dienstleistungen eines Anbieters in 
Form einer technisch-funktionalen Kundenbindung, die es dem Kunden wegen entstehender 
Wechselkosten und sonstiger Wechselbarrieren erschwert, ein Produkt oder einen Service 
eines Anbieters mit dem Produkt oder Service eines anderen Anbieters auszutauschen. Im 
Cloud Computing entsteht dieser Effekt meist durch nichtstandardisierte Cloud-Service APIs 
der einzelnen Provider. Je höher man in den Schichten kommt, desto spezifischer und damit 
weniger austauschbar werden die bereitgestellten Cloud-Services, und desto höher ist die 
Lock-in-Gefahr.

Bild 2.3 Auslagerung der Wertschöpfung bei IaaS, PaaS und SaaS
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2.1.1 �Infrastructure as a Service (IaaS)

Beim IaaS-Modell bietet ein Provider physische und virtuelle Hardware wie Server, Speicher 
und Netzwerkinfrastruktur an, die über eine Self-Service-Schnittstelle schnell bereitgestellt 
und außer Betrieb genommen werden kann. Dies ermöglicht es z. B., im Rahmen von perio­
dischen Workloads mit wiederkehrenden Lastspitzen IT-Ressourcen flexibel und vor allem 
lastgetrieben bereitzustellen.
Die Fähigkeit, die dem Kunden zur Verfügung gestellt wird, besteht also in der schnellen 
und elastischen Bereitstellung von Verarbeitungs-, Speicher-, Netzwerk- und anderen grund­
legenden Rechenressourcen, auf denen der Kunde beliebige Software, einschließlich Betriebs­
systemen und Anwendungen, einsetzen und ausführen kann.
Der Kunde verwaltet oder kontrolliert die zugrunde liegende Cloud-Infrastruktur zwar nicht, 
hat aber die Kontrolle über Betriebssysteme, Speicher und bereitgestellte Anwendungen 
sowie möglicherweise eine begrenzte Kontrolle über ausgewählte Netzwerkkomponenten 
(z. B. Host-Firewalls).
In Anlehnung an (Fehling u. a. 2014) bezeichnen wir das zugehörige Service-Offering als 
elastische Infrastruktur zum Zwecke des Bereitstellung von virtuellen Servern, persistenten 
Speicher und Netzwerkkonnektivität. Eine elastische Infrastruktur bietet zumeist vorkonfi­
gurierte virtuelle Server-Images, persistenten Speicher und Netzwerkkonnektivität, die von 
Kunden über eine Self-Service-Schnittstelle angefordert werden können. Ferner werden 
Last- und Nutzungsdaten vom Provider bereitgestellt, um über die Ressourcenauslastung 
zu informieren, die für eine nachvollziehbare Abrechnung und die Automatisierung von 
Verwaltungsaufgaben erforderlich ist.

2.1.2 �Platform as a Service (PaaS)

Beim PaaS-Modell stellen Provider IT-Ressourcen in Form einer Applikations-Hosting-Umge­
bung für Kunden bereit. Ein Cloud-Provider bietet hierfür verwaltete Betriebssysteme und 
Middleware an. Auch viele Betriebsvorgänge werden vom Anbieter übernommen, wie z. B. 
die elastische Skalierung und Ausfallsicherheit gehosteter Anwendungen.
Die dem Kunden zur Verfügung gestellte Fähigkeit besteht somit darin, in einer Cloud-Infra­
struktur vom Kunden erstellte oder erworbene Anwendungen bereitzustellen, die mit vom 
Anbieter unterstützten Programmiersprachen, Bibliotheken, Diensten und Tools erstellt 
wurden. Der Kunde verwaltet oder kontrolliert somit zwar nicht die zugrunde liegende Cloud-
Infrastruktur, hat aber die Kontrolle über die bereitgestellten Anwendungen.
In Anlehnung an (Fehling u. a. 2014) bezeichnen wir das zugehörige Service-Angebot als elas-
tische Plattform und verstehen dies als eine Middleware zur Ausführung benutzerdefinierter 
Anwendungen, deren Kommunikation und Datenspeicherung über eine netzwerkbasierte 
Self-Service-Schnittstelle angeboten wird. Auf diese Weise können Anwendungskomponenten 
verschiedener Kunden auf einer gemeinsamen Middleware gehostet werden, die vom An­
bieter bereitgestellt und gewartet wird. Diese Vereinheitlichung ermöglicht die gemeinsame 
Nutzung von Ressourcen und eine Automatisierung bestimmter Verwaltungsaufgaben auf 
Provider-Seite, z. B. die Bereitstellung von Anwendungen und die Verwaltung von Updates.
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2.1.3 �Software as a Service (SaaS)

