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Introduction

1.1 Outline on Wave-Transparent Composites

Wave-transparent composites are a class of functional composites that can pass
through electromagnetic waves. On the one hand, wave-transparent composites
can provide electromagnetic windows for the transmission and reception of elec-
tromagnetic waves to ensure their efficient operation [1]. On the other hand, they
can protect the radar antennas, communication, and microwave systems from the
harsh external environment such as heavy rain, strong winds, snow, sand, solar
radiation, and salt spray [2], ensuring the stability and reliability of electromagnetic
wave transmission. With the rapid development of modern electronic information
technology as well as the aviation and aerospace industries, the requirements for
comprehensive performance of wave-transparent composites are becoming more
and more demanding [3].

As far as matrix classification, wave-transparent composites can be divided into
ceramic-based and polymer matrix wave-transparent composites [4]. Ceramic-based
wave-transparent composites can meet the electrical performance requirements
of radar radomes in the centimeter-band electromagnetic wave range. However,
for millimeter-band electromagnetic waves (wavelength in the range of 1-10 mm
and frequency in the range of 30-300 GHz), ceramic-based wave-transparent
composites have disadvantages such as low strength, thick cover walls, and poor
wave-transparent performances, which make it difficult to meet the performance
requirements of radar radomes for millimeter wave [5, 6].

Polymer matrix wave-transparent composites have the advantages of lightweight,
high strength, low dielectric constant (¢) and dielectric loss (tan§), and mate-
rials/structure/function integration, which have a wide range of promising
applications in satellite antennas, aircraft, missiles, 5G ground communication base
stations, printed circuit boards, and so on. (Figure 1.1) [7].

This book will describe the wave-transparent mechanism, polymer matrix and
reinforced fibers, their two-phase interfaces, molding process, and application
prospects of the polymer matrix wave-transparent composites.
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Figure 1.1  Application examples of polymer matrix wave-transparent composites.
Source: Polymer matrix wave-transparent composites: A review. Journal of Materials
Science & Technology, 2021, 75:225-251 (Figure 1).

1.2 Composition of Polymer Matrix Wave-Transparent
Composites

Polymer matrix wave-transparent composites consist of polymer matrix, reinforced
fibers, and two-phase interfaces [8]. Polymers with low ¢ and tané values as
the matrix fibers with high strength and modulus as reinforced fibers produce
advanced polymer-based composites (Figure 1.2) with both mechanical properties
and wave-transparent performances via hot pressing, vacuum bagging, or resin
transfer molding [9].

The heat resistance of polymer matrix determines the thermal stability of the com-
posites in this case, and the fibers mainly serve as reinforcement [10]. Because the
dielectric properties of different polymer matrices differ substantially. However, the
e value of reinforced fibers is generally larger than that of polymer matrix. Therefore,
the selectively reinforced fibers possess excellent mechanical and thermal properties
but also wonderful dielectric properties [11].
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Figure 1.2 Composition of polymer matrix wave-transparent composites (commonly used
polymer matrix and reinforced fibers).

1.2.1 Polymer Matrix

Polymers commonly used in wave-transparent composites mainly include epoxy
resins [12], phenolic (PF) resins [13], polyimide (PI) resins [14], bismaleimide (BMI)
resins [15], silicone resins, polytetrafluoroethylene (PTFE) resins [16], unsaturated
polyester (UP) resins [17-19], and cyanate (CE) resins [20]. Table 1.1 shows the
main physical and chemical properties of the common polymer matrix.

Epoxy resins have good flowability, low curing shrinkage, and high thermal
decomposition temperatures (300-350 °C), but their high ¢ and tan 6 values limit
their application in high-performance polymer matrix wave-transparent composites
[21-23]. PF resins have good heat resistance (long-term service temperature at
250 °C), mechanical properties, and weatherability [24]. However, the ¢ values of PF
resins increase significantly with increasing temperatures [25-27]. PI resins have
high heat resistance (T’ ¢ =250 °C), &, and tan 6 values that remain stable over a wide

Table 1.1 Main physical and chemical properties of the common polymer matrix.

