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Crystal Structures

Our general objective in this book is to understand the macroscopic properties of
solids on a microscopic level. In view of the many particles in solids, coming up with
any microscopic description appears to be a daunting task. It is clearly impossible to
solve the equations of motion (classical or quantum-mechanical) of the particles.
Fortunately, it turns out that solids are often crystalline, with the atoms arranged on
a regular lattice, and this symmetry permits us to solve microscopic models despite
the vast number of particles involved. In a way, this situation is similar to atomic
physics where the key to a quantum-mechanical description is the spherical sym-
metry of the atom. We will often imagine a macroscopic solid as one single crystal,
a perfect lattice of atoms without any defects whatsoever. While it may seem that
such perfect crystals are not particularly relevant for real materials, this is in fact
not the case. Many solids are actually composed of small crystalline grains. Such
solids are called polycrystalline, in contrast to a macroscopic single crystal, but the
number of atoms within a perfect crystalline environment in them is still very large
compared to the number of atoms on the grain boundary. For instance, for a grain
size on the order of 10003 atomic distances, only about 0.1% of all atoms are at the
grain boundaries.

There are, however, also solids that are not crystalline. These are called amor-
phous. The amorphous state is characterized by the absence of any long-range order.
There may exist, however, a degree of short-range order between the atoms.

This chapter is divided into three parts. In the first part, we define some basic
mathematical concepts needed to describe crystals. We keep things simple and
mostly use two-dimensional examples to illustrate the ideas. In the second part, we
discuss common crystal structures. For the moment, we will not ask why the atoms
bind together in the way they do – this topic will be discussed in Chapter 2. Finally,
we delve into a more detailed discussion of X-ray diffraction, the experimental
technique that can be used to determine the microscopic structure of crystals.
X-ray diffraction is used not only in solid state physics but also for a wide range of
problems in nanotechnology and structural biology.

Solid State Physics: An Introduction, Third Edition. Philip Hofmann.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.

CO
PYRIG

HTED
 M

ATERIA
L



2 1 Crystal Structures

1.1 General Description of Crystal Structures

Our description of crystals starts with the mathematical definition of the lattice.
A lattice is a set of regularly spaced points with positions defined as multiples of
generating vectors. In two dimensions, a lattice can be defined as all the points that
can be reached by the vectors R, created from two non-collinear vectors a𝟏 and a𝟐 as

R = ma𝟏 + na𝟐, (1.1)

where n and m are integers. In three dimensions, the corresponding definition is

R = ma𝟏 + na𝟐 + oa𝟑. (1.2)

Such a lattice of points is also called a Bravais lattice. The number of possible
Bravais lattices with different symmetries is limited to 5 in two dimensions and to
14 in three dimensions. An example of a two-dimensional Bravais lattice is given
in Figure 1.1. The lengths of the vectors a𝟏 and a𝟐 are often called the lattice
constants.

Having defined the Bravais lattice, we move on to the definition of the primitive
unit cell. By this we denote any volume of space that, when translated through all
the vectors of the Bravais lattice, will fill space without overlap and without leav-
ing any voids. The primitive unit cell of a lattice contains only one lattice point. It
is also possible to define nonprimitive unit cells containing several lattice points.
These fill space without leaving voids when translated through a subset of the Bravais
lattice vectors. Possible choices of a unit cell for a two-dimensional rectangular Bra-
vais lattice are illustrated in Figure 1.2. It is evident from the figure that a nonprim-
itive unit cell has to be translated by a multiple of one (or two) lattice vectors to fill
space without voids and overlap. A special choice of the primitive unit cell is the
Wigner–Seitz cell, which is also shown in Figure 1.2. It is the region of space that
is closer to one given lattice point than to any other.

The last definition we need in order to describe an actual crystal is that of a basis.
The basis describes the items we “put” on the lattice points, that is, the building
blocks for the real crystal. The basis can consist of one or several atoms, or even of
complex molecules as in the case of protein crystals. Different cases are illustrated
in Figure 1.3.

a2

a1

Figure 1.1 A two-dimensional Bravais lattice.
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Figure 1.2 Illustration of
(primitive and nonprimitive)
unit cells and of the
Wigner–Seitz cell for a
rectangular two-dimensional
lattice.
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Figure 1.3 A two-dimensional
Bravais lattice with different choices
for the basis.
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Finally, we add a remark about symmetry. So far, we discussed only translational
symmetry. However, a real crystal may also exhibit point symmetry. Compare the
structures in the middle and the bottom of Figure 1.3. The former structure possesses
a number of symmetry elements that are missing in the latter – for example, mirror
lines, a rotational axis, and inversion symmetry. The knowledge of such symmetries
can be very useful for the description of crystal properties.

1.2 Some Important Crystal Structures

After this rather formal treatment, we look at a number of common crystal structures
for different types of solids, such as metals, ionic solids, or covalently bonded solids.
In Chapter 2, we will take a closer look at the details of the bonding in these types of
solids.
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(a) Simple cubic (b) Body-centered cubic (c) Face-centered cubic

Figure 1.4 (a) Simple cubic structure; (b) body-centered cubic structure; and
(c) face-centered cubic structure. Note that the spheres are depicted much smaller than in
the situation of most dense packing and not all of the spheres on the faces of the cube are
shown in (c).

