Contents

.

1	The I	Phenomenon: Occurrence and Characteristics	. 1
	1.1	Marching Towards Absolute Zero	. 1
	1.2	Discovery of Superconductivity	. 2
	1.3	Occurrence of Superconductivity	. 3
		1.3.1 Elemental Superconductivity	. 3
		1.3.2 Alloys	. 3
		1.3.3 Binary Compounds (A-15 Materials)	. 3
		1.3.4 Heavy Fermion Superconductors	. 4
		1.3.5 Organic Superconductors	. 4
		1.3.6 C_{60} -Based Superconductors	. 6
	1.4	The Superconducting State	. 7
	1.5	Phase Coherence	. 10
	1.6	Coherence Length	. 11
		1.6.1 Pippard's Equation and Coherence Length	. 12
		1.6.2 The Size of an Electron Pair	. 13
		1.6.3 Analogy Between Long Range Spatial Order	
		in a Solid and Phase-Order in a Superconductor	. 14
	1.7	Critical Magnetic Field.	. 14
	1.8	Meissner Effect	. 15
	1.9	Comparison Between a Superconductor and a Very Good	
		(or Ideal) Conductor	. 16
	1.10	Isotope Effect	. 18
	1.11	Isotope Effect in HTSCs	. 19
		1.11.1 Optical Behaviour Study	. 19
		1.11.2 Elastic and Ultrasonic Studies	. 19
	1.12	The Energy Gap	. 20
	1.13	Thermodynamics of Superconductors	. 22
		1.13.1 Latent Heat of Superconducting Transitions	. 24
		1.13.2 Heat Capacity of Superconductors	. 26
		1.13.3 Strong Coupling Case	. 27

xi

	1.14	London Equations and Penetration Depth	28	
	1.15	Ginzberg–Landau Theory	31	
	1.16	Type-I and Type-II Superconductors	34	
		1.16.1 How a Normal Core is Formed in Mixed State?	37	
	1.17	Why Materials with High $T_{\rm c}$ Tend to Fall		
		in Type-II Category?	39	
	1.18	Why It is Extremely Difficult to Obtain Higher T_c ?	40	
	Refer	ences	41	
2	Crystal Structure of High Temperature Superconductors			
	2.1	Introduction.	43	
		2.1.1 Perovskite Structure	43	
	2.2	The Structure of YBa ₂ Cu ₃ O _{7-x} \dots \dots \dots \dots \dots \dots	43	
		2.2.1 Variation of T_c with Oxygen Stoichiometry	46	
	2.3	The Structure of $La_{2,v}M_vCuO_4$	47	
	2.4	The Structure of Bi-Based Cuprate Superconductors	49	
	2.1	Structure of Thallium-Based Cuprate Superconductors	50	
	2.0	2.5.1 Comparison of Bismuth and Thallium	• -	
		Based Cuprates	52	
	26	Mercury Based Cuprate Superconductors	53	
	2.0	Characteristics of High Temperature Superconductors	55	
	2.1	2.7.1 Decemblance Between HTSC	55	
		2.7.1 Resemblance Detween TITSC	56	
		2.7.2 University of UTSCo	57	
	2.0	2.7.2 Unusual Properties of HISCs	57	
	2.8	Comparison of High T. Compares with Turnical Matala	51	
	2.9	Comparison of High T_c Cuprates with Typical Metals	50	
	D (in Relation to Normal State Resistivity	50	
	Refer	rences	39	
2	Cult	and Current	61	
3			61	
	3.1	Citizel Convert of a Wine	62	
	3.2	Critical Current of a Wire	62	
	3.3	Critical Current in Mixed State	03	
	3.4	Flux Pinning	63	
		3.4.1 Role of Inhomogeneties	64	
		3.4.2 Flux Pinning (Pinning of Flux-Vortices		
		in Conventional Superconductors)	65	
	3.5	Depinning of Flux Vortices	65	
	3.6	Critical Current in High Temperature Superconductors	67	
		3.6.1 Effect of Structure	67	
	3.7	RSJ Model of an HTSC (High T_c Superconductor)	68	
	3.8	Effect of Granularity on Superconductivity	71	
	3.9	Measurement for J_c	72	
	3.10	Flux Flow and Defining J_{c}	72	