Density Flexural Flexural
Types (g/cm3) strength (MPa) modulus (GPa) & (10 Hz) tan & (106 Hz)
Epoxy 1.30 97 3.8 3.0 0.020
PF 1.30 92 3.5 3.2 0.020
PI 1.36-1.43 170 3.8 3.2 0.007
BMI 1.30 150 3.7 3.0 0.014
Organicsilicon — 85 — 3.0-5.0 0.003-0.050
PTFE 2.20 90 — 2.1-2.3 0.0003-0.0004
UP 1.29 85 3.2 3.0 0.018

CE 1.29 80 2.8 2.8-3.2 0.002-0.008
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range of temperatures and frequencies [28]. At the same time, PI resins have excel-
lent mechanical properties, chemical resistance, and dimensional stability [29-31].
However, PI resins are costly and difficult to process [32, 33]. BMI resins are an ideal
polymer matrix for advanced composites due to their good heat resistance, excellent
mechanical properties, relatively low ¢ value, resistance to humidity, chemical
reagents, and good processability [34, 35]. However, the relatively high tan § values
of BMI resins limit their wider application to a certain extent [36-38]. Silicone resins
have excellent heat resistance and stable € and tan § values under a wide range of
environmental conditions [39-41], but their poor mechanical strength makes them
rarely used alone [42-44]. PTFE resins have the lowest € and tan § [45, 46] but are
not easy to process and have low bonding properties between PTFE matrix and
reinforcements [47-49]. UP resins have better mechanical properties than PF resins
and have low ¢ and tan § values [50-52], which can be cured at room temperature.
UP resins have a simple molding process, making them suitable for large-scale or
large radome production [53-55]. However, UP resins have a short storage period,
relatively low heat deflection temperature, and large curing shrinkage, which
makes them unsuitable for the preparation of polymer matrix wave-transparent
composites with high dimensional accuracy requirements [56-58].

In comparison, CE resins combine the high-temperature resistance of BMI and PI
resins with the good processing properties of epoxy resins [59-61]. The highly sym-
metrical triazine ring structure and low polarity of the cured CE resins also make
them low £ (2.8-3.2) [62-64], good heat resistance, and dimensional stability over
a wide temperature and frequency range [65]. The structure and properties of com-
monly used polymer matrix are described in detail in Chapter 3.

1.2.2 Reinforced Fibers

Reinforced fibers for polymer matrix wave-transparent composites mainly include
glass fibers [66, 67], quartz fibers [68], Kevlar fibers [69, 70], ultra-high-molecular-
weight polyethylene (UHMWPE) fibers [71, 72], and poly(p-phenylene-2,6-benzo-
bisoxazole) (PBO) fibers [73, 74]. Their main physical and chemical properties are
shown in Table 1.2.

Table 1.2 Main physical and chemical properties of common reinforced fibers.

Density Tensile Modulus
Properties Types (gem~3)  strength (GPa)  (GPa) £ (10°Hz)  tand (10° Hz)
E-glass fibers 2.54 3.75 72 6.13 0.0038
S-glass fibers 2.49 4.00 85 5.21 0.0068
D-glass fibers 2.6 2.40 52 4.00 0.0025
Quartz fibers 2.20 1.70 72 3.78 0.0002
Kevlar49 fibers 1.45 3.45 137 3.85 0.0010
UHMWPE fibers 0.97 5.01 193 2.25 0.0002

PBO fibers 1.56 5.80 280 3.00 0.0010
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Figure 1.3 Application examples of D-glass fibers reinforced polymer matrix wave-
transparent composites: MIRAGE 2000 (France, a); GRIPEN JAS 39 - Credit: Thierry
ducros/Airliners.net (Sweden, b); HAWK 200 - Credit: Ben Stacey/Flickr (United Kingdom, c);
HARRIER - Credit: Weimeng/Air Team Images (United Kingdom, d). HARRIER GR.9 - Credit:
Titan Miller/Airliners.net. Source: (b) Ben Stacey/Flickr.

Glass fibers are the most commonly used inorganic reinforced fibers for wave-
transparent composites. The earliest glass fibers used were E-glass fibers [75, 76].
Then, high-strength glass fibers (S-glass fibers) [77-79] and high-silica glass fibers
(D-glass fibers) [80, 81] were developed to meet the special needs of aviation,
aerospace, military, and other high-tech fields. Compared to E-glass and S-glass
fibers, D-glass fibers have relatively lower ¢ and tan §, which has been used in the
radomes of MIRAGE 2000 (France), GRIPEN JAS 39 (Sweden), HAWK 200 (United
Kingdom), and HARRIER (United Kingdom) (Figure 1.3) [82, 83].

However, with the rapid development of information technology, electronic
components receive and transmit electromagnetic waves at increasingly high fre-
quencies [84]. The high content of alkali metal oxides in glass fibers and the strong
signal hysteresis and attenuation produced during electromagnetic wave transmis-
sion limit their application in high-frequency and high-precision wave-transparent
composites [85]. Quartz fibers contain only a single component of silicon dioxide
(Si0,) with purity of over 99.9% and have excellent high-temperature resistance,
electrical insulation properties and ablation resistance, low ¢ and tan é values, and
so on [86, 87], which have been one of the most commonly used reinforced fibers in
wave-transparent composites in the military and civilian sectors. However, quartz
fibers have disadvantages such as high density, poor mechanical properties, and
large ¢ values [88].