1.2.1 Cubic Structures

We begin with one of the simplest crystal structures possible, the simple cubic
structure shown in Figure 1.4a. This structure is not very common among ele-
mental solids, but it is an important starting point for understanding many other
structures. Only one chemical element (polonium) is found to crystallize in the sim-
ple cubic structure. The structure is unfavorable because of its openness – there are
many voids, if we think of the atoms as solid spheres in contact with each other.
In metals, which are the most common elemental solids, directional bonding is not
important, and a close packing of the atoms is usually favored. We will learn more
about this in the next chapter. For covalent solids, on the other hand, directional
bonding is important, but six bonds extending from the same atom in an octahedral
configuration is highly uncommon in elemental solids.

The packing density of the cubic structure is improved in the body-centered
cubic (bcc) and face-centered cubic (fcc) structures that are also depicted in
Figure 1.4. In fact, the fcc structure has the highest possible packing density for
identical spheres, as we shall see later. These two structures are very common – 17
elements crystallize in the bcc structure and 24 elements in the fcc structure. Note
that the simple cubic structure ist the only one for which the cube is identical with
the Bravais lattice. While the cube is also a unit cell for the bcc and fcc lattices, ist
it not the primitive unit cell in these cases. Still, both structures are Bravais lattices
with a basis containing one atom, but the vectors spanning these Bravais lattices
are not the edges of the cube.

Cubic structures with a more complex basis than a single atom are also important.
Figure 1.5 shows the structures of the ionic crystals CsCl and NaCl, which are both
cubic with a basis containing two atoms. For CsCl, the structure can be thought of as
two simple cubic structures stacked into each other. For NaCl, it consists of two fcc
lattices stacked into each other. Which structure is preferred for such ionic crystals
depends on the relative size of the positive and negative ions.
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CsCl structure  NaCl structure
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Figure 1.5 Structures of CsCl and NaCl. The spheres are depicted much smaller than in the
situation of dense packing, but the relative size of the different ions in each structure is
correct.

1.2.2 Close-Packed Structures

Many metals prefer structural arrangements where the atoms are packed as closely
as possible. In two dimensions, the closest possible packing of atoms (i.e. spheres)
is the hexagonal structure shown on the left-hand side of Figure 1.6. To build a
three-dimensional close-packed structure, one adds a second layer as in the mid-
dle of Figure 1.6. Now there are two possibilities, however, for adding a third layer.
We can either put the atoms in the “holes” just on top of the first-layer atoms, or
we can put them into the other type of “holes.” The result are two different crys-
tal structures. The first has an ABABAB… layer stacking sequence, the second an
ABCABCABC… layer stacking sequence. Both have exactly the same packing den-
sity with the spheres filling about 74% of the total volume. The former structure
is called the hexagonal close-packed structure (hcp), and the latter turns out to
be the fcc structure we already know. An alternative sketch of the hcp structure is
shown in Figure 1.16b. The fcc and hcp structures are very common in elemental
metals, 36 chemical elements crystallizing in hcp and 24 in fcc lattices. These struc-
tures also maximize the number of nearest neighbors for a given atom, the so-called
coordination number. For both the fcc and the hcp lattices, the coordination num-
ber is 12.

Figure 1.6 Close packing of
spheres leading to the hcp and
fcc structures.
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It is as yet an unresolved question why not all metals crystallize in the fcc or hcp
structures, if coordination is indeed so important. Whereas a prediction of the actual
structure for a given element is not possible on the basis of simple arguments, we can
identify some factors that play a role. For example, structures that are not optimally
packed, such as the bcc structure, have a lower coordination number, but they bring
the second-nearest neighbors much closer to a given atom than in the close-packed
structures. Another important consideration is that the bonding situation is often
not quite so simple, particularly in transition metals. In these, bonding is not only
achieved through the delocalized s and p valence electrons as in simple metals,
but also by the more localized d electrons. Bonding through the latter results in a
much more directional character so that not only the close packing of the atoms is
important.

The structures of many ionic solids can also be viewed as “close-packed” in some
sense. One can derive these structures by treating the ions as hard spheres that have
to be packed as closely to each other as possible.

1.2.3 Structures of Covalently Bonded Solids

In covalent structures, the valence electrons of the atoms are not completely delo-
calized but shared between neighboring atoms, and bond lengths and directions are
far more important than the packing density. Prominent examples are graphene,
graphite, and diamond as displayed in Figure 1.7. Graphene is a single sheet of car-
bon atoms in a honeycomb lattice structure. It is a truly two-dimensional solid with
a number of remarkable properties – so remarkable, in fact, that their discovery has
lead to the 2010 Nobel prize in physics being awarded to A. Geim and K. Novoselov.
The carbon atoms in graphene are connected through a network of sp2 hybrid bonds
enclosing angles of 120∘. The parent material of graphene is graphite, which consists
of a stack of graphene sheets that are weakly bonded to each other. In fact, graphene
can be isolated from graphite by peeling off flakes with a piece of scotch tape. In
diamond, the carbon atoms form sp3-type bonds and each atom has four nearest
neighbors in a tetrahedral configuration. Interestingly, the diamond structure can
also be described as an fcc Bravais lattice with a basis of two atoms.

(b)(a) (c)

Figure 1.7 Structures for (a) graphene, (b) graphite, and (c) diamond. Bonds from sp2 and
sp3 orbitals are displayed as solid lines.
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The diamond structure is also found for Si and Ge. Many other isoelectronic mate-
rials (i.e. materials with the same total number of valence electrons), such as SiC,
GaAs, or InP, also crystallize in a diamond-like structure but with each element on
a different fcc sublattice.

1.3 Crystal Structure Determination

After having described different crystal structures, the question is of course how to
determine these structures in the first place. By far the most important technique for
this is X-ray diffraction. In fact, the importance of this technique extends far beyond
solid state physics, as it has become an essential tool for fields such as structural
biology as well. In biology, the idea is that you can derive the structure of a given
protein by trying to crystallize it and then use the powerful methodology of X-ray
diffraction to determine its structure. In addition, we will also use X-ray diffraction
as a motivation to extend our formal description of structures.