	3.11	Anisotropies in High T _c Superconductors	73
	3.12	Flux Pinning in High Temperature Superconductors	75
	3.13	Columnar Defects and Flux Pinning	76
		3.13.1 Flux Pinning in HTSCs by Vortex Pancakes	78
	3.14	Experimental Results on Introduction of Flux Pinning	
		Centers in HTSCs	80
		3.14.1 Melt Textured Growth	80
		3.14.2 Introduction of Second Phase	
		(Chemical Inhomogeneity)	81
		3.14.3 Extended Defects (Columnar Defects)	81
	3.15	Magnetic Phase Diagrams of HTSCs	81
	3.16	Melting of the FLL Because of Reduced Size of $\zeta_{GL}(T)$	83
	2.17	3.16.1 Effect of Reduced Size of $\zeta_{GL}(I)$.	84
	3.17	Anisotranu and Change Quer from a 2D to 2D Deleview	84
	3.18	Anisotropy and Change Over from a 2D to 3D Benaviour \dots	85
		5.18.1 High Field Regime $(B \gg B_{cr})$	80
		3.16.2 Weak Field Region $(B \ll B_{cr})$	00 97
	3 10	The Effect of Anisotropy Peremeter u on the Vertex	07
	5.19	Phase Transitions	87
	3 20	Desired Microstructure Synthesis for High Critical Current	07
	5.20	Density in High T. Superconductors	88
		3 20.1 Some Inherent Problems (Weak-Links	00
		and "Flux Lattice Melting")	88
		3.20.2 Possible Ways Out of "Weak-Links"	90
		3.20.3 Provision of Flux Pinning Sites	94
		3.20.4 Desired Microstructure for High J_c	95
	3.21	High T_c Technology	96
		3.21.1 Advantage of Weak Pinning	97
	3.22	Comparison Between Non-Uniform Order in a Solid	
		and That in a Superconductor	98
	Refer	ences	99
	<i>a</i>		
4	Synth	lesis of High T_c Superconductors.	101
	4.1	Synthesis of $Y_1Ba_2Cu_3O_7$ in Bulk Form	101
	4.2	Why Thin Films of High I_c Superconductors?	102
	4.3	4.2.1 Chemical Departies Matheda	105
		4.3.1 Chemical Deposition Methods	105
		4.3.2 Chemical vapour Deposition	105
	11	A.S.S Splay ry101ys18 Basic Thin Film Processes for HTSC Films	105
	4.4 4.5	Various Techniques for Deposition of Films	100
	+ .J	of High Temperature Superconductors	109
			100

	4.6	Preparation of Thin Films of HTSC-YBa ₂ Cu ₃ O _{7-x} :	
		An Introduction	108
		4.6.1 Choice of the Substrate for Thin Film Deposition	110
		4.6.2 YBCO Film/Substrate Interaction.	110
	4.7	Techniques Employed for Synthesis of YBCO Thin Films	113
		4.7.1 Electron Beam Evaporation.	113
		4.7.2 Molecular Beam Epitaxy	114
		4.7.3 Sputter Deposition	115
		4.7.4 Sputter Deposition of HTSC Films.	118
		4.7.5 Pulsed Laser Deposition	119
		4.7.6 Chemical Vapour Deposition.	120
	4.8	Film Substrate Lattice Matching and Buffer Layer	
		Considerations	121
	4.9	"Brick-Wall" Microstructure in Epitaxial YBa ₂ Cu ₃ O _x Films	123
	4.10	"ABSTRACTS" of Author's Papers on Superconductivity	125
	Refer	ences	127
5	Supe	rconductivity in Cuprates	129
	5.1	Mott Insulator	129
	5.2	The First Cuprate $La_{2-x}M_xCuO_4$	129
	5.3	The Charge-Transfer Model of a High $T_{\rm c}$	
		Cuprate Superconductor	130
	5.4	Electron and Hole Doping of CuO ₂ Layers	132
		5.4.1 Source of Hole (Carriers) in Various	
		Cuprate Families	132
	5.5	The Conductions Plane in Cuprates	133
	5.6	Octahedral Ligand Field	134
	5.7	Jahn-Teller Effect	135
	5.8	Energy Levels for Copper	136
	5.9	Comparison of Cu^{3+} and Cu^{2+} Ions in the Oxide	
		Octahedron	136
	5.10	The Hamiltonian and the Relevant Energy Levels	
		in the Conduction Plane	136
	5.11	Hole Superconductivity in Oxides	139
	5.12	Two Band and One Band Hubbard Models	140
	5.13	The Electronic Structure of Cuprates	140
	5.14	Strong Electron Correlations	142
	5.15	Charge Density Wave and Spin Density Wave	143
	5.16	Variation of T _c with Hole Concentration.	144
		5.16.1 Role of CuO_2 Planes (Effect on T_c)	145
	5.17	Defects in Bi Based Superconductors	146
	5.18	Effect of Oxygen Stoichiometry on T_c of HTSCs	
		Bi Basedand Tl Based Superconductors	147