With the increasing demand for comprehensive performances of polymer matrix
wave-transparent composites in terms of weight reduction, wave-transparency,
and loading, researchers have carried out relevant research on organic reinforced
fibers such as Kevlar fibers [89], UHMWPE fibers [90] and PBO fibers [91, 92].
Kevlar fibers, with low density, high specific strength, and specific modulus,
are one of the most commonly used organic reinforced fibers in polymer matrix
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wave-transparent composites [93-95]. However, the high moisture absorption of
Kevlar fibers is susceptible to moisture swelling and cracking, resulting in the
degradation of wave-transparent performances and mechanical properties [96].
UHMWPE fibers, also known as high-strength, high-modulus polyethylene fibers,
have a relative molecular mass of over 1 million, which is beneficial to outstanding
impact resistance, cut resistance, chemical resistance and UV resistance, excellent
low-temperature resistance, and low ¢ and tan § values [97, 98]. However, as the
macromolecular chains of UHMWPE fibers are connected by a highly symmetrical
methylene structure, the intermolecular Van der Waals forces are weak, making
their T, and melting point low, resulting in their high-temperature resistance and
poor creep resistance [99].

Moreover, the surface of UHMWPE fibers does not contain polar groups, resulting
in low surface energy, which creates poor bond strength between the UHMWPE
fibers and polymer matrix [100, 101]. As a super fiber of the twenty-first century,
the large number of rigid aromatic and oxazole rings in the PBO fiber molecular
chain and a highly ordered crystal structure give PBO fibers excellent mechanical
properties, heat resistance, chemical stability, and low ¢ (3.0) and tané (0.001)
values, which are of wide interest in the field of airborne/starborne radar radomes.
Furthermore, PBO fibers have higher tensile strength, lower density, and e values
than those of inorganic reinforced fibers such as quartz [102]. Compared to those
of other organic fibers, PBO fibers have about twice the strength and modulus
of para-Kevlar fibers, and the thermal decomposition temperature of PBO fibers
in the air is about 650°C, which is approximately 100°C higher than that of
Kevlar fibers and much better than that of UHMWPE fibers (300°C) [103]. As a
result, PBO fibers have received a lot of attention as potential reinforcements for
light weight/loading/wave-transparent integrated wave-transparent composites
[104]. However, PBO fibers still have disadvantages of high cost, smooth and inert

Weak interfacial boding strength

Pore

Reinforced
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Figure 1.4 Schematic diagram of the two-phase interface for polymer matrix wave-
transparent composites.
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surfaces, and so on [105-107]. The structure and properties of these commonly
used reinforced fibers are described in detail in Chapter 4.

In addition, the microscopic phase interface links the polymer matrix and
reinforced fibers [108]. Defects are likely to arise at the poor two-phase interface
(Figure 1.4), which would affect the overall performance (especially the inter-
laminar shear strength, ILSS) of the polymer-matrix wave-transparent composites
[109, 110].

Therefore, how to effectively enhance the interfacial compatibility between poly-
mer matrix and reinforced fibers has become a hot and difficult issue in this field
[111]. Chapter 5 provides a detailed description of the two-phase interface inner
polymer matrix wave-transparent composites and their optimal control strategies.

1.3 Factors Influencing the Wave-Transparent
Performances of Polymer Matrix Wave-Transparent
Composites

Polymer matrix wave-transparent composites are mainly used for electromagnetic
windows and radomes in the fields of aviation/aerospace, 5G communication,
and electronic information [112]. In order to ensure that all types of radar and
antenna systems remain in stable operating conditions under harsh external
environments, polymer matrix wave-transparent composites are required to have
excellent wave-transparent performances (low € and tan § values) [113].

The main factors affecting the wave-transparent performances of polymer
matrix composites are divided into internal factors (intrinsic ¢ and tané§) and
external factors (thickness and electromagnetic wave frequency) [114, 115]. In
general, the lower the molecular polarization rate and the density of polarized
molecules of polymer matrix and reinforced fibers, the lower the ¢ and tané of
polymer matrix wave-transparent composites, the less energy is reflected and lost
during the transmission of electromagnetic waves, and the correspondingly higher
the wave-transparent rate [116]. In addition, polymer matrix wave-transparent
composites are typically multiphase systems, and the interface between polymer
matrix and reinforced fibers is prone to interfacial polarization, increasing the
e and tané values, which is not conducive to improving the wave-transparent
performance [117].