1.3.1 X-Ray Diffraction

X-rays interact rather weakly with matter. A description of X-ray diffraction can
therefore be restricted to single scattering, meaning that we limit our analysis to
the case that X-rays incident upon a crystal sample get scattered not more than
once (most are not scattered at all). This is called the kinematic approximation;
it greatly simplifies matters and is used throughout the treatment in this book. Fur-
thermore, we will assume that the X-ray source and detector are placed very far away
from the sample so that the incoming and outgoing waves can be treated as plane
waves. X-ray diffraction of crystals was discovered and described by M. von Laue
in 1912. Also in 1912, W. L. Bragg came up with an alternative description that is
considerably simpler and will serve as a starting point for our analysis.

1.3.1.1 Bragg Theory
Bragg treated the problem as the reflection of the incident X-rays at flat crystal
planes. These planes could, for example, be the close-packed planes making up fcc
and hcp crystals, or they could be alternating Cs and Cl planes making up the CsCl
structure. At first glance, the physical justification for this picture seems somewhat
dubious, because the crystal planes appear certainly not “flat” for X-rays with
wavelengths on the order of atomic spacing. Nevertheless, the description proved
highly successful, and we shall later see that it is actually a special case of the more
complex Laue description of X-ray diffraction.

Figure 1.8 shows the geometrical considerations behind the Bragg description.
A collimated beam of monochromatic X-rays hits the crystal. The intensity of
diffracted X-rays is measured in the specular direction. The angles of incidence and
emission are 90∘ − 𝛩. The condition for constructive interference is that the path
length difference between the X-rays reflected from one layer and the next layer is
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Figure 1.8 Construction for
the derivation of the Bragg
condition. The horizontal
lines represent the crystal
lattice planes that are
separated by a distance d.
The heavy lines represent
the X-rays.

an integer multiple of the wavelength 𝜆. In the figure, this means that 2AB = n𝜆,
where AB is the distance between points A and B and n is a natural number. On the
other hand, we have sin 𝜃 = AB∕d, which leads us to the Bragg condition

n𝜆 = 2d sin 𝜃. (1.3)

It is obvious that if this condition is fulfilled for one specific layer and the layer below
it, then it will also be fulfilled for any number of layers with identical spacing. In
fact, the X-rays penetrate very deeply into the crystal so that thousands of layers con-
tribute to the reflection. This results in very sharp maxima in the diffracted intensity,
similar to the situation for an optical grating with many lines. The Bragg condition
can obviously only be fulfilled for 𝜆 < 2d, putting an upper limit on the wavelength
of the X-rays that can be used for crystal structure determination.

1.3.1.2 Lattice Planes and Miller Indices
Obviously, the Bragg condition will be satisfied not only for a special kind of lattice
plane in a crystal, such as the hexagonal planes in an hcp crystal, but for all possible
parallel planes in a structure. Thus, we need a more precise definition of the term
lattice plane. It proves useful to define a lattice plane as a plane containing at least
three non-collinear lattice points of a given Bravais lattice. If it contains three points,
it will actually contain infinitely many because of the translational symmetry of
the lattice. Examples for lattice planes in a simple cubic structure are shown in
Figure 1.9.

(1,0,0) (1,1,0) (1,1,1)

a2

a3

a1

a3

a2

a1 a1

a2

a3

Figure 1.9 Three different lattice planes in the simple cubic structure characterized by
their Miller indices.
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Following this definition, all lattice planes can be characterized by a set of three
integers, the so-called Miller indices. We derive them in three steps:

1) We find the intercepts of the specific plane at hand with the crystallographic axes
in units of the lattice vectors, for example, (1,∞,∞) for the leftmost plane in
Figure 1.9.

2) We take the “reciprocal value” of these three numbers. For our example, this gives
(1,0, 0).

3) We multiply the numbers obtained in this manner with some factor so that we
arrive at the smallest set of integers having the same ratio. In the example given,
this is not necessary as all number are already integers.

Such a set of three integers can then be used to denote any given lattice plane.
Later, we will encounter a different and more elegant definition of the Miller indices.

In practice, the X-ray diffraction peaks are so sharp that it is difficult to align and
move the sample so that the incoming and reflected X-rays lie in a plane normal
to a certain crystal plane. An elegant way to circumvent this problem is to use a
powder consisting of very small crystals instead of a large single crystal. This will not
only ensure that some of the many crystals are oriented correctly to get constructive
interference from a certain set of crystal planes, it will also automatically yield the
interference pattern for all possible crystal planes.

1.3.1.3 General Diffraction Theory
The Bragg theory for X-ray diffraction is useful for extracting the distances between
lattice planes in a crystal, but it has its limitations. Most importantly, it does not pro-
vide any information on what the lattice actually consists of, that is, the basis. Also,
the fact that the X-rays are described as being reflected by planes is physically some-
what obscure. In the following, we will therefore discuss a more general description
of X-ray diffraction that goes back to M. von Laue.

The physical process leading to X-ray scattering is that the electromagnetic field of
the X-rays forces the electrons in the material to oscillate with the same frequency
as that of the field. The oscillating electrons then emit new X-rays that give rise to an
interference pattern. For the following discussion, however, it is merely important
that something scatters the X-rays, not what it is.

