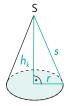


Zylinder

Ein gerader Zylinder wird von zwei zueinander **parallelen und deckungsgleichen Kreisflächen** (Grundflächen G) und einer rechteckigen Mantelfläche M begrenzt.



$$\begin{aligned} \mathsf{O} &= 2 \cdot \mathsf{G} + \mathsf{M} & \mathsf{V} &= \mathsf{G} \cdot h_{\mathsf{k}} = \pi \cdot r^2 \cdot h_{\mathsf{k}} \\ &= 2 \cdot \mathsf{G} + \mathsf{U}_{\mathsf{G}} \cdot h_{\mathsf{k}} \\ &= 2 \cdot \pi \cdot r^2 + 2 \cdot \pi \cdot r \cdot h_{\mathsf{k}} \end{aligned}$$

Kegel

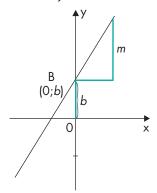
Ein gerader Kegel wird von einer Kreisfläche (Grundfläche G) und einer gekrümmten Fläche begrenzt. Die gekrümmte Fläche ergibt bei einer Abwicklung in die Ebene einen Kreisausschnitt (Mantelfläche M).

S ist die Spitze des Kegels.

$$O = G + M$$

$$V = \frac{1}{3} \cdot G \cdot h_{k}$$

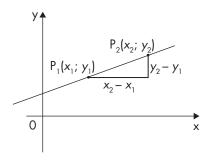
$$= \pi \cdot r^{2} + \pi \cdot r \cdot s$$


$$= \pi \cdot r \cdot (r + s)$$

$$= \frac{1}{3} \cdot \pi \cdot r^{2} \cdot h_{k}$$

Lineare Funktionen

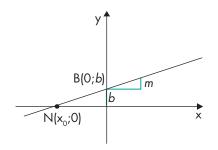
Normalform: y = mx + b



b ist der so genannte Achsenabschnitt.

Er gibt den Schnittpunkt B (0; *b*) der Funktionsgeraden mit der y-Achse an.

Der Wert m gibt die Steigung der Funktionsgeraden an. Ist m positiv, steigt die Gerade, ist m negativ, fällt sie.


Berechnung der Steigung m

Verläuft die Funktionsgerade durch die beiden Punkte $P_1(x_1; y_1)$ und $P_2(x_2; y_2)$, so berechnet sich die Steigung m wie folgt:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Nullstelle N

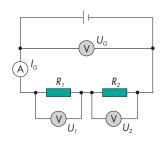
x₀ = x-Koordinate des Schnittpunktes der Geraden mit der x-Achse

$$x_0 = \frac{-b}{m}$$

Gleichstrom

Formel	Größe	Einheit				
$Q = I \cdot t$ $P = U \cdot I$	Q = Elektrische Ladung I = Stromstärke t = Zeit P = elektrische Leistung U = Spannung	Coulomb (C) Ampere (A) Stunde (h) Watt (W) Volt (V)				
$W = U \cdot I \cdot t = P \cdot t$ $U = \frac{W}{Q}$ $R = \frac{U}{I}$	W = elektrische Arbeit	Joule (J) Newtonmeter (N · m) Wattsekunde (W · s)				
$R = \frac{U}{\overline{I}}$	R = Widerstand	Ohm (Ω)				
$I \sim U$	Ohm'sches Gesetz					
(bei konstanter Temperatur)						

.


Widerstand eines Drahtes

R	$= \varrho \cdot \frac{l}{A}$	 = Widerstand= spezifischer Wider-	Ohm (Ω)
		stand	

l = Länge des DrahtesA = Querschnittsfläche

Reihenschaltung

$$U_G = U_1 + U_2 \qquad \qquad U = \text{Spannung} \qquad \text{Volt (V)}$$

$$U_G = \text{Gesamtspannung}$$

$$I_G = I_1 = I_2 \qquad \qquad I = \text{Stromstärke} \qquad \text{Ampere (A)}$$

$$I_G = \text{Gesamtstromstärke}$$

$$R_G = R_1 + R_2 \qquad \qquad R = \text{Widerstand} \qquad \text{Ohm (Ω)}$$

$$R_G = \text{Gesamtwiderstand}$$

Elementname	Symbol	Ordnungs-	Dichte in	Schmelz-	Siede-
		zahl	g/cm ³	temperatur in °C	temperatur °C
Alkohol/Ethanol			2,40	-114	78
Aluminium	Al	13	2,7	660	2467
Arsen	As	33	5,72	u. Druck 817	subl. 613
Beton			1,8–2,5		
Blei	Pb	82	11,3	327	1740
Bor	В	5	2,34	2300	3660
Brom	Br	35	3,12	- 7	59
Calcium	Ca	20	1,55	842	1484
Chlor	Cl	17	1,56 (l)	-101	-34
Chrom	Cr	24	7,2	1857	2672
Cobalt	Co	27	8,9	1495	2870
Eisen	Fe	26	7,86	1535	2750
Fluor	F	9	1,51 (l)	-219	-188
Glas			2,23	815	
Helium	He	2	0,15	-272	-269
Kalium	K	19	0,86	63	760
Kochsalz	NaCl		2,16	808	1461
Kohlenstoff	С	6	2,25	u. Druck 3974	subl. 3930
Kupfer	Cu	29	8,96	1085	2572
Magnesium	Mg	12	1,74	650	1110
Mangan	Mn	25	7,43	1244	2095
Natrium	Na	11	0,97	98	883
Neon	Ne	10	1,2 (1)	-249	-246
Nickel	Ni	28	8,9	1455	2730
Phosphor	P	15	1,82	44	280
Platin	Pt	78	21,4	1772	3825
Plutonium	Pu	94	19,8	640	3230
Porzellan			0,846	1670	
Quecksilber	Hg	80	13,53	-39	357
Sauerstoff	O	8	1,15 (l)	-219	-183
Schwefel	S	16	2,07	113	445
Silber	Ag	47	10,5	962	2212
Stickstoff	N	7	0,81	-210	-196
Uran	U	92	19,1	1135	3818
Wasser	H ₂ O		0,999	0	100
Wasserstoff	H	1	0,07 (1)	-259	-253
Wolfram	W	74	19,3	3410	5660
Zink	Zn	30	7,14	420	907
Zinn	Sn	50	7,3	232	2602
	_		. ,=		

^{(1) =} g/1 (Gas)

subl. = sublimiert

u. Druck = unter Druck