Beim SaaS-Modell stellen Anbieter IT-Ressourcen in Form von für Menschen nutzbare 
Anwendungssoftware für Kunden bereit, um Self-Service, schnelle Elastizität und Pay-per-
Use-Preise zu ermöglichen. Insbesondere kleine und mittlere Unternehmen verfügen oft 
nicht über die Arbeitskraft und das Know-how, um individuelle Softwareanwendungen zu 
entwickeln. Ferner sind viele Anwendungen zu Massenware geworden, die von vielen Unter­
nehmen verwendet werden, aber kaum dazu beitragen, sich von Wettbewerbern abzuheben 
(siehe Abschnitt 14.2.1). Dies umfasst z. B. Office-Suiten, Software für die Zusammenarbeit 
oder Kommunikationssoftware.
Die dem Verbraucher zur Verfügung gestellte Fähigkeit besteht also bei SaaS darin, Anwen­
dungen eines Anbieters zu nutzen, ohne die dafür erforderliche Infrastruktur oder Plattform 
betreiben zu müssen. Der Zugriff auf die Anwendungen erfolgt zumeist von verschiedenen 
Client-Geräten, wie z. B. einem Webbrowser (z. B. webbasierte E-Mail) oder über eine Pro­
grammschnittstelle.
Der Verbraucher verwaltet oder steuert die zugrunde liegende Cloud-Infrastruktur oder 
Cloud-Plattform einschließlich Netzwerk, Server, Betriebssystem, Speicher oder sogar ein­
zelne Anwendungsfunktionen somit nicht selbst. Es sind jedoch – meist in sehr begrenztem 
Umfang – benutzerspezifische Konfigurationseinstellungen möglich (z. B. Anpassung der 
Benutzeroberfläche an Unternehmens-Styleguide-Vorgaben).

 ■ 2.2 �Cloud-Ökonomie

Alle genannten Service-Modelle (IaaS, PaaS, SaaS) folgen dabei denselben wirtschaftlichen 
Gesetzmäßigkeiten. Beim sogenannten Pay-as-you-go-Kostenmodell werden nur die Ressour­
cen abgerechnet, die auch tatsächlich von einem Kunden angefordert werden. Aus Sicht des 
Kunden besteht also das wirtschaftliche Interesse vor allem darin, Cloud-Systeme mit einem 
möglichst geringen „Over-Provisioning“ zu betreiben, also Lastkurven mittels Skalierung 
möglichst eng und schnell folgen zu können (siehe Bild 2.4). Dies ist in klassischen Rechen­
zentren nicht – oder nur sehr begrenzt – möglich.

Bild 2.4 Statische und elastische Provisionierung von Ressourcen
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2.2.1 �Eignung von unterschiedlichen Arten von Workloads

Die Betrachtung von Workloads ist naturgegeben immer sehr anwendungsfallspezifisch, und 
man muss vorsichtig sein, nicht zu übergeneralisierende Ratschläge zu geben. Dennoch lassen 
sich unterschiedliche Workload-Arten ausmachen, die ökonomisch unterschiedlich geeignet 
für Cloud Computing sind. Dem Leser sei an dieser Stelle das Studium von (Weinman 2011) 
empfohlen, dessen Überlegungen hier zusammenfassend dargestellt werden.
Eine Pay-per-Use-Lösung macht immer dann offensichtlich Sinn, wenn die Stückkosten für 
On-Demand-Cloud-Services c niedriger sind als dedizierte, eigene Kapazitäten d. Oft können 
Cloud-Provider diesen Kostenvorteil bieten – aber nicht immer. Dies hängt leicht nachvollzieh­
bar von den internen Kostenstrukturen eines Unternehmens ab und ist somit hochgradig 
unternehmensspezifisch.
Obwohl es kontraintuitiv erscheint, macht eine reine Cloud-Lösung aber auch in Szenarien 
Sinn, in denen die Stückkosten c höher als die Kosten für eigene Kapazitäten d sind. Aller­
dings nur, solange das Verhältnis von Spitzenlast p zu Durchschnittslast a der Nachfrage­
kurve höher ist als das Kostenverhältnis der Stückkosten von On-Demand-Kapazität c zu 
dedizierter Kapazität d.