It is highly beneficial to use the complex notation for describing the electromag-
netic X-ray waves. For the electric field, a general plane wave can be written as

(r, t) = 0 eik⋅r−i𝜔t. (1.4)

The wave vector k points in the direction of the wave propagation with a length of
2π∕𝜆, where 𝜆 is the wavelength. The convention is that the physical electric field
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k

Figure 1.10 Illustration of
X-ray scattering from a sample.
The source and detector for the
X-rays are placed at R and R′ ,
respectively. Both are very far
away from the sample.

is obtained as the real part of the complex field and the intensity of the wave is
obtained as

I(r) = |||0 eik⋅r−i𝜔t|||
2
= ||0

||2. (1.5)

Consider now the situation depicted in Figure 1.10. The source of the X-rays is far
away from the sample at the position R so that the X-ray wave at the sample can be
described as a plane wave. The electric field at a point r in the crystal at time t can
be written as

(r, t) = 0 eik⋅(r−R)−i𝜔t. (1.6)

Before we proceed, we can drop the absolute amplitude 0 from this expression
because we are only interested in relative phase changes. The field at point r is then

(r, t) ∝ eik⋅(r−R) e−i𝜔t. (1.7)

A small volume element dV located at r will give rise to scattered waves in all
directions. The direction we are interested in is that towards the detector, which
we assume to be placed at position R′, in the direction of a second wave vector k′.
We assume that the amplitude of the wave scattered in this direction will be pro-
portional to the incoming field from Eq. (1.7) and to a factor 𝜌(r) describing the
scattering probability and scattering phase. We already know that the scattering
of X-rays proceeds via the electrons in the material, and for our purpose, we can
view 𝜌(r) as the electron concentration in the solid. For the field at the detector,
we obtain

(R′, t) ∝ (r, t)𝜌(r) eik′⋅(R′−r). (1.8)

Again, we have assumed that the detector is very far away from the sample so that
the scattered wave at the detector can be written as a plane wave. Inserting Eq. (1.7)
gives the field at the detector as

(R′, t) ∝ eik⋅(r−R)𝜌(r) eik′⋅(R′−r) e−i𝜔t = ei(k′⋅R′−k⋅R)𝜌(r) ei(k−k′)⋅r e−i𝜔t. (1.9)

We drop the first factor that does not contain r and will thus not play a role for the
interference of X-rays emitted from different positions in the sample. The total wave
field at the detector can finally be calculated by integrating over the entire volume
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V of the crystal. As the detector is far away from the sample, the wave vector k′ is
essentially the same for all points in the sample. The result is therefore

(R′, t) ∝ e−i𝜔t∫V
𝜌(r) ei(k−k′)⋅r dV . (1.10)

In most cases, it will only be possible to measure the intensity of the X-rays and not
the field amplitude. This intensity is given by

I(K) ∝
||||e

−i𝜔t∫V
𝜌(r) ei(k−k′)⋅r dV

||||
2
=
||||∫V

𝜌(r) e−iK⋅r dV
||||
2
, (1.11)

where we have introduced the so-called scattering vector K = k′ − k, which is just
the difference of the outgoing and incoming wave vectors. Note that although the
direction of the wave vector k′ for the scattered waves is different from that of the
incoming wave k, their lengths are the same because we consider elastic scatter-
ing only.

Equation (1.11) is our final result. It relates the measured intensity to the electron
concentration in the sample. Except for very light elements, most of the electrons are
located close to the ion cores and the electron concentration that scatters the X-rays
is essentially identical to the geometrical arrangement of the atomic cores. Hence,
Eq. (1.11) can be used for the desired structure determination. To this end, one could
try to measure the intensity as a function of scattering vector K and to infer the
structure from the result. This is a formidable task, however. It is greatly simplified
by the fact that the specimen under investigation is a crystal with a periodic lattice.
In the following, we introduce the mathematical tools and concepts that are needed
to exploit the crystalline structure in the analysis. The most important of these is the
so-called reciprocal lattice.

1.3.1.4 The Reciprocal Lattice
The concept of the reciprocal lattice is fundamental to solid state physics because
it permits us to exploit crystal symmetry in the analysis of many problems. Here,
we will use it to describe X-ray diffraction from periodic structures and we will
continue to meet it again in the following chapters. Unfortunately, the meaning
of the reciprocal lattice turns out to be difficult to grasp. We will start out with a
formal definition and provide some of its mathematical properties. We then go
on to discuss the meaning of the reciprocal lattice before we come back to X-ray
diffraction. The full importance of the concept will become apparent in the course
of this book.

For a given Bravais lattice

R = ma𝟏 + na𝟐 + oa𝟑, (1.12)

we define the reciprocal lattice as the set of vectors G for which

R ⋅ G = 2π l, (1.13)

where l is an integer. Equivalently, we could require that

eiG⋅R = 1. (1.14)
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Note that this equation must hold for any choice of the lattice vector R and reciprocal
lattice vector G. We can write any G as the linear combination of three vectors

G = m′ b𝟏 + n′ b𝟐 + o′ b𝟑, (1.15)

where m′, n′ and o′ are integers. The reciprocal lattice is also a Bravais lattice. The
vectors b𝟏, b𝟐, and b𝟑 spanning the reciprocal lattice can be constructed explicitly
from the lattice vectors 1

b1 = 2π
a2 × a3

a1 ⋅ (a2 × a3)
, b2 = 2π

a3 × a1

a1 ⋅ (a2 × a3)
, b3 = 2π

a1 × a2

a1 ⋅ (a2 × a3)
. (1.16)

From this, one can derive the simple but useful property2

ai ⋅ bj = 2π δij, (1.17)

which can easily be verified. Equation (1.17) can then be used to verify that the
reciprocal lattice vectors defined by Eqs. (1.15) and (1.16) do indeed fulfill the fun-
damental property of Eq. (1.13) defining the reciprocal lattice (see also Problem 1.6).