Contents

	5.19	Comparison of Bi- and Tl-Cuprates	148
	5.20	Comparison of Mercury Based and Thallium Monolayer	
		Based Cuprate Superconductors	148
	5.21	Mercury Based Superconductors	148
	5.22	Mercury Doped TI:2223 Superconductor.	151
	5.23	Hubbard Model and Band Structure	152
	5.24.	Arrangement of Atoms in p-Type Superconductors	154
	5.25	Electronic Structure of the CuO ₂ Layer	155
	5.26	Rock-Salt Layer in Cuprates as Hole-Source	157
	5.27	Phase Diagram (T _c Versus Hole Concentration)	158
	5.28	Electronic Structure of Doped CuO ₂ Plane	
		from Spectroscopic Studies	160
	5.29	Some Peculiar Normal Properties of Cuprates	161
	Refer	ences	162
6	The l	Proximity and Josephson Effects	163
	6.1	DC Josephson Effects	163
	6.2	Some Types of Josephson Junctions	167
		6.2.1 Typical Current Voltage Characteristics	
		for the Above Types of Junctions	167
	6.3	Equivalent Circuit of a Josephson Junction	169
	6.4	AC Josephson Effect	170
	6.5	Giaever Tunnelling/Tunnelling of Quasi-Particles	172
	6.6	Superconductive Tunnelling in a S–I–S Junction	176
	6.7	Quasi-Particle Tunnelling for a Symmetric S–I–S Junction	178
		6.7.1 Effect of Thickness of Insulator in S–I–S Junction	181
	6.8	Properties of Josephson Junction	181
	6.9	Flux Quantisation.	181
	6.10	SQUIDs	183
	6.11	DC SQUID (A Superconducting Loop with Two	
		Josephson Junctions)	183
		6.11.1 The Characteristics of an Ideal DC SQUID	188
	6.12	The rf SQUID	189
		6.12.1 Principle	189
		6.12.2 Working	189
	6.13	Applications of SQUIDs	193
	6.14	HTSC SQUIDs	193
	6.15	Some Practical rf SQUIDs	194
		6.15.1 Break Junction rf SQUIDs	194
		6.15.2 Two- and One-Hole rf SQUIDs	195
	6.16	SQUIDs Fabricated from Films	196
		6.16.1 SQUIDs Using Polycrystalline Films	196
		6.16.2 SQUIDs Using Epitaxial Films	196

	6.17	How SQUIDs are Used for Flux Measurements	199
		6.17.1 Superconducting Flux Transformers	200
	6.18	Design and Noise Aspects of SQUIDs	202
		6.18.1 Choice for Critical Current I_c of J.J	202
		6.18.2 Choice for the Inductance of the Ring	203
		6.18.3 Noise, Noise Energy and Energy	
		Resolution of SQUID	204
	6.19	Proximity Effect (Induced Superconductivity)	207
		6.19.1 S–I Junction	209
	6.20	S–N Junction	209
		6.20.1 Fundamental Properties of S–N Contacts	209
		6.20.2 Boundary Conditions for Pair Amplitude (F)	209
		6.20.3 Effect of a Finite Boundary Resistance	211
		6.20.4 (Cuprate -S)/N Interface	212
	6.21	Grain Boundary Junctions	213
	6.22	Requirements for Josephson Devices	214
		6.22.1 Small Junctions Free of Self Shielding Effects	215
		6.22.2 Test for the ac Josephson Effect	215
	Refer	ences	216
7	Theo	ries of Superconductivity	217
•	7.1	Microscopic Theory of Superconductivity	
		(The BCS Theory)	218
		7.1.1 Oualitative Ideas	219
		7.1.2 The BCS Ground State	221
	7.2	Anderson's Resonating Valence Bond Theory	227
		7.2.1 Anderson's Valence Bonds	227
	7.3	Spin-Bag Theory	232
		7.3.1 Questions Which Remain	232
	7.4	Anyonic Theory	232
	7.5	In High T_c Superconductor, Is the Coupling	
		s-Wave or d-Wave?	233
	7.6	Scenario of Theories Describing	
		Superconductivity in HTSCs	236
	7.7	Arguments Against the Applicability of the	
		Original BCS Theory	238
	7.8	Identifications of Non-Phononic Mechanism	238
		7.8.1 How to Detect the Presence of Non-Phononic	
		Contribution to Pairing	239
	7,9	Contribution to Pairing Other Experimental Evidences for s-Wave/d-Wave Pairing	239 239
	7.9 Refe	Contribution to Pairing Other Experimental Evidences for s-Wave/d-Wave Pairing	239 239 240

.

8 A	Application of Superconductivity			
8.	1 Potential Applications.	241		
	8.1.1 Superconducting Magnets	241		
8.	.2 Applications of High- T_c Oxide Superconductors	242		
8.	$3 Applications of High T_c Films. \dots$	243		
Арре	endix A: Quasiparticles	245		
Appe	endix B: Fermiology	247		
Appe	endix C: Pairing in High T_c Cuprates in Relation			
	to Fermi Energy	249		
Index	κ	251		