max :
c p p pc d c d
d a a a
< Û < Þ =

Mit anderen Worten: Selbst wenn Cloud-Dienste doppelt so viel kosten wie In-House-Dienste, 
ist eine reine Cloud-Lösung für solche Bedarfskurven sinnvoll, bei denen das Verhältnis von 
Spitzenwert zu Durchschnittswert zwei zu eins oder höher ist. Dies ist in einer Vielzahl von 
Branchen öfter der Fall, als man annehmen würde. Der Grund dafür ist, dass die dedizierte 
Lösung mit fester Kapazität für den Spitzenbedarf gebaut werden muss, während die Kosten 
der On-Demand-Pay-per-Use-Lösung proportional zum Durchschnitt sind (siehe auch Bild 2.4).

Je größer das Peak-to-Average-Verhältnis  
p
a

 also ist, desto eher ist ein Anwendungsfall (rein 

ökonomisch betrachtet) für cloud-basierte Lösungen interessant. Betrachten wir vor diesem 
Hintergrund einmal die folgenden prototypischen Workloads, die so entweder in Reinform 
oder in überlagerten Kombinationen (z. B. periodischer Workload, der durch einen konti­
nuierlich steigenden Workload überlagert wird) im echten Leben häufig anzutreffen sind.
Statische Workloads (siehe Bild 2.5 A) sind durch ein mehr oder weniger flaches Lastprofil 
über die Zeit innerhalb bestimmter Grenzen gekennzeichnet. Eine Anwendung mit statischem 
Workload wird kaum von elastischen Infrastrukturen oder Plattformen profitieren können, 
da die Anzahl der benötigten Ressourcen konstant ist. Diese Arten von Workloads sind aber 
eher selten.
Häufiger sind hingegen periodische Aufgaben und Routinen (siehe Bild 2.5 B), zum Beispiel 
monatliche Gehaltsabrechnungen, monatliche Telefonrechnungen, jährliche Autoinspektio­
nen, wöchentliche Statusberichte oder die tägliche Nutzung der öffentlichen Verkehrsmittel 
während der Hauptverkehrszeit. Solche Aufgaben und Routinen treten in wohldefinierten 
Intervallen auf und erzeugen daher periodische Workloads in der Nutzung involvierter IT-
Systeme. Aus Kundensicht besteht das Kosteneinsparungspotenzial bei periodischen Lasten 
in der Außerbetriebnahme von Ressourcen in Nicht-Spitzenzeiten.
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Bild 2.5 Zu berücksichtigende Workloads im Cloud Computing