Another way to view the vectors of the reciprocal lattice is as wave vectors that
yield plane waves with the periodicity of the Bravais lattice, because

eiG⋅r = eiG⋅r eiG⋅R = eiG⋅(r+R). (1.18)

Using the reciprocal lattice, we can finally define the Miller indices in a much
simpler way: The Miller indices (i, j, k) define a plane that is perpendicular to the
reciprocal lattice vector ib𝟏 + jb𝟐 + kb𝟑 (see Problem 1.9).

1.3.1.5 The Meaning of the Reciprocal Lattice
We have now defined the reciprocal lattice in a proper way, and we will give some
simple examples of its usefulness. The most important feature of the reciprocal lat-
tice is that it facilitates the description of functions with the same periodicity as that
of the lattice. To see this, consider a one-dimensional lattice, a chain of points with
a lattice constant a (Fig. 1.11). We are interested in a function with the periodicity of
the lattice, such as the electron concentration 𝜌(x) along the chain, 𝜌(x) = 𝜌(x + a).
We can write this as a Fourier series of the form

𝜌(x) = C +
∞∑

n=1

{
Cn cos(x 2π n∕a) + Sn sin(x 2π n∕a)

}
(1.19)

with real coefficients Cn and Sn. The sum starts at n = 1, the constant C is therefore
outside the summation. Using complex coefficients 𝜌n, we can also write this in the
more compact form

𝜌(x) =
∞∑

n=−∞
𝜌n eixn 2π∕a. (1.20)

1 The denominator is chosen to be the same for all three reciprocal lattice vectors, but note that the
combination of dot product and cross product is “circular” such that a1 ⋅ (a2 × a3) = a2 ⋅ (a3 × a1) =
a3 ⋅ (a1 × a2).
2 δij denotes Kronecker’s delta, which is 1 for i = j and zero otherwise.
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To ensure that 𝜌(x) is still a real function, we require that

𝜌∗−n = 𝜌n, (1.21)

that is, that the coefficient 𝜌−n must be the complex conjugate of the coefficient 𝜌n.
This description is more elegant than the one with the sine and cosine functions.
How is it related to the reciprocal lattice? In one dimension, the reciprocal lattice of a
chain of points with lattice constant a is also a chain of points, now with spacing 2π∕a
[see Eq. (1.17)]. This means that we can write a general reciprocal lattice “vector” as

g = n 2π
a
, (1.22)

where n is an integer. Exactly these reciprocal lattice “vectors” appear in Eq. (1.20).
In fact, Eq. (1.20) is a sum of functions with a periodicity corresponding to the lattice
vector, weighted by the coefficients 𝜌n. Figure 1.11 illustrates these ideas by showing
the lattice and reciprocal lattice for such a chain as well as two lattice-periodic func-
tions, both in real space and as Fourier coefficients on the reciprocal lattice points.
The advantage of describing these functions by the coefficients 𝜌n is immediately
obvious: Instead of giving 𝜌(x) for every point in a range of 0 ⩽ x < a, the Fourier
description consists of just three numbers for the upper function and five numbers
for the lower function. Actually, these even reduce to two and three numbers, respec-
tively, because of Eq. (1.21).

The same ideas also work in three dimensions. In fact, one can use a Fourier sum
for lattice-periodic properties that corresponds to Eq. (1.20). For the lattice-periodic
electron concentration 𝜌(r) = 𝜌(r + R), we get

𝜌(r) =
∑

G
𝜌G eiG⋅r, (1.23)

where G are the reciprocal lattice vectors.
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Figure 1.11 Top: A chain with a lattice constant a as well as its reciprocal lattice, a chain
with a spacing of 2π∕a. Middle and bottom: Two lattice-periodic functions 𝜌(x) in real space
as well as their Fourier coefficients. The magnitude of the Fourier coefficients |𝜌n| is plotted
on the reciprocal lattice vectors they belong to.
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Thus we have seen that the reciprocal lattice is very useful for describing lattice-
periodic functions. But this is not the whole story: The reciprocal lattice can also
simplify the treatment of waves in crystals in a very general sense. Such waves can
be X-rays, elastic lattice distortions, or even electronic wave functions. We will come
back to this point at a later stage.

1.3.1.6 X-Ray Diffraction from Periodic Structures
Turning back to the specific problem of X-ray diffraction, we can now exploit the
fact that the electron concentration is lattice-periodic by inserting Eq. (1.23) in our
expression from Eq. (1.11) for the diffracted intensity. This yields

I(K) ∝
|||||
∑

G
𝜌G∫V

ei(G−K)⋅r dV
|||||
2

. (1.24)

Let us inspect the integrand. The exponential represents a plane wave with a wave
vector G − K. If the crystal is very big, the integration will average over the crests
and troughs of this wave and the result of the integration will be very small (or zero
for an infinitely large crystal). The only exception to this is the case where

K = k′ − k = G, (1.25)

that is, when the difference between incoming and scattered wave vector equals a
reciprocal lattice vector. In this case, the exponential in the integral is 1, and the value
of the integral is equal to the volume of the crystal. Equation (1.25) is often called
the Laue condition. It is central to the description of X-ray diffraction from crystals
in that it describes the condition for the observation of constructive interference.