In addition, the thickness of polymer-based wave-transparent composites also
affects their wave-transparent performances [118]. When the frequency of the
electromagnetic wave is constant, the thickness of the wave-transparent composites
increases, resulting in a tendency for the wave-transparent rate to decrease and
then increase (Figure 1.5) [119]. This is mainly due to the reflection and loss
(both absorption and interference shifts) that occur on the surface and inside the
wave-transparent composites as the electromagnetic waves pass through [120, 121].
When the thickness approaches an odd multiple (d = nA/4, n =1, 3, 5, etc.) of its
quarter wavelength (4/4, Eq. 1.1), electromagnetic waves cause strong interference
cancellation in the wave-transparent composites. This leads to an attenuation of the
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Figure 1.5 Schematic representation of wave transmission versus material thickness for
polymer matrix wave-transparent composites.

electromagnetic wave energy and a significant reduction of the transmitted waves,
resulting in the reduction of the wave transmission [122-124]. When the thickness
is close to an even multiple (d = ni/4, n = 2, 4, 6, etc.) of /4, the electromagnetic
waves reflect less at the incident interface and can enter the interior almost
unharmed, with the high wave transmission rate [125, 126].

ni/4 = nc/Af, * (u, * €,)/? (1D

where 4 represents the wavelength of the incident waves; c represents the speed of
light; f, represents the frequency of the incident waves; u, represents the magnetic
permeability of the medium; and ¢, represents the dielectric constant of the medium.

1.4 Property Requirements for Polymer Matrix
Wave-Transparent Composites

1.4.1 Wave-Transparent Performances

The ¢ and tan é values of polymer matrix wave-transparent composites are among
the most important parameters affecting the wave-transparent performances [127].
In practice, the transmission rate of electromagnetic waves is usually required to
exceed 70% in the broad frequency range (0.3-300 GHz), which usually requires
the corresponding ¢ of polymer matrix wave-transparent composites to be stable in
the range of 1-4 and tan§ in the range of 1072-1073. Meanwhile, the & and tan §
are required to remain constant in the broad frequency and temperature range
(0-220°C) [128, 129].
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1.4.2 Mechanical Properties

As structural loading materials, polymer matrix wave-transparent composites must
have a certain degree of stiffness and strength to ensure the stability and reliability
of the antenna system in various complex operating environments [130]. The ten-
sile strength of polymer matrix wave-transparent composites for high-performance
radomes is generally not less than 400 MPa. The compressive strength is more than
350 MPa to ensure the integrity of the antenna system under aerodynamic loads and
impact of foreign objects, thus ensuring the normal operation of the electronic com-
ponents inside the radomes [131-133].

1.4.3 Heat Resistant Properties

When the vehicle is flying at ultra-high speed in the atmosphere, the surface temper-
ature of vehicle rises sharply with the increase in Mach number due to the heating
of the high-temperature compressed gas between the excitation wave and the body
and the strong friction between the surface of the body and the air (usually when
the Mach number is 2, the surface temperature of the vehicle is about 150 °C; while
when the Mach number increases to 3, the surface temperature rises sharply to about
350°C, even exceeding the strength limit temperature of aluminum alloy) [134],
therefore, when polymer matrix wave-transparent composites are used as radomes
for aircraft, they should have excellent heat resistance (pyrolysis temperature greater
than 300 °C) to overcome the high thermal stresses of external aerodynamic heating
and to avoid deformation or even cracks under rapid temperature change [135, 136].

1.4.4 Environmental Resistance Properties

As protective materials for radar antenna systems, polymer matrix wave-transparent
composites are subject to surface aging, polymer matrix degradation, and interfacial
debonding between the polymer matrix and reinforced fibers during long-term
service, which would seriously affect their service stability and reliability [137, 138].
Therefore, polymer matrix wave-transparent composites are required to have excel-
lent environmental aging resistances. Current research revealed that environmental
factors (humidity, heat, high and low-temperature alternation, and light) had a sig-
nificant effect on the mechanical and dielectric properties of glass fiber-reinforced
epoxy resin wave-transparent composites. When the relative humidity increased
from 25% to 85%, the € and tané increased by 10% and 18.6%, respectively. In
addition, the mechanical properties were strongly influenced by the hygrothermal
conditions. The retention of tensile and flexural strengths after boiling for 200 hours
was about 90%, but the retention of ILSS was only 61% [139].
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