Als Spezialfall der periodischen Workloads können die Spitzen der periodischen Auslastung in 
einem sehr langen Zeitraum auch in Form einmaliger/seltener Workloads auftreten (siehe 
Bild 2.5 C). Oft ist diese Spitze im Voraus bekannt, da sie mit einem bestimmten Ereignis 
(z. B. olympische Spiele alle vier Jahre) oder einer Aufgabe korreliert. In solchen Szenarien 
können die Bereitstellung und Außerbetriebnahme von IT-Ressourcen oft als manuelle Auf­
gaben realisiert werden, da sie zu einem bekannten Zeitpunkt erfolgen.
Zufällige Workloads sind eine Verallgemeinerung der periodischen Workloads, da sie Elastizi­
tät erfordern, aber nicht vorhersehbar sind (siehe Bild 2.5 D). Solche Workloads treten in der 
realen Welt recht häufig auf. Hier sind die ungeplante Bereitstellung und Außerbetriebnahme 
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von IT-Ressourcen erforderlich. Die notwendige Bereitstellung und Außerbetriebnahme von 
IT-Ressourcen müssen daher automatisiert erfolgen, um die Anzahl der Ressourcen an die 
sich ändernde Last anzupassen.
Bei vielen Anwendungen ändert sich auch die Last kontinuierlich über einen längeren Zeit­
raum. Häufig sind solche Lasten in Form eines Basistrends als Hintergrund-Workload in 
anderen Workloads (z. B. periodischen Workloads) enthalten. Sich kontinuierlich ändernde 
Workloads sind durch ein kontinuierliches Wachstum oder einen kontinuierlichen Rückgang 
der Auslastung gekennzeichnet (siehe Bild 2.5 E/F). Rein wirtschaftlich ist es dabei egal, ob 
ein Workload steigt oder sinkt, denn der Flächeninhalt (also die Einsparung) ergibt sich ja 
aus der Differenz der statischen und elastischen Provisionierungskurven. Der Bedarf per­
sistenten Speichers unterliegt oft solch einem kontinuierlich wachsenden Trend. Es wird in 
vielen Anwendungsfällen eben mehr gespeichert als gelöscht.
Wenn man diese Workloads hinsichtlich ihres 

p
a

 aufsteigend sortiert, erhält man grundsätzli­

che folgende rein ökonomische Eignungsreihenfolge von Workloads für das Cloud Computing:
	� Statische Workloads (eher ungeeignet, siehe Bild 2.5 A)
	� Kontinuierlich steigende/sinkende Workloads (siehe Bild 2.5 E/F)
	� Zufällige und periodische Workloads (siehe Bild 2.5 B/D)
	� Einmalige/seltene Workloads (extrem geeignet, Bild 2.5 C)

Für einen konkreten Anwendungsfall ist dieses 
p
a

 natürlich immer genau zu bestimmen. 

Dennoch hilft das Verständnis dieser grundsätzlichen Zusammenhänge erheblich dabei, 
überhaupt erst einmal interessante Anwendungsfälle zu identifizieren und uninteressante 
Anwendungsfälle auszuschließen. Grundsätzlich ermöglicht die Elastizität von Cloud-Infra­
strukturen und -Plattformen, Ressourcen mit der gleichen Rate bereitzustellen oder freizu­
geben, mit der sich die Arbeitslast eines Dienstes ändert, um diese Effekte für sich zu nutzen.

2.2.2 �Effekt von Zuteilungsdauer und Ressourcengröße

Wie wir also sehen, sind Cloud-Ressourcen vor allem dann wirtschaftlich, wenn Last­
schwankungen in einem Anwendungsfall auftreten. Die Kosten pro Cloud-Ressource können 
sogar deutlich höher als die In-House-Kosten liegen – solange das Verhältnis von Cloud zu 
In-House-Kosten nicht das Verhältnis von Spitzen- zu Durchschnittslast übersteigt.
Ziel ist also, im Betrieb eine möglichst niedrige Durchschnittslast zu ermöglichen (bzw. die 
Fläche zur Abdeckung der Lastkurve zu minimieren). Hierzu strebt man im Betrieb an, Last­
kurven möglichst eng zu folgen. Kann man sich möglichst eng an Lastkurven „anschmiegen“, 
erzeugt dies wenig Over-Provisioning. Viele Innovationen des Cloud-native Computings wie 
beispielsweise Container- und FaaS-Technologien sind im Kern auf diese Erkenntnis zurückzu­
führen. Bei der Ressourcenzuteilung lässt sich dabei letztlich an zwei Stellschrauben drehen.
1.	 Man kann Ressourcen feingranularer zuteilen (vertikale Stellschraube).
2.	 Man kann Ressourcen kürzer zuteilen (horizontale Stellschraube).
Bild 2.6 zeigt den Effekt beider Stellschrauben (Ressourcengröße und Zuteilungsdauer) auf 
den Ressourcenverbrauch (und damit die Kosten) am Beispiel eines synthetischen periodi­
schen Workload-Verlaufs.
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Bild 2.6 Effekt von Ressourcengröße und Zuteilungsdauer