Looking back at Eq. (1.24), the observation of constructive interference for a cho-
sen scattering geometry (or scattering vector K) clearly corresponds to a particular
reciprocal lattice vector G. The intensity measured at the detector is proportional
to the square of the Fourier coefficient of the electron concentration |𝜌G|2. We
could therefore think of measuring the intensity of the diffraction spots appearing
for all possible reciprocal lattice vectors, obtaining the Fourier coefficients of the
electron concentration and reconstructing this concentration from the coefficients.
This would give us all the information needed and thus conclude the process of
structure determination. Unfortunately, this straightforward approach does not
work because the Fourier coefficients are complex numbers. Taking the square
root of the intensity at the diffraction spot therefore gives the magnitude, but not
the phase of 𝜌G. The phase is lost in the measurement; this is known as the phase
problem in X-ray diffraction. To solve an unknown structure, one has to find a
way to work around it. One simple approach for this is to calculate the electron
concentration for a structural model, obtain the magnitude of the 𝜌G values and
thus also the expected diffracted intensity, and compare this to the experimental
result. Based on the outcome, the model can be refined until the agreement
is satisfactory.

In the following, we will describe in more detail how this can be achieved. We start
with Eq. (1.11), the expression for the diffracted intensity that we had obtained before
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introducing the reciprocal lattice. But now we know that constructive interference
is only observed in an arrangement that corresponds to meeting the Laue condition
and we can therefore write the intensity for a particular diffraction spot as

I(G) ∝
||||∫V

𝜌(r) e−iG⋅r dV
||||
2
. (1.26)

We also know that the crystal consists of many identical unit cells at the positions
R of the Bravais lattice. Therefore, we can split the integral and write it as a sum of
integrals over the individual unit cells,

I(G) ∝
|||||
∑

R
∫Vcell

𝜌(r + R) e−iG⋅(r+R) dV
|||||
2

=
|||||
N∫Vcell

𝜌(r) e−iG⋅r dV
|||||
2

, (1.27)

where N is the number of unit cells in the crystal and we have used the lattice period-
icity of 𝜌(r) and Eq. (1.14) in the last step. We now assume that the electron density
𝜌(r) in the unit cell is given by the sum of atomic electron densities 𝜌i(r) that can
be calculated from the atomic wave functions. In doing so, we neglect the fact that
some of the electrons form bonds between the atoms and are no longer part of the
spherical electron cloud around the atom. If the atoms are not too light, however, the
number of these valence electrons is small compared to the total number of electrons
and the approximation is appropriate. We can then write

𝜌(r) =
∑

i
𝜌i(r − ri), (1.28)

where we sum over the different atoms in the unit cell (i.e. the basis) at positions
ri. This permits us to rewrite the integral in Eq. (1.27) as a sum of integrals over the
individual atoms in the unit cell

∫Vcell

𝜌(r) e−i G⋅r dV =
∑

i
e−i G⋅ri∫Vatom

𝜌i(r′) e−i G⋅r′ dV ′, (1.29)

where r′ = r − ri. The two exponential functions give rise to two types of interfer-
ence. The first describes the interference between the X-rays scattered by the dif-
ferent atoms in the unit cell, and the second the interference between the X-rays
scattered by the electrons within one atom. The last integral is called the atomic
form factor and can be calculated from the atomic properties alone. We therefore
see how the diffracted intensity for an assumed structure can be calculated from the
atomic form factors and the arrangement of the atoms.

1.3.1.7 The Ewald Construction
In 1913, P. Ewald published an intuitive geometrical construction to visualize the
Laue condition [Eq. (1.25)] and to determine the directions k′ for which construc-
tive interference is to be expected. The construction is shown in Figure 1.12, which
represents a cut through the reciprocal lattice; the black points are the reciprocal
lattice points. The construction works as follows:

1) We draw the wave vector k of the incoming X-rays such that it ends in the origin
of the reciprocal lattice (we may of course choose the point of origin freely).
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k′

G

k

Figure 1.12 Ewald construction for finding
the directions in which constructive
interference can be observed. The dots
represent the reciprocal lattice. The arrows
labeled k and k′ are the wave vectors of the
incoming and scattered X-rays, respectively.

2) We construct a circle of radius |k| around the starting point of k.
3) Wherever the circle touches a reciprocal lattice point, the Laue condition

k′ − k = G is fulfilled.

For a three-dimensional crystal, this construction has to be carried out in different
planes, of course. The figure clearly shows that Eq. (1.25) is a very stringent condi-
tion: It is not likely for the sphere to hit a second reciprocal lattice point, which
means that constructive interference is expected for very few directions. As in the
Bragg description, we see that the wavelength of the X-rays has to be sufficiently
small (|k| has to be sufficiently large) for any constructive interference to occur.

Practical X-ray diffraction experiments are often carried out in such a way that
many constructive interference maxima are observed despite the strong restrictions
imposed by the Laue condition, Eq. (1.25). For example, this can be achieved by
using a wide range of X-ray wavelengths, i.e. non-monochromatic radiation, or by
performing a diffraction experiment not on a single crystal but on a powder of ran-
domly oriented small crystals.

