Contents

1	A Short Story About the Development of					
	Computer Science or Why Computer Science Is					
	Not	a Computer Driving Licence	1			
	1.1	What Do We Discover Here?	1			
	1.2	Fundamentals of Science	2			
	1.3	The End of Euphoria	19			
	1.4	The History of Computer Science	24			
	1.5	Summary	33			
2	Algorithmics, or What Have Programming and					
	_	ing in Common?	37			
	2.1	What Do We Find out Here?	37			
	2.2	Algorithmic Cooking	38			
	2.3	What About Computer Algorithms?	45			
	2.4	Unintentionally Never-Ending Execution	61			
	2.5	Summary	69			
3	Infinity Is Not Equal to Infinity, or Why Infinity					
	Is Infinitely Important in Computer Science 73					
	3.1	Why Do We Need Infinity?	73			
	3.2	Cantor's Concept	77			
	3.3	-	107			
	3.4		114			

4		nits of Computability or Why Do There Exist
		ks That Cannot Be Solved Automatically by
		mputers
	4.1	Aim
	4.2	How Many Programs Exist?
	4.3	YES or NO, That Is the Question
	4.4	Reduction Method
	4.5	Summary
5	Cor	mplexity Theory or What to Do When the
		ergy of the Universe Doesn't Suffice for
		forming a Computation? 161
	5.1	Introduction to Complexity Theory 161
	5.2	How to Measure Computational Complexity? 163
	5.3	Why Is the Complexity Measurement Useful? 169
	5.4	Limits of Tractability
	5.5	How Do We Recognize a Hard Problem? 178
	5.6	Help, I Have a Hard Problem 190
	5.7	Summary
6	Rar	ndomness in Nature and as a Source of
	Effi	ciency in Algorithmics 201
	6.1	Aims
	6.2	Does True Randomness Exist?
	6.3	Abundant Witnesses Are Useful
	6.4	High Reliabilities
	6.5	What Are Our Main Discoveries Here? 234
7	Cry	ptography, or How to Transform Drawbacks
	into	• Advantages
	7.1	A Magical Science of the Present Time 239
	7.2	Prehistory of Cryptography 241
	7.3	When Is a Cryptosystem Secure? 246
	7.4	Symmetric Cryptosystems 249
	7.5	How to Agree on a Secret in Public Gossip? 253
	7.6	Public-Key Cryptosystems 260
	7.7	Milestones of Cryptography

8	Computing with DNA Molecules, or Biological				
	Com	puter Technology on the Horizon	277		
	8.1	The Story So Far	277		
	8.2	How to Transform a Chemical Lab into a DNA			
		Computer	282		
	8.3	Adleman's Experiment	288		
	8.4	The Future of DNA Computing	296		
9	Quantum Computers, or Computing in the				
	Won	derland of Particles	299		
	9.1	Prehistory	299		
	9.2	The Wonderland of Quantum Mechanics	302		
	9.3	How to Compute in the World of Particles?	309		
	9.4	The Future of Quantum Computing	320		
10	How to Make Good Decisions for an Unknown				
	Futu	re or How to Foil an Adversary	325		
	10.1	What Do We Want to Discover Here?	325		
	10.2	Quality Measurement of Online Algorithms	327		
	10.3	A Randomized Online Strategy	338		
	10.4	Summary	356		
\mathbf{Re}	feren	ces	359		
Index					