Wie Bild 2.6 zeigt, ermöglichen es kleinere Ressourcengrößen und kürzere Zuteilungsdauern, 
Lastkurven enger folgen zu können. Damit kann das Over-Provisioning verringert werden. 
Dies spart letztlich Geld im Betrieb eines Cloud-nativen Systems. An dem – zugegeben syn­
thetischen – Beispiel von Bild 2.6 zeigt sich dennoch, dass sich durch die Reduzierung von 
Ressourcengrößen und kürzere Zuteilungsdauern der rechnerische Ressourcenbedarf durch­
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aus halbieren lässt. Dies ist natürlich immer von den dahinterliegenden Workload-Arten und 
dem Anwendungsfall abhängig. Auch noch größere Einsparungen sind nicht ungewöhnlich.
Diese einfache Erkenntnis hatte in den letzten Jahren einen tiefgreifenden Einfluss auf 
Cloud-native Architekturen und Technologien (Kratzke und Quint 2017). So konnte man in 
den vergangenen Jahren beobachten, wie diese beiden Stellschrauben (Zuteilungsdauer und 
Ressourcengröße) systematisch reduziert wurden. Während in der Anfangszeit des Cloud 
Computings virtuelle Maschinen üblicherweise auf Stundenbasis abgerechnet wurden, ist 
dies im Verlaufe der Zeit auf eine dreißigminütige, dann fünfzehnminütige bis schließlich 
zu einer minutengenauen oder mittlerweile sogar einer sekundengenauen Abrechnung bei 
vielen Providern umgestellt worden. Auch die Ressourcengröße wurde durch Technologien 
reduziert. Mittels IaaS kommt man nicht wirklich effizient unter die Auflösung von einer 
vCPU. Doch mittels der zunehmend beliebteren Container-Technologie sind wesentlich fein­
granularere Ressourcen möglich (siehe Kapitel 8), mit denen man problemlos unter diese 
1 vCPU-Schwelle kommt. Auch die seit einigen Jahren beliebter werdende Technologie 
Function as a Service (FaaS, siehe Kapitel 10) kombiniert letztlich feingranularere Container 
mit einer Reduktion der zeitlichen Zuteilungsdauer im Subsekunden-Bereich. FaaS erlaubt 
es sogar, Ressourcen komplett auf null zu skalieren, wenn ein System in einem Zeitintervall 
keine Aufgaben zu verarbeiten hat. Daran zeigt sich, dass viele Trendtechnologien zur fein­
granulareren Ressourcenallokation im Cloud-nativen Umfeld ihren Grund auch immer in 
der innewohnenden Cloud-Ökonomie haben – auch wenn dies häufig nicht (mehr) bewusst 
wahrgenommen wird.