1.3.1.8 Relation Between Bragg and Laue Theory
We conclude our treatment of X-ray diffraction by showing that the Bragg descrip-
tion of X-ray diffraction is just a special case of the Laue description. We start by
noting that the Laue condition in Eq. (1.25) consists, in fact, of three separate con-
ditions for the three components of the vectors. In the Bragg experiment, two of
these conditions are automatically fulfilled because of the specular geometry: The
wave vector change parallel to the lattice planes is zero. So, the vector equation (1.25)
reduces to the scalar equation

k′
⟂ − k⟂ = 2k⟂ = 2 2π

𝜆
sin𝛩 = G⟂, (1.30)

where G⟂ is a reciprocal lattice vector perpendicular to the lattice planes. We have
seen in Section 1.3.1.4 that such a reciprocal lattice vector exists for any set of planes.
The planes can be defined by their Miller indices (i, j, k) or by the reciprocal lattice
vector G⟂ = ib𝟏 + jb𝟐 + kb𝟑 that is perpendicular to the planes (see Problem 1.9).
The shortest possible G⟂ has a length of 2π∕d with d being the distance between the
planes, but any integer multiple of this will also work. Thus, if we insert m 2π∕d for
G⟂ into Eq. (1.30), we obtain the usual form of the Bragg condition in Eq. (1.3).
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1.3.2 Other Methods for Structure Determination

While X-ray diffraction is arguably the most widespread and most powerful method
for structure determination, other techniques are used as well. Similar diffraction
experiments can be carried out by making use of the wave character of neutrons or
electrons. The former interact very weakly with matter because they carry no elec-
tric charge. They are also more difficult to produce than X-rays. However, the use of
neutrons has two distinct advantages over X-rays: First, their interaction with light
atoms is stronger than that of X-rays, and second, they possess a magnetic moment,
which means that they can interact with any magnetic moments in the solid, allow-
ing one to determine its magnetic order. Electrons, on the other hand, have the
advantages that they are easy to produce and that one can use electron-optical imag-
ing techniques, whereas making optical elements for X-rays is very difficult. On the
other hand, their very strong interaction with matter causes a breakdown of the
kinematic approximation, that is, multiple scattering events have to be taken into
account. Because of their strong interaction with matter, low-energy electrons do
not penetrate deeply into crystals. Therefore, they are more appropriate for surface
structure determination.

1.3.3 Inelastic Scattering

Our discussion has been confined to the case of elastic scattering. In real experi-
ments, however, the X-rays or particles can also lose energy during the scattering
events. This can be described formally by considering the diffraction from a struc-
ture that does not consist of atoms or ions at fixed positions but is time-dependent,
that is, which fluctuates with the frequencies of the atomic vibrations. We cannot go
into the details of inelastic scattering processes here, but it is important to empha-
size that inelastic scattering, in particular of neutrons, can be used to measure the
vibrational properties of a lattice.

1.4 Further Reading

The concepts of lattice-periodic solids, crystal structure, and X-ray diffraction are
discussed in all standard texts on solid state physics, for example:

● Ashcroft, N.W. and Mermin, N.D. (1976). Solid State Physics. Holt-Saunders.
● Ibach, H. and Lüth, H. (2009). Solid State Physics, 4th edn. Springer.
● Kittel, C. (2005). Introduction to Solid State Physics, 8th edn. John Wiley & Sons
● Rosenberg, H.M. (1988). The Solid State. 3rd edn, Oxford University Press.

For a more detailed discussion of X-ray diffraction, see, for example:

● Als-Nielsen, J. and McMorrow, D. (2011). Elements of Modern X-Ray Physics, 2nd
edn. John Wiley & Sons.
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1.5 Discussion and Problems

Discussion

1.1 What mathematical concepts are used to describe the structure of any crystal?

1.2 What are the typical crystal structures of metals and why are they common?

1.3 Why do covalent crystals typically exhibit a much lower packing density than
metallic crystals?

1.4 How can the reciprocal lattice conveniently be used to describe lattice-periodic
functions?

1.5 How can the structures of crystals be determined?

1.6 What is the difference between the Bragg and von Laue descriptions of X-ray
diffraction?

1.7 How can the reciprocal lattice of a crystal be used to predict the pattern of
diffracted X-rays?

Basic Concepts

1.1 Bravais lattice: Figure 1.13 shows four two-dimensional lattices.
(a) Which of the following statements is true?

A. All four lattices are Bravais lattices.
B. Q is not a Bravais lattice.
C. Q and R are not Bravais lattices.
D. R is not a Bravais lattice.

(b) Draw the smallest possible unit cell of each lattice into the figure.

b

b

a

a
c

d

√3a
2 a

SRQP

Figure 1.13 Two-dimensional lattices.
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1.2 Basis:
(a) The left-hand side of Figure 1.14 shows a two-dimensional lattice with two

types of atoms. We can think of the big white circles as nickel and the small
grey ones as oxygen. When you describe this crystal by a two-dimensional
Bravais lattice and a basis, how many atoms are there in the basis?
A. One.
B. Two.
C. Four.
D. Nine.

(b) The right-hand side of Figure 1.14 shows possible reciprocal lattices for
this crystal. Which one is correct?

a

A B

C D

π

a
2π

a
2π

a

π
a

a
2π √2

a
2π √2

a
π √2

a
π √2

Figure 1.14 Left: two-dimensional NiO crystal; Right: possible choices of the reciprocal
lattice for this crystal.

1.3 Unit cell of a lattice: Figure 9.6 shows a possible choice for the unit cell of bar-
ium titanate. The barium ions are located on the corners of the cube and the
oxygen atoms on its faces. How many ions of the different types does this unit
cell contain?
A. Ba: 4, Ti: 1, O: 4.
B. Ba: 8, Ti: 1, O: 6.
C. Ba: 1, Ti: 1, O: 3.

1.4 The reciprocal lattice: Consider a real-space Bravais lattice R = ma𝟏 + na𝟐 +
oa𝟑 and the corresponding reciprocal lattice G = m′b𝟏 + n′b𝟐 + o′b𝟑. Which
of the following relations holds for all possible Bravais lattices?
A. b𝟏 is parallel to a𝟏.
B. b𝟏 is perpendicular to the plane spanned by a𝟏 and a𝟐.
C. b𝟏 is perpendicular to the plane spanned by a𝟑 and a𝟐.
D. b𝟏 is perpendicular to a𝟏.
E. None of the above.
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1.5 X-ray diffraction: Which of the following can be determined from the positions
of the spots in an X-ray diffraction pattern?
A. The reciprocal lattice.
B. The Bravais lattice.
C. Both A. and B.
D. The position of the atoms in the unit cell.
E. A., B., and D.

Problems

1.1 Fundamental concepts: For the two-dimensional crystal in Figure 1.15, find
(a) the Bravais lattice and a primitive unit cell, (b) a nonprimitive, rectangular
unit cell, and (c) the basis.

Figure 1.15 A two-dimensional
crystal.

1.2 Real crystal structures: Show that the packing of spheres in a simple cubic lat-
tice fills 52% of the available space.

1.3 Real crystal structures: Figure 1.16 shows the structures of a two-dimensional
hexagonal packed layer of atoms, a hcp crystal, a two-dimensional sheet of car-
bon atoms arranged in a honeycomb lattice (graphene), and three-dimensional
graphite. (a) Draw a choice of vectors spanning the Bravais lattice for the
hexagonal layer of atoms and for graphene, and compare them to each other.
(b) Show that the basis for the hexagonal layer contains one atom, while the
bases for graphene and the three-dimensional hcp crystal contain two atoms.
(c)* Choose lattice vectors for the Bravais lattice of graphite and show that the
basis contains four atoms.

1.4 Real crystal structures: Consider the hcp lattice shown in Figure 1.16b. The
Bravais lattice underlying the hcp structure is given by two vectors of length
a in one plane with an angle of 60∘ between them and a third vector of length
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Figure 1.16 (a) Two-dimensional crystal
structure of a hexagonal close-packed layer
of atoms. (b) Crystal structure of a
three-dimensional hcp crystal.
(c) Two-dimensional crystal structure of
graphene. (d) Three-dimensional crystal
structure of graphite (strongly compressed
along the c direction). The lines are a mere
guide to the eye, not indicating bonds or
the size of the unit cell.

c

a 

(b)(a)

(d)(c)

c perpendicular to that plane. There are two atoms per unit cell. (a) Show that
for the ideal packing of spheres, the ratio c∕a = (8∕3)1∕2. (b)* Construct the
reciprocal lattice. Does the fact that there are two atoms per unit cell in the
hcp crystal have any relevance? Hint: Use the result of Problem 1.7.

1.5 X-ray diffraction: (a) Determine the maximum wavelength for which construc-
tive interference can be observed in the Bragg model for a simple cubic crystal
with a lattice constant of 3.6 Å. (b) What is the energy of the X-rays in elec-
tron volts? (c) If you were to perform neutron diffraction, what kinetic energy
would the neutrons need to possess for their de Broglie wavelength to be same?
(d) One could argue that if one would use X-rays with twice the wavelength,
one would still get a Bragg peak because then constructive interference would
occur between the X-rays reflected from every other plane. Why is this argu-
ment not valid? (e) One could describe the same crystal by using a unit cell
that is a bigger cube of twice the side length, containing eight atoms instead
of one. The lattice constant would then be 7.2 Å. Discuss how this different
description would affect the X-ray diffraction from the crystal.

1.6 The reciprocal lattice: Using the explicit definition of the reciprocal lattice in
Eq. (1.16), show first that Eq. (1.17) is obeyed and then proceed, using this
relation, to show that the reciprocal lattice defined by Eq. (1.16) does indeed
meet the condition from Eq. (1.13).

1.7 The reciprocal lattice: For a two-dimensional Bravais lattice

R = ma𝟏 + na𝟐, (1.31)

the reciprocal lattice is also two-dimensional:

G = m′b𝟏 + n′b𝟐. (1.32)
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Often, the most practical way to construct the reciprocal lattice is to use the
relation

ai ⋅ bj = 2π δij, (1.33)

which remains valid in the two-dimensional case. Find the reciprocal lattices
for the three cases displayed in Figure 1.17.

γ

Square

γ

Rectangular Hexagonal

γ

a2 a2 a2

a1 a1
a1

|a1| = |a2| |a1| ≠ |a2| |a1| = |a2|

γ = 90° γ = 90° γ = 60°

Figure 1.17 Two-dimensional
Bravais lattices.

1.8 Lattice-periodic functions: Figure 1.11 shows two lattice-periodic functions and
the Fourier coefficients generating these functions. The functions 𝜌(x) have
been calculated from the coefficients 𝜌n using Eq. (1.20). (a) Write down the
specific Fourier series corresponding to the lower half of Fig. 1.11 and make
sure that the result is correct by plotting 𝜌(x) in the same interval as in the
figure, from −5a to 5a (you may choose a = 1). (b) Now try the reverse oper-
ation by numerically calculating the Fourier transform of the obtained 𝜌(x).
Display the resulting |𝜌(k)|. You will find that it does not match the right-hand
side of Fig. 1.11: Instead of δ functions at the reciprocal lattice points, you will
obtain quite broad peaks. Why is this so? What would be needed to narrow
these peaks? Demonstrate how this can be achieved. (c)* Discuss the impli-
cations for the observed intensity in X-ray diffraction. To this end, note that
upon fulfilling the Laue condition, the diffracted intensity around a reciprocal
lattice vector as in Eq. (1.26) corresponds to the squared norm of the scattering
density’s Fourier transformation.

1.9 Miller indices: We have stated that the reciprocal lattice vector mb𝟏 + nb𝟐 + ob𝟑
is perpendicular to the lattice plane given by the Miller indices (m,n, o).
(a) Verify that this is correct for the lattice planes drawn in Figure 1.9.
(b)* Show that this statement is universally valid.