 ■ 2.3 �Entwicklung der letzten Jahre

Cloud Computing ist vor etwa zehn bis 15 Jahren entstanden. Dabei wurden in der ersten 
Adoptionsphase bestehende IT-Systeme lediglich in Cloud-Umgebungen übertragen, ohne 
das ursprüngliche Design und die Architektur dieser Anwendungen zu ändern. Multi-Tier-
Anwendungen wurden lediglich von dedizierter Hardware auf virtualisierte Hardware in der 
Cloud migriert. Cloud-Systemingenieure haben im Laufe der Jahre allerdings bemerkenswerte 
Verbesserungen an Cloud-Plattformen (PaaS) und -Infrastrukturen (IaaS) vorgenommen 
und mehrere technische Trends etabliert, die derzeit zu beobachten sind. Ein wesentlicher 
Treiber hierfür sind die erläuterten ökonomischen Gesetzmäßigkeiten des Pay-per-use-Prin­
zips. Wer Cloud-native Systeme wirtschaftlich betreiben will, muss die Ressourcennutzung 
optimieren und minimieren.
Cloud-Infrastrukturen (IaaS) und -Plattformen (PaaS) sind daher insbesondere für den 
elastischen Betrieb von Cloud-nativen Anwendungen gebaut, um Over-Provisioning von 
Ressourcen zu vermeiden. Unter Elastizität versteht man den Grad, in dem sich ein System 
an Laständerungen anpasst, indem es automatisch Ressourcen bereitstellt und entnimmt. 
Ohne diese Elastizität ist Cloud Computing aus wirtschaftlicher Sicht sehr oft nicht sinnvoll.
Mit der Zeit lernten Systemingenieure, diese Elastizitätsoptionen moderner Cloud-Umge­
bungen besser zu verstehen. Schließlich wurden Systeme für solche elastischen Cloud-Infra­
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strukturen von Grund auf entworfen, die dank neuer Deployment- und Design-Ansätze wie 
Container (siehe Kapitel 8), Microservices oder serverloser Architekturen (siehe Kapitel 12) 
den bereitzustellenden Ressourcenbedarf der zugrunde liegenden Computing-Infrastruktu­
ren minimieren. Diese Designabsicht wird oft unbewusst mit dem Begriff „Cloud-native“ 
ausgedrückt.
Die Maschinenvirtualisierung hat sich insbesondere deshalb durchgesetzt, um eine Vielzahl 
von Bare-Metal-Maschinen zu konsolidieren und so die physischen Ressourcen in Rechen­
zentren effizienter nutzen zu können. Diese Maschinenvirtualisierung bildet bis heute 
das technologische Rückgrat des (IaaS-)Cloud Computings. Virtuelle Maschinen sind zwar 
leichtgewichtiger als Bare-Metal-Server, aber sie sind nicht unbedingt als leichtgewichtig 
zu bezeichnen, vor allem in Bezug auf ihre Image-Größen. Diese IaaS-Ebene wird vor allem 
in Kapitel 7 behandelt.
Vor diesem Hintergrund wurden leichtgewichtigere Container entwickelt. Container er­
lebten ihren Siegeszug primär, weil sie einerseits die Art und Weise der standardisierten 
Bereitstellung von Anwendungskomponenten vereinfachen. Container erhöhen aber auch 
die Auslastung der virtuellen Maschinen, da sie auf leichtgewichtigeren Betriebssystem-Vir­
tualisierungskonzepten beruhen. Man kann also meist deutlich mehr Container auf einem 
physischen Host betreiben als virtuelle Maschinen. Wir werden uns mit diesen Aspekten 
vor allem in Kapitel 8 und in Kapitel 9 befassen. Dennoch sind Container, obwohl sie leicht­
gewichtig und schnell skalierbar sind, immer noch Always-on-Komponenten. Es muss also 
immer einen „letzten“ Container geben, der Requests bearbeiten kann. Zumindest dieser 
„letzte“ Container fällt damit weiterhin in den Bereich eines statischen Workloads, also dem 
aus Kundensicht teuersten Workload für Cloud Computing.
Daher wurden Function-as-a-Service-(FaaS-)Ansätze entwickelt, die eine Art Time-Sharing 
von Containern auf darunterliegenden Container-Plattformen anwenden. Wir werden uns vor 
allem in Kapitel 10 mit diesen Aspekten befassen. Bei FaaS werden nur Einheiten (Funktio­
nen) ausgeführt, die Requests zu bearbeiten haben. Durch diese zeitlich geteilte Ausführung 
von Containern auf der gleichen Hardware ermöglicht FaaS sogar eine Skalierbarkeit bis auf 
null. Studien konnten diese verbesserte FaaS-Ressourceneffizienz sogar monetär messen 
(Villamizar u. a. 2017). All dies hat letztlich mit der Minimierung der statischen Workload-
Anteile zu tun, die den ineffektivsten Workload für Cloud Computing ausmachen.
Rückblickend betrachtet wurde der Technologie-Stack zur Verwaltung von Ressourcen in der 
Cloud also im Laufe der Zeit durch zusätzliche Ebenen (Virtualisierung, Container Runtime, 
FaaS Runtime) erweitert und damit immer komplexer. Das folgte aber einem grundsätzlichen 
Trend – mehr Workload auf der gleichen Anzahl physischer Maschinen auszuführen, also 
die Ressourceneffizienz insgesamt zu erhöhen.
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